首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bimolecular fluorescence complementation (BiFC) is an approach used to analyze protein–protein interaction in vivo, in which non-fluorescent N-terminal and C-terminal fragments of a fluorescent protein are reconstituted to emit fluorescence only when they are brought together by interaction of two proteins to fuse both fragments. A method for simultaneous visualization of two protein complexes by multicolor BiFC with fragments from green fluorescent protein (GFP) and its variants such as cyan and yellow fluorescent proteins (CFP and YFP) was recently reported in animal cells. In this paper we describe a new strategy for simultaneous visualization of two protein complexes in plant cells using the multicolor BiFC with fragments from CFP, GFP, YFP and a red fluorescent protein variant (DsRed-Monomer). We identified nine different BiFC complexes using fragments of CFP, GFP and YFP, and one BiFC complex using fragments of DsRed-Monomer. Fluorescence complementation did not occur by combinations between fragments of GFP variants and DsRed-Monomer. Based on these findings, we achieved simultaneous visualization of two protein complexes in a single plant cell using two colored fluorescent complementation pairs (cyan/red, green/red or yellow/red).  相似文献   

3.
4.
The specificity of intracellular signaling and developmental patterning in biological systems relies on selective interactions between different proteins in specific cellular compartments. The identification of such protein-protein interactions is essential for unraveling complex signaling and regulatory networks. Recently, bimolecular fluorescence complementation (BiFC) has emerged as a powerful technique for the efficient detection of protein interactions in their native subcellular localization. Here we report significant technical advances in the methodology of plant BiFC. We describe a series of versatile BiFC vector sets that are fully compatible with previously generated vectors. The new vectors enable the generation of both C-terminal and N-terminal fusion proteins and carry optimized fluorescent protein genes that considerably improve the sensitivity of BiFC. Using these vectors, we describe a multicolor BiFC (mcBiFC) approach for the simultaneous visualization of multiple protein interactions in the same cell. Application to a protein interaction network acting in calcium-mediated signal transduction revealed the concurrent interaction of the protein kinase CIPK24 with the calcium sensors CBL1 and CBL10 at the plasma membrane and tonoplast, respectively. We have also visualized by mcBiFC the simultaneous formation of CBL1/CIPK1 and CBL9/CIPK1 protein complexes at the plasma membrane. Thus, mcBiFC provides a useful new tool for exploring complex regulatory networks in plants.  相似文献   

5.
Kerppola TK 《Nature protocols》2006,1(3):1278-1286
Bimolecular fluorescence complementation (BiFC) analysis enables direct visualization of protein interactions in living cells. The BiFC assay is based on the discoveries that two non-fluorescent fragments of a fluorescent protein can form a fluorescent complex and that the association of the fragments can be facilitated when they are fused to two proteins that interact with each other. BiFC must be confirmed by parallel analysis of proteins in which the interaction interface has been mutated. It is not necessary for the interaction partners to juxtapose the fragments within a specific distance of each other because they can associate when they are tethered to a complex with flexible linkers. It is also not necessary for the interaction partners to form a complex with a long half-life or a high occupancy since the fragments can associate in a transient complex and un-associated fusion proteins do not interfere with detection of the complex. Many interactions can be visualized when the fusion proteins are expressed at levels comparable to their endogenous counterparts. The BiFC assay has been used for the visualization of interactions between many types of proteins in different subcellular locations and in different cell types and organisms. It is technically straightforward and can be performed using a regular fluorescence microscope and standard molecular biology and cell culture reagents.  相似文献   

6.
Bimolecular fluorescence complementation (BiFC) analysis enables visualization of the subcellular locations of protein interactions in living cells. Using fragments of different fluorescent proteins, we investigated the temporal resolution and the quantitative accuracy of BiFC analysis. We determined the kinetics of BiFC complex formation in response to the rapamycin-inducible interaction between the FK506 binding protein (FKBP) and the FKBP-rapamycin binding domain (FRB). Fragments of yellow fluorescent protein fused to FKBP and FRB produced detectable BiFC complex fluorescence 10 min after the addition of rapamycin and a 10-fold increase in the mean fluorescence intensity in 8 h. The N-terminal fragment of the Venus fluorescent protein fused to FKBP produced constitutive BiFC complexes with several C-terminal fragments fused to FRB. A chimeric N-terminal fragment containing residues from Venus and yellow fluorescent protein produced either constitutive or inducible BiFC complexes depending on the temperature at which the cells were cultured. The concentrations of inducers required for half-maximal induction of BiFC complex formation by all fluorescent protein fragments tested were consistent with the affinities of the inducers for unmodified FKBP and FRB. Treatment with the FK506 inhibitor of FKBP-FRB interaction prevented the formation of BiFC complexes by FKBP and FRB fusions, but did not disrupt existing BiFC complexes. Proteins synthesized before the addition of rapamycin formed BiFC complexes with the same efficiency as did newly synthesized proteins. Inhibitors of protein synthesis attenuated BiFC complex formation independent of their effects on fusion protein synthesis. The kinetics at which they inhibited BiFC complex formation suggests that they prevented association of the fluorescent protein fragments, but not the slow maturation of BiFC complex fluorescence. Agents that induce the unfolded protein response also reduced formation of BiFC complexes. The effects of these agents were suppressed by cellular adaptation to protein folding stress. In summary, BiFC analysis enables detection of protein interactions within minutes after complex formation in living cells, but does not allow detection of complex dissociation. Conditional BiFC complex formation depends on the folding efficiencies of fluorescent protein fragments and can be affected by the cellular protein folding environment.  相似文献   

