首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmids containing (dG)27.(dC)27 inserts (pPG27), (dG)37.(dC)37 inserts (pPG37), and (dG)24C(dG)21.(dC)24G(dC)21 inserts (pPG46C) were constructed for the study of structural transitions within (dG)n.(dC)n stretches. Two-dimensional gel electrophoresis has shown that a Mg2+-dependent supercoiling-induced structural transition takes place at pH 8 in plasmid pPG46C. The transition occurs at -0=0.06 and involves a supercoiling release corresponding to 5 superhelical turns. After denaturation of the restriction fragments containing (dG)n.(dC)n inserts, the strands do not renature completely and (dG)n-containing strand migrates in PAGE much faster than the (dC)n-containing one. Chemical modification experiments with the (dG)n-strand have revealed the periodic nature of the protection of guanines against dimethyl sulfate methylation. The (dG)n strand in the presence of Mg2+ forms complexes with the complementary (dC)n strand, which differ from the native duplex in mobility. We believe these effects to be due to the formation of an intrastrand structure within the (dG)n strand stabilized by G.G interactions (we called it G-structure), which in the presence of Mg2+ forms an interstrand complex. with the (dC)n strand.  相似文献   

2.
Triplex DNA in plasmids and chromosomes   总被引:2,自引:0,他引:2  
Circular plasmids containing pyrimidine purine tracts can form both inter-and intramolecular triplexes. Addition of poly(dTC) to plasmid pTC45, which contains a (TC)45.(GA)45 insert, results in intermolecular triplex formation. Agarose-gel electrophoresis gives rise to many well-resolved bands, which correspond to 1, 2, 3, 4... plasmid molecules attached to the added pyrimidine strand. In the electron microscope these complexes appear as a rosette of petals. The mobility of these triplex-containing complexes can be retarded by the addition of a triplex-specific monoclonal antibody, Jel318. Intramolecular triplex formation can be demonstrated at pH 5 in pTC45 and also in pT463-I, a plasmid containing a segment of a crab satellite DNA with both (G)n.(C)n and (TCC)n.(GGA)n inserts. However, although the intermolecular triplex remains stable for some time at pH 8, intramolecular triplex formation only occurs at low pH. Triplexes can also be detected by an immunoblotting procedure with Jel318. This unfamiliar structure is readily demonstrated in eukaryotic extracts, but not in cell extracts from Escherichia coli. Triplexes may thus be an inherent feature of eukaryotic chromosome structure.  相似文献   

