首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated working rat hearts were subjected to 20 min of global ischaemia and either 5 min or 15 min of reperfusion. The subcellular distribution of ATP, ADP, AMP, phosphocreatine and Pi were determined before and after ischaemia by the method of non-aqueous tissue fractionation. Ventricular function and the cytosolic, mitochondrial and ATPase-associated compartmentation of metabolites were measured. After 5 min of reperfusion, only 13 +/- 9% of the pre-ischaemic contractile function was restored compared to 67 +/- 8% after 15 min reperfusion. ATP was reduced in all cellular compartments after 5 min of reperfusion but was only decreased from pre-ischaemic values in the cytosolic compartment after 15 min of reperfusion (17.1 +/- 3.9 nmol/mg vs. 4.3 +/- 1.5 nmol/mg total protein; P less than 0.05). The mitochondrial [ATP]/[ADP] was reduced from a normal value of 4.36 to 1.79 after 5 min but recovered to 4.62 after 15 min of reperfusion. Most of the Pi was located in the mitochondria or with the ATPase fraction of the cell, with only 16% of the total Pi free in the cytosol. This study indicates that the capacity of the heart to recover function may be compromised during early reperfusion by a 59% increase in mitochondrial phosphate content and during late reperfusion by a reduced cytosolic/mitochondrial concentration ratio of both ATP (from 0.85 to 0.19) and phosphocreatine (from 3.9 to 1.24).  相似文献   

2.
To compare the extractability of creatine phosphate with that of ATP by alcohol extraction, both compounds were extracted from normal perfused rat heart tissues by using various stepwise concentrations of ethanol and 0.4 M HClO4. Powdered samples (6-15 mg wet wt) from the freeze-clamped tissues were homogenized in 2 ml of the ethanol solutions. After centrifugation, the supernatant was removed; each centrifuged sediment was rehomogenized with 2 ml of 0.4 M HClO4 and centrifuged. The supernatant was neutralized with 0.4 m KHCO3. The same powdered samples were directly homogenized with 2 ml of 0.4 M HClO4 and treated in the same manner. Only a small amount of ATP in the tissues was extracted by an 85% or higher concentration of ethanol. Further, about 13% of the tissue ATP was not extractable by the subsequent perchloric acid extraction. In contrast to ATP, creatine phosphate in the tissues was partially extracted by 95% ethanol and nearly all of the tissue creatine phosphate was extracted by 70% ethanol. The total creatine phosphate obtained by 70% ethanol and by subsequent perchloric acid extraction was significantly higher than that obtained by direct perchloric acid extraction. From these results, it was concluded that the extractability of creatine phosphate in the tissue by alcohol extraction is clearly different from that of ATP. Additionally, the stepwise extraction is recommended as a useful method for the extraction of energy metabolites in perfused rat heart tissue.  相似文献   

3.
31P NMR spectroscopy was used to study the time course of changes in the concentration of high-energy metabolites and intracellular pH in the dog myocardium during hypothermic ischaemia at 9 degrees C in Bretschneider (HTK-B) and St. Thomas' Hospital (StTH) cardioplegic solutions. It was found that ATP and phosphocreatine degrade slowlier in HTK-B than in StTH, with phosphocreatine depletion occurring within 7.9 +/- 1.4 h in HTK-B and within 6.2 +/- 1.4 h in StTH. The values are virtually identical with the time intervals at which ATP concentration falls below the critical level (60% of initial ATP concentration). In agreement with biochemical analysis, a higher concentration of phosphomonoesters was noted until the 180th minute of ischaemia in HTK-B, a finding suggesting more rapid glycogen degradation in HTK-B. Even though HTK-B contains a high concentration of histidine buffer, higher values of intracellular pH were found during ischaemia in StTH. The effect of extracellular concentration of sodium ions on intracellular pH is discussed.  相似文献   