7.
Kodama Y  Hu CD 《BioTechniques》2010,49(5):793-805
Protein-protein interactions (PPIs) play crucial roles in various biological processes. Among biochemical, genetic, and imaging approaches that have been used for the study of PPIs, visualization of PPIs in living cells is the key to understanding their cellular functions. The bimolecular fluorescence complementation (BiFC) assay represents one of these imaging tools for direct visualization of PPIs in living cells. The BiFC assay is based on the structural complementation of two nonfluorescent N- and C-terminal fragments of a fluorescent protein when they are fused to a pair of interacting proteins. Although over 10 different fluorescent proteins have been used for BiFC assays, the two nonfluorescent fragments from all of these fluorescent proteins can spontaneously self-assemble, which contributes to background fluorescence and decreases the signal-to-noise (S/N) ratio in the BiFC assay. Here we report the identification of a mutation, I152L, that can specifically reduce self-assembly and decrease background fluorescence in a Venus-based BiFC system. This mutation allows a 4-fold increase in the S/N ratio of the BiFC assay in living cells. This improved Venus-based BiFC system will facilitate PPI studies in various biological research fields.  相似文献   

8.
The bimolecular fluorescence complementation (BiFC) assay is a powerful tool for visualizing and identifying protein interactions in living cells. This assay is based on the principle of protein-fragment complementation, using two nonfluorescent fragments derived from fluorescent proteins. When two fragments are brought together in living cells by tethering each to one of a pair of interacting proteins, fluorescence is restored. Here, we provide a protocol for a Venus-based BiFC assay to visualize protein interactions in the living nematode, Caenorhabditis elegans. We discuss how to design appropriate C. elegans BiFC cloning vectors to enable visualization of protein interactions using either inducible heat shock promoters or native promoters; transform the constructs into worms by microinjection; and analyze and interpret the resulting data. When expression of BiFC fusion proteins is induced by heat shock, the fluorescent signals can be visualized as early as 30 min after induction and last for 24 h in transgenic animals. The entire procedure takes 2-3 weeks to complete.  相似文献   

9.
Protein interactions are essential components of signal transduction in cells. With the progress in genome-wide yeast two hybrid screens and proteomics analyses, many protein interaction networks have been generated. These analyses have identified hundreds and thousands of interactions in cells and organisms, creating a challenge for further validation under physiological conditions. The bimolecular fluorescence complementation (BiFC) assay is such an assay that meets this need. The BiFC assay is based on the principle of protein fragment complementation, in which two non-fluorescent fragments derived from a fluorescent protein are fused to a pair of interacting partners. When the two partners interact, the two non-fluorescent fragments are brought into proximity and an intact fluorescent protein is reconstituted. Hence, the reconstituted fluorescent signals reflect the interaction of two proteins under study. Over the past six years, the BiFC assay has been used for visualization of protein interactions in living cells and organisms, including our application of the BiFC assay to the transparent nematode Caenorhabditis elegans. We have demonstrated that BiFC analysis in C. elegans provides a direct means to identify and validate protein interactions in living worms and allows visualization of temporal and spatial interactions. Here, we provide a guideline for the implementation of BiFC analysis in living worms and discuss the factors that are critical for BiFC analysis.  相似文献   

10.
Shyu YJ  Liu H  Deng X  Hu CD 《BioTechniques》2006,40(1):61-66
Protein-protein interactions play a pivotal role in coordinating many cellular processes. Determination of subcellular localization of interacting proteins and visualization of dynamic interactions in living cells are crucial to elucidate cellular functions of proteins. Using fluorescent proteins, we previously developed a bimolecular fluorescence complementation (BiFC) assay and a multicolor BiFC assay to visualize protein-protein interactions in living cells. However, the sensitivity of chromophore maturation of enhanced yellow fluorescent protein (YFP) to higher temperatures requires preincubation at lower temperatures prior to visualizing the BiFC signal. This could potentially limit their applications for the study of many signaling molecules. Here we report the identification of new fluorescent protein fragments derived from Venus and Cerulean for BiFC and multicolor BiFC assays under physiological culture conditions. More importantly, the newly identified combinations exhibit a 13-fold higher BiFC efficiency than originally identified fragments derived from YFP. Furthermore, the use of new combinations reduces the amount of plasmid required for transfection and shortens the incubation time, leading to a 2-fold increase in specific BiFC signals. These newly identified fluorescent protein fragments will facilitate the study of protein-protein interactions in living cells and whole animals under physiological conditions.  相似文献   