3.
This paper reports on a combined two-dimensional NMR and energy minimization computational characterization of the conformation of the N-(deoxyguanosyl-8-yl)aminofluorene adduct [(AF)G] positioned across adenosine in a DNA oligomer duplex as a function of pH in aqueous solution. This study was undertaken on the d[C1-C2-A3-T4-C5-(AF)G6-C7-T8-A9-C10-C11].[G12-G13-T14 -A15-G16-A17-G18- A19-T20-G21-G22] complementary undecamer [(AF)G 11-mer duplex]. The modification of the single G6 on the pyrimidine-rich strand was accomplished by reaction of the oligonucleotide with N-acetoxy-2-(acetylamino)fluorene and subsequent deacetylation under alkaline conditions. The HPLC-purified modified strand was annealed with the unmodified purine-rich strand to generate the (AF)G 11-mer duplex. The exchangeable and nonexchangeable protons are well resolved and narrow in the NMR spectra of the (AF)G 11-mer duplex so that the base and the majority of sugar nucleic acid protons, as well as several aminofluorene ring protons, have been assigned following analysis of two-dimensional NOESY and COSY data sets at pH 6.9, 30 degrees C in H2O and D2O solution. The NOE distance constraints establish that the glycosidic torsion angle is syn at (AF)G6 and anti at A17, which results in the aminofluorene ring being positioned in the minor groove. A very large downfield shift is detected at the H2' sugar proton of (AF)G6 associated with the (AF)G6[syn].A17[anti] alignment in the (AF)G 11-mer duplex. The NMR parameters demonstrate formation of Watson-Crick C5.G18 and C7.G16 base pairs on either side of the (AF)G6[syn].A17[anti] modification site with the imino proton of G18 more stable to exchange than the imino proton of G16. Several nonexchangeable aminofluorene protons undergo large downfield shifts as do the imino and H8 protons of G16 on lowering of the pH from neutrality to acidic values for the (AF)G 11-mer duplex. Both the neutral and acidic pH conformations have been defined by assigning the NOE constraints in the [C5-(AF)G6-C7].[G16-A17-G18] segment centered about the modification site and incorporating them in distance constrained minimized potential energy calculations in torsion angle space with the DUPLEX program. A series of NOEs between the aminofluorene protons and the DNA sugar protons in the neutral pH conformation establish that the aminofluorene ring spans the minor groove and is directed toward the G16-A17-G18 sugar-phosphate backbone on the partner strand.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Di- or trivalent metal ions stabilize a supercoil-dependent transition in pGA37, which contains the (GA)37.(CT)37 insert, at neutral and basic pH. The structure formed is different from the well known protonated triplexes (H-DNA) adopted at low pH by polypurine.polypyrimidine (Pur.Pyr) inserts in plasmids. DNA samples must be preincubated in the presence of multivalent ions at 50 degrees C for the new transition to occur. At neutral pH in the presence of Co hexamine, both strands of the insert have modification maxima situated at one-third of the distance from both ends. We propose the formation of a new structure called nodule DNA which consists of both Pyr.Pur.Pyr and Pur.Pur.Pyr triplexes and does not contain continuous single-stranded regions. At basic pH (greater than 8.5) in the presence of magnesium ions, the modification pattern corresponds to Pur.Pur.Pyr triplex formation in the whole insert. At neutral pH in the presence of magnesium, both nodule DNA and the Pur.Pur.Pyr triplex can be formed in the insert. We also observed a magnesium-dependent transition at neutral pH in the other Pur.Pyr insert containing plasmids. These data demonstrate that Pur.Pyr sequences can adopt several non-B conformations at close to in vivo conditions.  相似文献   

5.
Benzo[a]pyrene (BP) is an environmental genotoxin, which, following metabolic activation to 7,8-diol 9,10-epoxide (BPDE) derivatives, forms covalent adducts with cellular DNA. A major fraction of adducts are derived from the binding of N2 of guanine to the C10 position of BPDE. The mutagenic and carcinogenic potentials of these adducts are strongly dependent on the chirality at the four asymmetric benzylic carbon atoms. We report below on the combined NMR-energy minimization refinement characterization of the solution conformation of (-)-trans-anti-[BP]G positioned opposite C and flanked by G.C base pairs in the d(C1-C2-A3-T4-C5-[BP]G6-C7-T8-A9-C10-C11).d(G12-G13-T14++ +-A15-G16-C17- G18-A19-T20-G21-G22) duplex. Two-dimensional NMR techniques were applied to assign the exchangeable and non-exchangeable protons of the benzo[a]pyrenyl moiety and the nucleic acid in the modified duplex. These results establish Watson-Crick base pair alignment at the [BP]G6.C17 modification site, as well as the flanking C5.G18 and C7.G16 pairs within a regular right-handed helix. The solution structure of the (-)-trans-anti-[BP]G.C 11-mer duplex has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by lower and upper bounds deduced from NOE buildup curves as constraints in energy minimization computations. The BP ring spans both strands of the duplex in the minor groove and is directed toward the 3'-end of the modified strand in the refined structure. One face of the BP ring of [BP]G6 stacks over the C17 residue across from it on the partner strand while the other face is exposed to solvent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The ability to clone a variety of sequences with varying capabilities of adopting non-B structures (left-handed Z-DNA, cruciforms or triplexes) into three loci of pBR322 was investigated. In general, the inserts were stable (non-deleted) in the EcoRI site (an untranslated region) of pBR322. However, sequences most likely to adopt left-handed Z-DNA or triplexes in vivo suffered deletions when cloned into the BamHI site, which is located in the tetracycline resistance structural gene (tet). Conversely, when the promoter for the tet gene was altered by filling-in the unique HindIII or ClaI sites, the inserts in the BamHI site were not deleted. Concomitantly, the negative linking differences of the plasmids were reduced. Also, inserts with a high potential to adopt Z-DNA conformations were substantially deleted in the PvuII site of pBR322 (near the replication origin and the copy number control region), but were less deleted if the tet promoter was insertion-mutated. The deletion phenomena are due to the capacity of these sequences to adopt left-handed Z-DNA or triplexes in vivo since shorter inserts, less prone to form non-B DNA structures, or random sequences, did not exhibit this behavior. Sequences with the potential to adopt cruciforms were stable in all sites under all conditions. These results reveal a complex interrelationship between insert deletions (apparently the result of genetic recombination), negative supercoiling, and the formation of non-B DNA structures in living Escherichia coli cells.  相似文献   