4.
We present methods to measure ATP, phosphocreatine, and total creatine (the sum of creatine and phosphocreatine) in alkaline cell extracts. Knowledge of these parameters, together with the known equilibrium constants for the creatine kinase and adenylate kinase-catalyzed reactions, allows one to estimate the levels of free ADP and free AMP inside cells. The enzymatic assays for the above-mentioned metabolites all lead up to the production of ATP, which is measured luminometrically with the ATP-dependent oxidation of luciferin catalyzed by firefly luciferase. To determine phosphocreatine, endogenous ATP is first destroyed, and phosphocreatine is then quantitatively reacted with exogenous ADP to form ATP. Total creatine is measured after quantitative conversion of creatine to phosphocreatine with a large excess of exogenous ATP, conversion of all ATP to ADP, and final reaction of phosphocreatine with ADP to form ATP. We used 5-microl samples in 0.5-ml microcentrifuge tubes and subsequent 5-microl additions of analytical reagents. We expect that the volumes can be changed easily. We tested the methods with glucagon- and insulin-secreting cells. Estimates of free ADP and AMP are expected to be useful in many different areas of research, such as cellular energy metabolism, purine nucleotide metabolism, adenine nucleotide gating of ion channels, and release of vasoactive or angiogenic factors.  相似文献   

5.
Quantitative 31P-NMR and enzymatic analysis of high-energy phosphates were used to characterize an isolated perfused working rabbit heart preparation. In this model, the left side of the heart works against a physiological after-load. Two perfusates, Krebs-Henseleit saline and the perfluorocarbon emulsion FC-43 (perfluorotributylamine), were evaluated in their ability to maintain cardiac function and high-energy phosphate metabolites over a period of 2-3 h. Adenine nucleotides ATP, ADP, phosphocreatine and inorganic phosphate (Pi) were measured by 31P-NMR while monitoring cardiac output and coronary flow. Intracellular pH was determined using the chemical shift of Pi. At the end of each experiment, hearts were freeze clamped and enzymatically assayed for adenine nucleotides, phosphocreatine and Pi. In every experiment, hearts perfused with FC-43 emulsion maintained the same rate of cardiac output as hearts perfused with Krebs-Henseleit saline, but with half the coronary flow rate: FC-43, 22 +/- 2.5 (n = 5), Krebs-Henseleit saline 42 +/- 2.7 (n = 6) ml/min, P less than 0.001. Hearts perfused with FC-43 emulsion showed higher [phosphocreatine] and [ATP] measured by 31P-NMR. For [phosphocreatine]: FC-43 3.2 +/- 0.7 (n = 5), Krebs-Henseleit saline 1.7 +/- 0.2 (n = 6) mumol/g wet wt., P less than 0.01. For [ATP]: FC-43 1.8 +/- 0.7 (n = 5), Krebs-Henseleit saline 0.9 +/- 0.2 (n = 6) mumol/g wet wt., P less than 0.02. [phosphocreatine] and [ATP] determined by 31P-NMR values were identical within experimental error to those values obtained by enzymatic analysis. Comparing [Pi] determined by both methods, 36% of Pi in FC-43-perfused hearts, and only 24% of Pi in Krebs-Henseleit saline-perfused hearts were visible by NMR, indicating that a large proportion of Pi is bound in the intact functioning heart. Similar results were obtained for [ADP]. Using the combined techniques of 31P-NMR and enzymatic assay, we have shown in this model of the isolated working rabbit heart preparation, that FC-43 emulsion maintains significantly better function and high-energy phosphate levels than Krebs-Henseleit saline.  相似文献   

6.
1. The allosteric properties of phosphofructokinase from the epithelial cells of thermally injured rat small intestine were studied and compared with those properties of the normal rats. 2. The fructose 6-phosphate saturation curve of mucosal phosphofructokinase from thermally injured rats (3 days post injury, 33% of body surface area) displayed cooperatively; the ratio of the activity observed at pH 7.0 in the presence of 0.5 mM fructose 6-phosphate and 2.5 mM-ATP to the optimal activity at pH 8.0, v 0.5/V, was 0.42 +/- 0.02 in the normal rats and 0.22 +/- 0.03 in the injured rats. 3. The enzyme from thermally injured rats was very sensitive to inhibition by ATP as compared to that from normal rats. 4. The enzyme from thermally injured rats was inhibited by citrate and phosphocreatine in a synergistic manner with ATP. 5. Activation under nearly cellular conditions was produced by ADP, AMP and glucose-1,6-biphosphate. 6. In general, the mucosal enzyme of thermally injured rats was more susceptible to inhibition or activation by various metabolites than the enzyme of the normal rats. 7. These results may suggest that mucosal phosphofructokinase of thermally injured rats may not be subject to the same control mechanism as the normal rats in vivo due to changes in the concentrations of fructose-2,6-biphosphate.  相似文献   