11.
Bimolecular fluorescence complementation (BiFC) is based on the complementation between two nonfluorescent fragments of the yellow fluorescent protein (YFP) when they are united by interactions between proteins covalently linked to them. We have successfully applied BiFC in Neurospora crassa using two genes involved in meiotic silencing by unpaired DNA (MSUD) and observed macromolecular complex formation involving only SAD-1 proteins, only SAD-2 proteins, and mixtures of SAD-1 and SAD-2 proteins.  相似文献   

12.
In vivo visualization of actin dynamics and actin interactions by BiFC   总被引:1,自引:0,他引:1  
The method of bimolecular fluorescence complementation (BiFC) enables selective visualization of protein interactions. While BiFC complex formation under in vitro conditions is considered to be essentially irreversible, there are hints that under in vivo conditions BiFC complex formation can be reversible. In the present study we used the BiFC method to visualize in vivo actin cytoskeleton dynamics. We demonstrate that in living cells formation of actin/actin BiFC complexes is reversible. Furthermore, we show heterologous binding between actin and protein kinase C delta (PKCdelta). Treatment with phorbol esters caused translocation of actin/PKCdelta complexes from the cytosol to the plasma membrane independent of an intact actin cytoskeleton. Our experiments demonstrate that the BiFC method might be a useful tool to investigate participation of the actin cytoskeleton in regulation of cell function.  相似文献   

13.
14.
Bimolecular fluorescence complementation (BiFC) represents one of the most advanced and powerful tools for studying and visualizing protein-protein interactions in living cells. In this method, putative interacting protein partners are fused to complementary non-fluorescent fragments of an autofluorescent protein, such as the yellow spectral variant of the green fluorescent protein. Interaction of the test proteins may result in reconstruction of fluorescence if the two portions of yellow spectral variant of the green fluorescent protein are brought together in such a way that they can fold properly. BiFC provides an assay for detection of protein-protein interactions, and for the subcellular localization of the interacting protein partners. To facilitate the application of BiFC to plant research, we designed a series of vectors for easy construction of N-terminal and C-terminal fusions of the target protein to the yellow spectral variant of the green fluorescent protein fragments. These vectors carry constitutive expression cassettes with an expanded multi-cloning site. In addition, these vectors facilitate the assembly of BiFC expression cassettes into Agrobacterium multi-gene expression binary plasmids for co-expression of interacting partners and additional autofluorescent proteins that may serve as internal transformation controls and markers of subcellular compartments. We demonstrate the utility of these vectors for the analysis of specific protein-protein interactions in various cellular compartments, including the nucleus, plasmodesmata, and chloroplasts of different plant species and cell types.  相似文献   

15.
Shyu YJ  Suarez CD  Hu CD 《Nature protocols》2008,3(11):1693-1702
Studies of protein interactions have increased our understanding and knowledge of biological processes. Assays that utilize fluorescent proteins, such as fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC), have enabled direct visualization of protein interactions in living cells. However, these assays are primarily suitable for a pair of interacting proteins, and methods to visualize and identify multiple protein complexes in vivo are very limited. This protocol describes the recently developed BiFC-FRET assay, which allows visualization of ternary complexes in living cells. We discuss how to design the BiFC-FRET assay on the basis of the validation of BiFC and FRET assays and how to perform transfection experiments for acquisition of fluorescent images for net FRET calculation. We also provide three methods for normalization of the FRET efficiency. The assay employs a two-chromophore and three-filter FRET setup and is applicable to epifluorescence microscopes. The entire protocol takes about 2-3 weeks to complete.  相似文献   

16.
We present a high-throughput approach to study weak protein-protein interactions by coupling bimolecular fluorescent complementation (BiFC) to flow cytometry (FC). In BiFC, the interaction partners (bait and prey) are fused to two rationally designed fragments of a fluorescent protein, which recovers its function upon the binding of the interacting proteins. For weak protein-protein interactions, the detected fluorescence is proportional to the interaction strength, thereby allowing in vivo discrimination between closely related binders with different affinity for the bait protein. FC provides a method for high-speed multiparametric data acquisition and analysis; the assay is simple, thousands of cells can be analyzed in seconds and, if required, selected using fluorescence-activated cell sorting (FACS). The combination of both methods (BiFC-FC) provides a technically straightforward, fast and highly sensitive method to validate weak protein interactions and to screen and identify optimal ligands in biologically synthesized libraries. Once plasmids encoding the protein fusions have been obtained, the evaluation of a specific interaction, the generation of a library and selection of active partners using BiFC-FC can be accomplished in 5 weeks.  相似文献   

