首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna.

Results

We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite.

Conclusions

We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.
  相似文献   

2.
The majority of organisms host multiple parasite species, each of which can interact with hosts and competitors through a diverse range of direct and indirect mechanisms. These within‐host interactions can directly alter the mortality rate of coinfected hosts and alter the evolution of virulence (parasite‐induced host mortality). Yet we still know little about how within‐host interactions affect the evolution of parasite virulence in multi‐parasite communities. Here, we modeled the virulence evolution of two coinfecting parasites in a host population in which parasites interacted through cross immunity, immune suppression, immunopathology, or spite. We show (1) that these within‐host interactions have different effects on virulence evolution when all parasites interact with each other in the same way versus when coinfecting parasites have unique interaction strategies, (2) that these interactions cause the evolution of lower virulence in some hosts, and higher virulence in other hosts, depending on the hosts infection status, and (3) that for cross immunity and spite, whether parasites increase or decrease the evolutionarily stable virulence in coinfected hosts depended on interaction strength. These results improve our understanding of virulence evolution in complex parasite communities, and show that virulence evolution must be understood at the community scale.  相似文献   

3.
The level of host specificity of blood-sucking invertebrates may have both ecological and evolutionary implications for the parasites they are transmitting. We used blood meals from wild-caught blackflies for molecular identification of parasites and hosts to examine patterns of host specificity and how these may affect the transmission of avian blood parasites of the genus Leucocytozoon . We found that five different species of ornithophilic blackflies preferred different species of birds when taking their blood meals. Of the blackflies that contained avian blood meals, 62% were infected with Leucocytozoon parasites, consisting of 15 different parasite lineages. For the blackfly species, there was a significant association between the host width (measured as the genetic differentiation between the used hosts) and the genetic similarity of the parasites in their blood meals. The absence of similar parasite in blood meals from blackflies with different host preferences is interpreted as a result of the vector–host associations. The observed associations between blackfly species and host species are therefore likely to hinder parasites to be transmitted between different host-groups, resulting in ecologically driven associations between certain parasite lineages and hosts species.  相似文献   

4.
This study introduces an individual-based model on a host-parasite assemblage to investigate whether hosts are necessarily selected for obstructing the transmission of virulent parasites to conspecifics. Contrary to the widespread notion, a host's ability to influence parasite transmission within the host population is a neutral character provided that parasite transmission routes are random, with no reference to genetic relatedness. Due to a lack of selection pressure under such circumstances, hosts may fail to evolve counteradaptations against manipulations by parasites to enhance transmission. However, vertically biased transmission (biased toward kin) selects hosts for a decrease of parasite transmission, while it is also known to select parasites to decrease virulence. Horizontally biased transmission routes (biased toward nonrelated conspecifics) select hosts to increase parasite transmission. In this case, their interests coincide with that of their virulent parasites in enhancing transmission to conspecifics. This finding yields the predictions that hosts infected by virulent pathogens, but unable to recover from disease, should be prone to emigrate from their natal territories and also to enhance transmission at a distance from their natal ranges. These results may considerably improve our understanding of the epidemiology of contagious pathogens and the evolution of social and sexual behavior in host species.  相似文献   

5.
Hosts are often infected by a variety of different parasites, leading to competition for hosts and coevolution between parasite species. There is increasing evidence that some vertically transmitted parasitic symbionts may protect their hosts from further infection and that this protection may be an important reason for their persistence in nature. Here, we examine theoretically when protection is likely to evolve and its selective effects on other parasites. Our key result is that protection is most likely to evolve in response to horizontally transmitted parasites that cause a significant reduction in host fecundity. The preponderance of sterilizing horizontally transmitted parasites found in arthropods may therefore explain the evolution of protection seen by their symbionts. We also find that protection is more likely to evolve in response to highly transmissible parasites that cause intermediate, rather than high, virulence (increased death rate when infected). Furthermore, intermediate levels of protection select for faster, more virulent horizontally transmitted parasites, suggesting that protective symbionts may lead to the evolution of more virulent parasites in nature. When we allow for coevolution between the symbiont and the parasite, more protection is likely to evolve in the vertically transmitted symbionts of longer lived hosts. Therefore, if protection is found to be common in nature, it has the potential to be a major selective force on host–parasite interactions.  相似文献   