7.
Creatine and phosphocreatine are substrates for creatine kinase which is a key enzyme involved in energy transfer within the cell. Analogues of creatine have been fed to animals to determine the role this enzyme plays in energy metabolism, but progress in interpretation has been hampered by the lack of quantitative techniques to determine tissue content of these compounds. We describe the separation and quantitation of substituted guanidino compounds and their phosphorylated forms by high-performance liquid chromatography. First, a cation-exchange column is used to assay free creatine and its unphosphorylated analogues, and then phosphocreatine and its phosphorylated analogues as well as adenylate content (AMP, ADP, ATP) are assayed on an anion-exchange column. These methods have proven successful in measuring the chemical contents of these compounds in neutralized perchloric acid extracts of mammalian skeletal muscles. The sensitivity of this method ranges from 50 to 200 pmol, which is adequate to provide information from tissue extracts of 5- to 10-mg samples.  相似文献   

8.
A simple multipulse sequence has been used to monitor creatine kinase kinetics in rat skeletal muscle in vivo. Using these procedures, the forward (ATP synthesis) and reverse fluxes (phosphocreatine synthesis) have been calculated to be 8.98 +/- 0.6 and 10.7 +/- 0.8 mumoles/g wet wt/s (n = 5) respectively. These results suggest that in resting skeletal muscle most of the gamma ATP observed in 31P NMR spectra is cytosolic and rapidly exchanging with phosphocreatine. The high flux rates reflect the high catalytic capacity of creatine kinase in skeletal muscle.  相似文献   

9.
The relationship between extracellular palmitate and the accumulation of long-chain fatty-acyl coenzyme A with that of high-energy phosphate metabolism was investigated in the isolated perfused diabetic rat heart. Hearts were perfused with a glucose/albumin buffer supplemented with 0, 0.5, 1.2 or 2.0 mM palmitate. 31P-NMR was used to analyze phosphocreatine and ATP metabolism during 1 h of constant-flow recirculation perfusion. At the end of perfusion, frozen samples were taken for chemical analysis of high-energy phosphates and the free and acylated fractions of coenzyme A and carnitine. Perfusion of diabetic hearts with palmitate, unlike control hearts, caused a time-dependent and concentration-dependent reduction in ATP, despite normal and constant phosphocreatine. Concentrations of acid-soluble coenzyme A, long-chain-acyl coenzyme A and total tissue coenzyme A were elevated in palmitate-perfused diabetic hearts, while the total tissue carnitine pool was decreased. Increases in long-chain-acyl coenzyme A correlated with the reduction in myocardial ATP. This reduction in ATP could not be adequately explained by alterations in heart rate, perfusion pressure or vascular resistance.  相似文献   

10.
The visibility of ATP and ADP to NMR was studied by comparing simultaneous measurements of freeze-trapped tissue sections from perfused rat liver under normoxia and ischemia using a modified 31P-cryo-NMR method and biochemical assay. The 31P-cryo-NMR method provides good time resolution and allows the quantitation of absolute metabolite concentrations. Prior to 31P-cryo-NMR measurements, freeze-trapped tissues were thawed in the presence of cryoprotectant and EDTA. With this sample preparation procedure, the integrity of the plasma and mitochondrial membranes was not maintained, inducing homogeneous microviscosity and chelation of intracellular divalent cations, thereby increasing the visibility of metabolites compared to the in vivo NMR measurement. With ischemic stress, total cellular ATP concentration decreased significantly (P less than 0.001). While ADP concentrations measured by cryo-NMR and biochemical analysis were consistent during normoxia and ischemia, ATP concentrations measured by cryo-NMR were significantly lower (P less than 0.05) than those obtained by biochemical analysis. The amount of invisible ATP (0.42 +/- 0.10 mumol/g wet weight: mean +/- S.E.) did not change after the induction of ischemia. The results of this study suggest that ATP invisibility to cryo-NMR is not due to compartmentation into regions of high paramagnetic ion concentrations or high microviscosity, but is influenced by other factors.  相似文献   