7.
A Bertazzon  T Y Tsong 《Biochemistry》1990,29(27):6453-6459
Differential scanning calorimetry (DSC) has detected at least six quasi-independent structure domains in myosin rod [Potekhin, S.A., & Privalov, P.L. (1978) Biofizika 23, 219-223]. These domains were found to be remarkably sensitive to pH in the physiological range, i.e., pH 6-8. We compared the thermodynamic characteristics, and studied effects of pH on the stability, of individual domains in rod, light meromyosin (LMM), and subfragment 2 (S-2). In rod, the lowest stability domain (approximately 400 amino acid residues per double strand), with a Tm of 42.4 degrees C, a delta Hcal of 190 kcal/mol, and a delta G of 3.39 kcal/mol, at pH 7.02, destabilized by absorption of protons, is located at the LMM/S-2 junction and split into two parts, one associated with S-2 (approximately 100 residues per double strand) and the other with LMM (300 residues per double strand). The fragment with S-2 is likely a part of the "hinge" suggested by Swenson and Ritchie [(1980) Biochemistry 19, 5371-5375]. All other domains of rod released protons on melting. The domains located in S-2 were the most sensitive to pH and released a total of 0.9 proton on melting. The thermal meltings of all domains in myosin rod, LMM, and S-2 were independent of each other, and enthalpies of melting were additive in the whole pH range studied. Their sensitivities to pH and KCl were also unaffected by the presence or absence of other fragments. For example, domains in an isolated S-2 behaved similarly as they were in the rod, and so were domains in LMM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
K R Fox 《Nucleic acids research》1990,18(18):5387-5391
Plasmids containing long tracts of (dA)n.(dT)n have been prepared and their conformations examined in linear and supercoiled DNA using a series of chemical and enzymic probes which are known to be sensitive to unusual DNA structures. Under superhelical stress and in the presence of magnesium the sequence T69.A69 adopts a conformation at pH 8.0 consistent with the formation of an intramolecular DNA triplex. Site specific cleavage of the supercoiled plasmid by single-strand specific nucleases occurs within the A.T insert; the 5'-end of the purine strand is sensitive to reaction with diethylpyrocarbonate while the central 5-6 bases of the pyrimidine strand are reactive to osmium tetroxide. By contrast shorter inserts of A33.T33 and A23.T23 do not appear to form unusual structures.  相似文献   