6.
Parasite aggregation is viewed as a natural law in parasite-host ecology but is a paradox insofar as parasites should follow the Poisson distribution if hosts are encountered randomly. Much research has focused on whether parasite aggregation in or on hosts is explained by aggregation of infective parasite stages in the environment, or by heterogeneity within host samples in terms of host responses to infection (e.g., through representation of different age classes of hosts). In this paper, we argue that the typically aggregated distributions of parasites may be explained simply. We propose that aggregated distributions can be derived from parasites encountering hosts randomly, but subsequently by parasites being 'lost' from hosts based on condition-linked escape or immunity of hosts. Host condition should be a normally distributed trait even among otherwise homogeneous sets of hosts. Our model shows that mean host condition and variation in host condition have different effects on the different metrics of parasite aggregation. Our model further predicts that as host condition increases, parasites become more aggregated but numbers of attending parasites are reduced overall and this is important for parasite population dynamics. The effects of deviation from random encounter are discussed with respect to the relationship between host condition and final parasite numbers.  相似文献   

7.
The deployment of the immune system has the obvious potential to ameliorate infection outcomes, but immune responses can also harm hosts by either damaging host tissues or monopolizing resources, leading to enhanced mortality. To gain insight into such a 'cost of immunity' when the crustacean Daphnia magna is challenged with the bacterium Pasteuria ramosa, we measured survivorship among hosts that resisted infection following exposure to various strains and doses of the parasite. In the first of two experiments, these exposures were: single exposures with relatively non-aggressive strains, double exposures with non-aggressive strains, and exposure to aggressive strains. Mortality increased across this gradient of exposure. In a second experiment, we varied the dose of the most aggressive P. ramosa strain and found that resisting infection when a large dose was applied resulted in greater mortality than when a medium or low dose was applied. Assuming that resistance is accomplished with an immune response, and that more aggressive parasites and/or larger doses of parasites are more immunostimulatory, these data are compatible with a cost of immunity. Indeed, in terms of survival, resisting parasites can be more harmful than infection.  相似文献   

8.
Brood parasites dramatically reduce the reproductive successof their hosts, which therefore have developed defenses againstbrood parasites. The first line of defense is protecting thenest against adult parasites. When the parasite has successfullyparasitized a host nest, some hosts are able to recognize andreject the eggs of the brood parasite, which constitutes the secondline of defense. Both defense tactics are costly and would be counteractedby brood parasites. While a failure in nest defense implies successfulparasitism and therefore great reduction of reproductive successof hosts, a host that recognizes parasitic eggs has the opportunityto reduce the effect of parasitism by removing the parasiticegg. We hypothesized that, when nest defense is counteractedby the brood parasite, hosts that recognize cuckoo eggs shoulddefend their nests at a lower level than nonrecognizers becausethe former also recognize adult cuckoos. Magpie (Pica pica) hoststhat rejected model eggs of the brood parasitic great spottedcuckoo (Clamator glandarius) showed lower levels of nest defensewhen exposed to a great spotted cuckoo than when exposed toa nest predator (a carrion crow Corvus corone). Moreover, magpiesrejecting cuckoo eggs showed lower levels of nest defense againstgreat spotted cuckoos than nonrecognizer magpies, whereas differencesin levels of defense disappeared when exposed to a carrion crow.These results suggest that hosts specialize in antiparasitedefense and that different kinds of defense are antagonistically expressed.We suggest that nest-defense mechanisms are ancestral, whereasegg recognition and rejection is a subsequent stage in the coevolutionaryprocess. However, host recognition ability will not be expressedwhen brood parasites break this second line of defense.  相似文献   

9.
Many models of parasitic infections lead to an approximately Poisson distribution of parasites among hosts, in stark contrast to the highly over-dispersed distributions that are usually encountered in practice. In this paper, a model is analyzed which, while assuming all individuals to be alike, can still lead to a very heterogeneous distribution of parasites among the host population. The model can be viewed as a very simple mean field interacting particle system, with the particles corresponding to the individual hosts, which behaves like an associated deterministic system when the number of hosts is large. The deterministic system describes the evolution over time of the proportions of the population with different parasite loads, and its equilibria are interpreted as typical distributions of parasites among hosts. Despite its simplicity, the model is complicated enough mathematically to leave a number of open problems.This work was supported in part by Schweiz. Nationalfonds Grants Nos 21-25579.88 and 20-31262.91, and by NSF Grant DMS 90-05833  相似文献   