11.
Phosphorus-31 nuclear magnetic resonance has been used to study the post mortem catabolism of high-energy phosphate compounds and the associated intracellular pH variation in pure fast- and slow-twitch rabbit muscles and in rabbit muscle with mixed fiber types. Comparative results from pure fiber types are reported for the first time. Large amounts of glycerophosphorylcholine (14.1 mumol/g fresh tissue) are found in the internal conoidal bundle (ICB), a pure oxidative slow twitch muscle, whereas the m. psoas major (PM), a pure glycolytic fast twitch muscle and the m. gastrocnemius caput medialis (GCM), with mixed fiber types, are devoid of the same metabolite. The total content of phosphorylated metabolites is constant among the three muscle types. The time-dependent post mortem changes in phosphorylated metabolites display the expected rapid drop in phosphocreatine and a simultaneous increase in intracellular inorganic phosphate. However, the ATP level remains constant during more than 2 h. Rate constants for metabolite breakdown and apparent ATPase activity have been determined. The comparative kinetics of intracellular acidosis at 25 degrees C yield rates of 3.3 X 10(-3) pH unit/min for PM, 2.7 X 10(-3) pH unit/min for GCM and 3.0 X 10(-3) pH unit/min for ICB. Initial intracellular pH values are 7.07, 7.20 and 7.02, respectively. Upon aging, the heterogeneity of the Pi signal reflects the existence of cellular compartments with different internal pH. The results suggest that the more intense low-pH Pi signal arises from the sarcoplasmic reticulum while the less intense resonance would reflect the sarcoplasmic higher pH. The temperature effect on post mortem catabolism in the 15-25 degrees C range has been documented. As expected, phosphocreatine and ATP breakdown increase with temperature but at a higher rate for slow-twitch ICB than for fast-twitch PM.  相似文献   

12.
The extent to which cellular metabolites are NMR observable is of fundamental importance in the interpretation of in vivo NMR studies. Analysis of ischemic rat liver shows that ATP resonances measured by 31P NMR decrease considerably faster than total tissue ATP measured in extracts. This discrepancy demonstrates that, in liver, ATP is not 100% observable. Furthermore, the data are consistent with the supposition that in situ mitochondrial ATP resonances are not normally observable by in vivo NMR techniques. The specificity of the NMR measurement for cytosolic ATP indicates that 31P NMR can be a valuable tool for the specific measurement of ATP in this compartment.  相似文献   

13.
The effect of three volatile anesthetics (halothane, enflurane, and isoflurane) on coronary flow and metabolic state of isolated rat hearts was studied. These anesthetics are coronary dilators and their effects are dose dependent. At 2 MAC (minimum alveolar concentration), isoflurane, enflurane, and halothane increase coronary flow by 114 +/- 5.9, 93 +/- 6.1, and 77 +/- 6.4%, respectively (p less than 0.001). At these concentrations, they also have a modest but significant metabolic effect causing a 30% reduction in myocardial ATP and phosphocreatine levels, with no significant modification in ADP and AMP concentrations. Energy charge and lactate/pyruvate ratio were also unaffected by these anesthetics. The vascular and metabolic effects were reversible within 2 and 30 min, respectively. Perfusion of the hearts with a Krebs-Henseleit solution without Pi did not interfere with the vascular and the metabolic effect of the anesthetics; however, in this case, ATP and phosphocreatine concentration did not return to control levels after their discontinuation despite full recovery of the vascular effect. These data suggest that the volatile anesthetics have direct coronary vascular and myocardial metabolic effects and that these effects occur independently.  相似文献   