9.
We have determined the complete nucleotide sequence of Xenopus laevis 28S rDNA (4110 bp). In order to locate evolutionarily conserved regions within rDNA, we compared the Xenopus 28S sequence to homologous rDNA sequences from yeast, Physarum, and E. coli. Numerous regions of sequence homology are dispersed throughout the entire length of rDNA from all four organisms. These conserved regions have a higher A + T base composition than the remainder of the rDNA. The Xenopus 28S rDNA has nine major areas of sequence inserted when compared to E. coli 23S rDNA. The total base composition of these inserts in Xenopus is 83% G + C, and is generally responsible for the high (66%) G + C content of Xenopus 28S rDNA as a whole. Although the length of the inserted sequences varies, the inserts are found in the same relative positions in yeast 26S, Physarum 26S, and Xenopus 28S rDNAs. In one insert there are 25 bases completely conserved between the various eukaryotes, suggesting that this area is important for eukaryotic ribosomes. The other inserts differ in sequence between species and may or may not play a functional role.  相似文献   

10.
C de los Santos  M Rosen  D Patel 《Biochemistry》1989,28(18):7282-7289
High-resolution exchangeable proton two-dimensional NMR spectra have been recorded on 11-mer DNA triple helices containing one oligopurine (R)n and two oligopyrimidine (Y)n strands at acidic pH and elevated temperatures. Our two-dimensional nuclear Overhauser effect studies have focused on an 11-mer triplex where the third oligopyrimidine strand is parallel to the oligopurine strand. The observed distance connectivities establish that the third oligopyrimidine strand resides in the major groove with the triplex stabilized through formation of T.A.T and C.G.C+ base triples. The T.A.T base triple can be monitored by imino protons of the thymidines involved in Watson-Crick (13.65-14.25 ppm) and Hoogsteen (12.9-13.55 ppm) pairing, as well as the amino protons of adenosine (7.4-7.7 ppm). The amino protons of the protonated (8.5-10.0 ppm) and unprotonated (6.5-8.3 ppm) cytidines in the C.G.C+ base triple provide distinct markers as do the imino protons of the guanosine (12.6-13.3 ppm) and the protonated cytidine (14.5-16.0 ppm). The upfield chemical shift of the adenosine H8 protons (7.1-7.3 ppm) establishes that the oligopurine strand adopts an A-helical base stacking conformation in the 11-mer triplex. These results demonstrate that oligonucleotide triple helices can be readily monitored by NMR at the individual base-triple level with distinct markers differentiating between Watson-Crick and Hoogsteen pairing. Excellent exchangeable proton spectra have also been recorded for (R+)n.(Y-)n.(Y+)n 7-mer triple helices with the shorter length permitting spectra to be recorded at ambient temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Two oligodeoxyribonucleotides, d-CTTCTTTTTTATTTT, I(A), and d-ATTATTTTTTATTTT, II(A), where C is 5-methylcytosine and A is 8-oxoadenine, were prepared and their interactions with the duplex d-GAAGAAAAAAYAAAA/d-TTTTZTTTTTTCTTC, III.IV(Y.Z), were studied. Oligomers I(A) and II(A) each form triplexes with III.IV(G.C) at temperatures below 20 degrees C as shown by continuous variation experiments, melting experiments, and circular dichroism (CD) spectroscopy. The CD spectra of these triplexes are almost identical to those formed by I(C) and II(C), oligomers which contain cytosine in place of 8-oxoadenine. This suggests that the 8-oxoadenine-containing triplexes have conformations which are very similar to those of the cytosine-containing triplexes. The melting temperature (Tm) for dissociation of the third strand of triplex II.III.IV(A.G.C) is 22 degrees C at pH 7.0 and 8.0, whereas the Tm of the corresponding transition in triplex II.III.IV(C.G.C) decreases from 28 degrees C at pH 7.0 to 17 degrees C at pH 8.0. The pH dependence of the Tm in the latter triplex reflects the necessity of protonating the N-3 of cytosine in order for it to form two hydrogen bonds with G of the G.C base pair. It appears that the keto form of 8-oxoadenine can potentially form two hydrogen bonds with the N-7 and O-6 atoms of G of the G.C base pair, when the 8-oxoadenine is in the syn conformation and in contrast to cytosine does not require protonation of the base. Oligomer I(A) does not form triplexes with III.IV(Y.Z) when Y.Z is A.T or T.A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
M Shimizu  J C Hanvey  R D Wells 《Biochemistry》1990,29(19):4704-4713
A polypurine.polypyrimidine (Pur.Pyr) sequence with a central interruption in a plasmid can adopt multiple non-B-DNA conformations depending on the conditions as revealed by specific chemical probes (OsO4, diethyl pyrocarbonate, and dimethyl sulfate) and two-dimensional electrophoresis. The relatively long mirror repeat Pur.Pyr sequences (GAA)9TTC(GAA)8 and (GGA)9TCC(GGA)8 form single canonical intramolecular triplexes at pH 7.0-6.0 in negatively supercoiled plasmids as isolated from Escherichia coli. With a lowering of the pH and/or an increase in the degree of negative supercoiling, these sequences undergo a novel conformational change as revealed by diethyl pyrocarbonate hypermodification of adenines in the middle of the polypurine strand and OsO4 reaction with thymines in the center and the quarter points of the polypyrimidine strand. To evaluate this structure, a family of related Pur.Pyr sequences were cloned and studied. The non mirror repeat sequence (GGA)9TCC(GAA)8 forms a non-B conformation only under acidic pH conditions, but the structural properties are different from those of the mirror repeat sequences. Furthermore, when the central interruptions of a mirror repeat sequence were increased from 3 to 9 bp, two canonical triplexes formed independently at pH 5.0 [at the (GAA)9 and (GAA)8 regions in the sequence (GAA)9TTAATTCGC(GAA)8]. Thus, if an interruption is sufficiently long, the two halves of the Pur.Pyr sequence do not interact with each other. Novel types of folded DNA geometries which explain these results are described.  相似文献   