17.
Protein:protein interactions play key functional roles in the molecular machinery of the cell. A major challenge for structural biology is to gain high‐resolution structural insight into how membrane protein function is regulated by protein:protein interactions. To this end we present a method to express, detect, and purify stable membrane protein complexes that are suitable for further structural characterization. Our approach utilizes bimolecular fluorescence complementation (BiFC), whereby each protein of an interaction pair is fused to nonfluorescent fragments of yellow fluorescent protein (YFP) that combine and mature as the complex is formed. YFP thus facilitates the visualization of protein:protein interactions in vivo, stabilizes the assembled complex, and provides a fluorescent marker during purification. This technique is validated by observing the formation of stable homotetramers of human aquaporin 0 (AQP0). The method's broader applicability is demonstrated by visualizing the interactions of AQP0 and human aquaporin 1 (AQP1) with the cytoplasmic regulatory protein calmodulin (CaM). The dependence of the AQP0‐CaM complex on the AQP0 C‐terminus is also demonstrated since the C‐terminal truncated construct provides a negative control. This screening approach may therefore facilitate the production and purification of membrane protein:protein complexes for later structural studies by X‐ray crystallography or single particle electron microscopy.  相似文献   

18.
双分子荧光互补技术   总被引:4,自引:0,他引:4  
双分子荧光互补(bimolecular fluorescence complementation, BiFC)是近年发展起来的用于体内或体外检测蛋白质相互作用的一项新技术.该技术是将荧光蛋白在合适的位点切开形成不发荧光的2个片段,这2个片段借助融合于其上的目标蛋白的相互作用,彼此靠近,重新形成能具有活性的荧光蛋白.BiFC方法简单直观,既可以检测蛋白之间的相互作用,也可以定位相互作用蛋白质的位点.多色BiFC系统共用或与荧光共振能量转移(FRET)技术联用,还可以检测细胞内多个蛋白质的相互作用.  相似文献   

19.
The twin-arginine translocation (Tat) pathway is well known for its ability to export fully folded substrate proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Studies of this mechanism in Escherichia coli have identified numerous transient protein-protein interactions that guide export-competent proteins through the Tat pathway. To visualize these interactions, we have adapted bimolecular fluorescence complementation (BiFC) to detect protein-protein interactions along the Tat pathway of living cells. Fragments of the yellow fluorescent protein (YFP) were fused to soluble and transmembrane factors that participate in the translocation process including Tat substrates, Tat-specific proofreading chaperones and the integral membrane proteins TatABC that form the translocase. Fluorescence analysis of these YFP chimeras revealed a wide range of interactions such as the one between the Tat substrate dimethyl sulfoxide reductase (DmsA) and its dedicated proofreading chaperone DmsD. In addition, BiFC analysis illuminated homo- and hetero-oligomeric complexes of the TatA, TatB and TatC integral membrane proteins that were consistent with the current model of translocase assembly. In the case of TatBC assemblies, we provide the first evidence that these complexes are co-localized at the cell poles. Finally, we used this BiFC approach to capture interactions between the putative Tat receptor complex formed by TatBC and the DmsA substrate or its dedicated chaperone DmsD. Our results demonstrate that BiFC is a powerful approach for studying cytoplasmic and inner membrane interactions underlying bacterial secretory pathways.  相似文献   

20.
Fluorescent protein (FP) has enabled the analysis of biomolecular interactions in living cells, and bimolecular fluorescence complementation (BiFC) represents one of the newly developed imaging technologies to directly visualize protein–protein interactions in living cells. Although 10 different FPs that cover a broad range of spectra have been demonstrated to support BiFC, only Cerulean (cyan FP variant), Citrine and Venus (yellow FP variants)-based BiFC systems can be used under 37 °C physiological temperature. The sensitivity of two mRFP-based red BiFC systems to higher temperatures (i.e., 37 °C) limits their applications in most mammalian cell-based studies. Here we report that mLumin, a newly isolated far-red fluorescent protein variant of mKate with an emission maximum of 621 nm, enables BiFC analysis of protein–protein interactions at 37 °C in living mammalian cells. Furthermore, the combination of mLumin with Cerulean- and Venus-based BiFC systems allows for simultaneous visualization of three pairs of protein–protein interactions in the same cell. The mLumin-based BiFC system will facilitate simultaneous visualization of multiple protein–protein interactions in living cells and offer the potential to visualize protein–protein interactions in living animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号