14.
To investigate energy metabolic and transporter characteristics in resting muscle of patients with moderate to severe chronic obstructive pulmonary disease [COPD; forced expiratory volume in 1 s (FEV(1)) = 42 +/- 6.0% (mean +/- SE)], tissue was extracted from resting vastus lateralis (VL) of 9 COPD patients and compared with that of 12 healthy control subjects (FEV(1) = 114 +/- 3.4%). Compared with controls, lower (P < 0.05) concentrations (mmol/kg dry wt) of ATP (19.6 +/- 0.65 vs. 17.8 +/- 0.69) and phosphocreatine (81.3 +/- 2.3 vs. 69.1 +/- 4.2) were observed in COPD, which occurred in the absence of differences in the total adenine nucleotide and total creatine pools. Higher concentrations were observed in COPD for several glycolytic metabolites (glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, pyruvate) but not lactate. Glycogen storage was not affected by the disease (289 +/- 20 vs. 269 +/- 20 mmol glucosyl units/kg dry wt). Although no difference between groups was observed for the glucose transporter GLUT1, GLUT4 was reduced by 28% in COPD. For the monocarboxylate transporters, MCT4 was 35% lower in COPD, with no differences observed for MCT1. These results indicate that in resting VL, moderate to severe COPD results in a reduction in phosphorylation potential, an apparent elevation of glycolytic flux rate, and a potential defect in glucose and lactate transport as a result of reduced levels of the principal isoforms.  相似文献   

15.
Isoimperatorin is one of the major furanocoumarins isolated from the dried root of Angelica dahuricae Benth.et Hook. The aim of the present study is to develop a procedure based on gas chromatography-mass spectrometry (GC-MS) to describe the analysis of isoimperatorin in rat plasma and tissue. The method was set up and adapted for the analysis of small biological samples taken from rats. Biological samples were extracted by liquid-liquid extraction. Extracted compounds were acetic ether/light petroleum (1:2). They were separated by GC on a DB-5MS analytical column and determined by a quadrupole mass spectrometer detector operated under selected ion monitoring mode. Excellent linearity was found between 0.027-5.32 microg/mL (r >0.99) for plasma samples and 0.108-21.28 microg/g (r >0.99) for the tissue samples. The limit of detection (LOD) was 1.0 ng/mL or 1.0 ng/g (three times signal/noise ratio). Within- and between-day precisions expressed as the relative standard deviation (RSD) for the method were 2.81-5.22% and 4.72-6.52%, respectively. The method recoveries for all samples were >80%. The main pharmacokinetic parameters obtained were T(max)=(1.06+/-0.12)h, C(max)=(0.72+/-0.14) microg/mL, AUC=(2.11+/-0.29)h microg/mL and K(a)=(1.76+/-0.13)/h. The concentrations of isoimperatorin in rat liver, heart, cerebellum and cerebrum were higher than those in other organs. The results presented here clearly indicate that this proposed method could be applicable to investigate the pharmacokinetic and tissue distribution of isoimperatorin in rats after administration.  相似文献   

16.
Perfusion of the rat isolated hearts with calcium-free and calcium containing solution revealed a complex and deep myocardial damage called the calcium paradox. The reperfusion of the rat heart with calcium rich media resulted in myoglobin loss from the heart, significant decreasing of ATP and phosphocreatine level, complete uncoupling of respiration and phosphorylation in mitochondria, occurrence of myocardial contracture. Decreasing of sodium level to 30 mM--80 mM in calcium free media exacerbates the heart damage due to the calcium paradox with absence of contracture. Addition of phosphocreatine (1 mM, 5 mM, 10 mM) evoked some restoration of ATP contents in the tissue with appearance of significant contracture. Phosphocreatine exacerbated the loss of myoglobin from the heart subjected to the calcium paradox. A discrepancy between myocardial contracture and degree of cellular damage has been observed during the calcium paradox.  相似文献   

17.
METABOLIC CHANGES IN THE BRAINS OF MICE FROZEN IN LIQUID NITROGEN   总被引:1,自引:1,他引:0  
Abstract— Autolytic changes in the mouse brain, occurring during immersion of the animal in liquid nitrogen, were evaluated by measuring the tissue concentrations of glucose, lactate, pyruvate, α-oxoglutarate, phosphocreatine, creatine, ATP, ADP and AMP. The values thus obtained were compared with those obtained in paralysed mice under nitrous oxide anaesthesia, the brains of which were frozen in such a way that arterial blood pressure and oxygénation were upheld during the freezing. Immersion of unanaesthetized mice in liquid nitrogen gave rise to significant alterations in phosphocreatine, creatine, lactate, lactate/pyruvate ratio, ADP and AMP. A comparison with values obtained in paralysed and anaesthetized mice that were frozen by immersion in liquid nitrogen showed that the metabolic changes observed in the unanaesthetized animals could not be caused by an anaesthetic effect on the metabolic pattern. It is concluded that autolysis in the mouse brain occurs during immersion of the animal in a coolant, mainly because arterial hypoxia develops before the tissue is frozen. A comparison with previous results on rat cerebral cortex indicates that mice offer no advantage for studies of cerebral metabolites in unanaesthetized animals. In both species, accurate analyses of labile cerebral metabolites require that the brain is frozen in a way that prevents arterial hypoxia during the fixation of the tissue.  相似文献   