13.
Natural and artificial oligonucleotides are capable of assuming many different conformations and functions. Here we present results of an NMR restrained molecular modelling study on the conformational preferences of the modified decanucleotide d((m)C1G2(m)C3G4C5(L)G6(L)(m)C7G8(m)C9G10) .d((m)C11G12(m)C13G14C15(L)G (L)16(m)C17-G18(m)C19G20 ) which contains L deoxynucleotides in its centre. This chimeric DNA was expected to form a right-left-right-handed B-type double-helix (BB*B) at low salt concentration. Actually, it matured into a fully right-handed double helix with its central C(L)pG(L) core forming a right-handed Z-DNA helix embedded in a B-DNA matrix (BZ*B). The interplay between base-base and base-sugar stackings within the core and its immediately adjacent residues was found to be critical in ensuring the stabilisation of the right-handed helix. The structure could serve as a model for the design of antisense oligonucleotides resistant to nucleases and capable of hybridising to natural DNAs and RNAs.  相似文献   

14.
Recently, P.A. Beal and P.B. Dervan, expanding on earlier observations by others, have established the formation of purine.purine.pyrimidine triple helices stabilized by G.GC, A.AT and T.AT base triples where the purine-rich third strand was positioned in the major groove of the Watson-Crick duplex and anti-parallel to its purine strand. The present nuclear magnetic resonance (n.m.r.) study characterizes the base triple pairing alignments and strand direction in a 31-mer deoxyoligonucleotide that intramolecularly folds to generate a 7-mer (R/Y-)n.(R+)n(Y-)n triplex with the strands linked by two T5 loops and stabilized by potential T.AT and G.GC base triples. (R and Y stand for purine and pyrimidine, respectively, while the signs establish the strand direction.) This intramolecular triplex gives well-resolved exchangeable and non-exchangeable proton spectra with Li+ as counterion in aqueous solution. These studies establish that the T1 to C7 pyrimidine and the G8 to A14 purine strands are anti-parallel to each other and align through Watson-Crick A.T and G.C pair formation. The T15 to G21 purine-rich third strand is positioned in the major groove of this duplex and pairs through Hoogsteen alignment with the purine strand to generate T.AT and G.GC triples. Several lines of evidence establish that the thymidine and guanosine bases in the T15 to G21 purine-rich third strand adopt anti glycosidic torsion angles under conditions where this strand is aligned anti-parallel to the G8 to A14 purine strand. We have also recorded imino proton n.m.r. spectra for an (R-)n.(R+)n(Y-)n triplex stabilized by G.GC and A.AT triples through intramolecular folding of a related 31-mer deoxyoligonucleotide with Li+ as counterion. The intramolecular purine.purine.pyrimidine triplexes containing unprotonated G.GC, A.AT and T.AT triples are stable at basic pH in contrast to pyrimidine.purine.pyrimidine triplexes containing protonated C+.GC and T.AT triples, which are only stable at acidic pH.  相似文献   