18.
1. Phosphorus-nuclear-magnetic-resonance measurements were made on perfused rat hearts at 37 degrees C. 2. With the improved sensitivity obtained by using a wide-bore 4.3 T superconducting magnet, spectra could be recorded in 1 min. 3. The concentrations of ATP, phosphocreatine and Pi and, from the position of the Pi resonance, the intracellular pH (pHi) were measured under a variety of conditions. 4. In a normal perfused heart pHi = 7.05 +/- 0.02 (mean +/- S.E.M. for seven hearts). 5. During global ischaemia pHi drops to 6.2 +/- 0.06 (mean +/- S.E.M.) in 13 min in a pseudoexponential decay with a rate constant of 0.25 min-1. 6. The relation between glycogen content and acidosis in ischaemia is studied in glycogen-depleted hearts. 7. Perfusion of hearts with a buffer containing 100 mM-Hepes before ischaemia gives a significant protective effect on the ischaemic myocardium. Intracellular pH and ATP and phosphocreatine concentrations decline more slowly under these conditions and metabolic recovery is observed on reperfusion after 30min of ischaemia at 37 degrees C. 8. The relation between acidosis and the export of protons is discussed and the significance of glycogenolysis in ischaemic acid production is evaluated.  相似文献   

19.
31P-NMR spectroscopy has been used to study the energy metabolism and the NMR visibility of ATP and intracellular Pi of the C6 glioma cell line and rat astrocyte grown on microcarrier beads with the following results. 1. In vivo NMR spectra of C6 glioma cells and rat astrocytes indicate that these cells were able to maintain their level of ATP resonances during a long anoxic period (more than an hour). Both cell types were sensitive to ischemia which induced a loss of ATP resonances within 40 min. Glucose starvation induced by 40% decrease in ATP resonances correlated to a 50% increase in the intensity of the Pi signal. These changes corresponded to a new steady state which could be reversed by reperfusing the cells with a glucose-containing medium. 2. In contrast to in vivo data, 31P-NMR analyses of perchloric acid extracts of cells incubated in a glucose-free medium showed that their ATP and Pi contents were unchanged during starvation. The changes of NMR visibility of the metabolites in living C6 cells were correlated to modifications of their macroscopic longitudinal relaxation times, evolving from 0.30 +/- 0.08 s and 6.6 +/- 1.5 s in the presence of glucose to 0.68 +/- 0.26 s and 3.2 +/- 0.9 s in the absence of glucose for ATP and Pi, respectively. The changes of the NMR detectability of ATP and Pi indicate that changes in their microenvironment occur during glucose starvation, suggesting the existence of different pools of these metabolites within the cells. 3. Under various experimental conditions, i.e. anoxia, ischemia and glucose starvation, rat astrocytes in primary culture showed a very similar behavior to that of C6 cells, suggesting a similar adaptability to the nature of the energy supply for both the normal and the malignant cell.  相似文献   

20.
The concentrations of ATP, phosphocreatine (PCr), creatine, and lactate were determined in muscle biopsy samples frozen immediately or after a delay of 1-6 min. During the delay the samples were exposed to normal air or a gas mixture of 6.5% CO2-93.5% O2. The ATP content was unchanged, but PCr increased significantly from 72 mmol after rapid freezing to 85 mmol X kg dry muscle-1 during the 1st min in air. The lactate concentration increased (2.8 to 5.2 mmol X kg-1). If muscles were made anoxic by circulatory occlusion for 4-6 min before sampling, no increase in PCr was observed. Direct homogenization of fresh tissue in perchloric acid gave the same ATP, PCr, and lactate contents as frozen samples. It is concluded that the ATP and PCr contents in muscle are unaffected by freezing but that the biopsy procedure activates the energy utilization processes resulting in PCr decrease. It is suggested that the muscle PCr content after a 1-min delay in tissue freezing corresponds to the level in resting fresh muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号