15.
We describe human immunodeficiency virus type 1 (HIV-1) diversity in Western Brittany, France, and trace the dissemination of HIV-1 non-B subtype infection. The strategy for HIV-1 subtyping used involved subtype specific enzyme immunoassays, heteroduplex mobility assays and phylogenetic analysis of the sequences of env encoding the V3 loop region. Samples were obtained from 567 patients: 465 (82%) were of subtype B and 66 (11.6%) were not (20 were subtype A, 11 subtype C, four subtype D, seven subtype F, five subtype G and 19 others with circulating recombinant forms: 4CRF01_AE, 11CRF02_AG, 1H, 3CRF11_cpx). These findings are consistent with other studies of French populations. There is an epidemiological correlation between subtype B and homosexual or heterosexual contamination in France and between non-B subtype and heterosexual contamination in Africa.  相似文献   

16.
We report here that the 64-base pair (bp) guanine-rich polypurine:polypyrimidine tract derived from the right end of the rat long interspersed DNA element is reactive in a supercoil-dependent manner with a variety of chemical probes of non-B DNA structure. At pH 5.0 in the presence of Mg2+, part of the sequence (position 10-40) forms the following two types of triplexes: a G.G.C triplex, and an unusual C.G.C triplex. The latter structure is much more prevalent than the former and is unusual in that the resultant free purine strand forms a hairpin loop. In the absence of Mg2+ the G.G.C triplex disappears and the amount of C.G.C triplex is diminished, and at pH 7.5 in the presence or absence of Mg2+, little or no triplex is observed. Deletion of the 24-bp region just 3' of the triplex-forming region greatly reduces the amount of triplex formed. In this region, which includes an 18-bp polypurine:polypyrimidine sequence, both strands exhibit a moderate symmetric reactivity with the chemical probes tested, independent of pH and Mg2+. The implications of this structurally complex region for the properties of the rat L1 element are discussed.  相似文献   

17.
Proton and phosphorus NMR studies are reported for the complementary d(C-A-T-G-A-G-T-A-C).d(G-T-A-C-F-C-A-T-G) nonanucleotide duplex (designated APF 9-mer duplex) which contains a stable abasic site analogue, F, in the center of the helix. This oligodeoxynucleotide contains a modified tetrahydrofuran moiety, isosteric with 2-deoxyribofuranose, which serves as a structural analogue of a natural apurinic/apyrimidinic site [Takeshita, M., Chang, C.N., Johnson, F., Will, S., & Grollman, A.P. (1987) J. Biol. Chem. 262, 10171-10179]. Exchangeable and nonexchangeable base and sugar protons, including those located at the abasic site, have been assigned in the complementary APF 9-mer duplex by recording and analyzing two-dimensional phase-sensitive NOESY data sets in H2O and D2O solution at low temperature (0 degrees C). These studies indicate that A5 inserts into the helix opposite the abasic site F14 and stacks with flanking G4.C15 and G6.C13 Watson-Crick base pairs. Base-sugar proton NOE connectivities were measured through G4-A5-G6 on the unmodified strand and between the base protons of C15 and the sugar protons of the 5'-flanking residue F14 on the modified strand. These studies establish that all glycosidic torsion angles are anti and that the helix is right-handed at and adjacent to the abasic site in the APF 9-mer duplex. Two of the 16 phosphodiester groups exhibit phosphorus resonances outside the normal spectral dispersion indicative of altered torsion angles at two of the phosphate groups in the backbone of the APF 9-mer duplex.  相似文献   

18.
The structure and thermal stability of a hetero chiral decaoligodeoxyribonucleotide duplex d(C1m8 G2C3G4C5LG6LC7G8C9G10)d(C11m8G12C13G14C15LG16LC17G18C19G20) (O1) with two contiguous pairs of enantiomeric 2'-deoxy-L-ribonucleotides (C5LG6L/C15LG16L) at its centre and an 8-methylguanine at position 2/12 was analysed by circular dichroism, NMR and molecular modelling. O1 resolves in a left-handed helical structure already at low salt concentration (0.1 M NaCl). The central L2-sugar portion assumes a B* left-handed conformation (mirror-image of right-handed B-DNA) while its flanking D4-sugar portions adopt the known Z left-handed conformation. The resulting Z4-B2*-Z4 structure (left-handed helix) is the reverse of that of B4-Z2*-B4 (right-handed helix) displayed by the nearly related decaoligodeoxyribonucleotide d(mC1G2mC3G4C5L G6LmC7G8mC9G10)2, at the same low salt concentration (0.1 M NaCl). In the same experimental conditions, d(C1m8G2C3G4C5G6C7G8C9G10)2 (O2), the stereoregular version of O1, resolves into a right-handed B-DNA helix. Thus, both the 8-methylguanine and the enantiomeric step CLpGL at the centre of the molecule are needed to induce left-handed helicity. Remarkably, in the various heterochiral decaoligodeoxyribonucleotides so far analysed by us, when the central CLpGL adopts the B* (respectively Z*) conformation, then the adjacent steps automatically resolves in the Z (respectively B) conformation. This allows a good optimisation of the base-base stackings and base-sugar van der Waals interactions at the ZB*/B*Z (respectively BZ*/Z*B) junctions so that the Z4-B2*-Z4 (respectively B4-Z2*-B4) helix displays a Tm (approximately 65 degrees C) that is only 5 degrees C lower than the one of its homochiral counterpart. Here we anticipate that a large variety of DNA helices can be generated at low salt concentration by manipulating internal factors such as sugar configuration, duplex length, nucleotide composition and base methylation. These helices can constitute powerful tools for structural and biological investigations, especially as they can be used in physiological conditions.  相似文献   

19.
20.
Poliovirus has been studied as a live recombinant vaccine vector because of its attractive characteristics. The genetic instability, however, has hampered recombinant polioviruses (PVs) from being developed as an appropriate vaccine. A variety of different foreign inserts were cloned directly into our poliovirus Sabin 1-based RPS-Vax vector system, resulting in the production of recombinant PVs. The genetic stability of each recombinant PV was examined during 12 rounds of consecutive passage. It was found that the genetic stability of the recombinants was not well correlated with their insert size. Instead, elevated stability was frequently observed in recombinants with inserts of high G/C contents. Furthermore, a comparative study using different constructs of the human immunodeficiency virus env gene revealed that the internal deletion of the unstable insert was seemingly caused by the presence of the adjacent A/T-rich region. The instability of these inserts was completely remedied by (i) increasing the G/C contents and (ii) replacing the local A/T-rich region with the G/C-rich codon without a change of the amino acid. This means that stability is closely associated with the G/C content and the G/C distribution pattern. To see whether these findings can be applied to the design of genetically stable recombinant PV, we have reconstructed the heteromultimeric insert based on our design architecture, including the above-mentioned G/C rules and the template/ligation-free PCR protocol. The heteromultimeric insert was very unstable, as expected, but the manipulated insert with the same amino acid sequence showed complete genetic stability, not only in vitro, but also in vivo. Even though this guideline was established with our RPS-Vax vector system, to some extent, it can also be applied to other live viral vaccine vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号