10.
Intracellular bacteria of the genus Caedibacter limit the reproduction of their host, the freshwater ciliate Paramecium. Reproduction rates of infected strains of paramecia were significantly lower than those of genetically identical strains that had lost their parasites after treatment with an antibiotic. Interference competition occurs when infected paramecia release a toxic form of the parasitic bacterium that kills uninfected paramecia. In mixed cultures of infected and uninfected strains of either P tetraurelia or of P novaurelia, the infected strains outcompeted the uninfected strains. Infection of new host paramecia seems to be rare. Infection of new hosts was not observed in either mixtures of infected with uninfected strains, or after incubation of paramecia with isolated parasites. The competitive advantages of the host paramecia, in combination with their vegetative reproduction, makes infection of new hosts by the bacterial parasites unnecessary, and could be responsible for the continued existence of "killer paramecia" in nature. Caedibacter parasites are not a defensive adaptation. Feeding rates and reproduction of the predators Didinium nasutum (Ciliophora) and Amoeba proteus (Amoebozoa, Gymnamoebia) were not influenced by whether or not their paramecia prey were infected. Infection of the predators frequently occurred when they preyed on infected paramecia. Caedibacter-infected predators may influence competition between Paramecium strains by release of toxic parasites into the environment that are harmful to uninfected strains.  相似文献   

11.
12.
Cumulative evolution has been proposed to explain the high diversity of marine fish parasites. The process is based on the idea that marine parasites, being generalists, are able to follow new food web pathways and colonize novel hosts, subsequently undergoing speciation. Opportunities to colonize new hosts via different food chains might also arise from the ability to use paratenic hosts that maintain or increase transmission. However, caution is advised in the adoption of the term 'cumulative evolution' in evolutionary biology because of historical precedent. This term has previously been applied to the cultural evolution of tool design.  相似文献   

13.
《PloS one》2013,8(12)

Background

Climate change potentially has important effects on distribution, abundance, transmission and virulence of parasites in wild populations of animals.

Methodology/Principal Finding

Here we analyzed paired information on 89 parasite populations for 24 species of bird hosts some years ago and again in 2010 with an average interval of 10 years. The parasite taxa included protozoa, feather parasites, diptera, ticks, mites and fleas. We investigated whether change in abundance and prevalence of parasites was related to change in body condition, reproduction and population size of hosts. We conducted analyses based on the entire dataset, but also on a restricted dataset with intervals between study years being 5–15 years. Parasite abundance increased over time when restricting the analyses to datasets with an interval of 5–15 years, with no significant effect of changes in temperature at the time of breeding among study sites. Changes in host body condition and clutch size were related to change in temperature between first and second study year. In addition, changes in clutch size, brood size and body condition of hosts were correlated with change in abundance of parasites. Finally, changes in population size of hosts were not significantly related to changes in abundance of parasites or their prevalence.

Conclusions/Significance

Climate change is associated with a general increase in parasite abundance. Variation in laying date depended on locality and was associated with latitude while body condition of hosts was associated with a change in temperature. Because clutch size, brood size and body condition were associated with change in parasitism, these results suggest that parasites, perhaps mediated through the indirect effects of temperature, may affect fecundity and condition of their hosts. The conclusions were particularly in accordance with predictions when the restricted dataset with intervals of 5–15 years was used, suggesting that short intervals may bias findings.  相似文献   

14.

Background

Avian brood parasites and their hosts are involved in complex offence-defense coevolutionary arms races. The most common pair of reciprocal adaptations in these systems is egg discrimination by hosts and egg mimicry by parasites. As mimicry improves, more advanced host adaptations evolve such as decreased intra- and increased interclutch variation in egg appearance to facilitate detection of parasitic eggs. As interclutch variation increases, parasites able to choose hosts matching best their own egg phenotype should be selected, but this requires that parasites know their own egg phenotype and select host nests correspondingly.

Methodology/Principal Findings

We compared egg mimicry of common cuckoo Cuculus canorus eggs in naturally parasitized marsh warbler Acrocephalus palustris nests and their nearest unparasitized conspecific neighbors having similar laying dates and nest-site characteristics. Modeling of avian vision and image analyses revealed no evidence that cuckoos parasitize nests where their eggs better match the host eggs. Cuckoo eggs were as good mimics, in terms of background and spot color, background luminance, spotting pattern and egg size, of host eggs in the nests actually exploited as those in the neighboring unparasitized nests.

Conclusions/Significance

We reviewed the evidence for brood parasites selecting better-matching host egg phenotypes from several relevant studies and argue that such selection probably cannot exist in host-parasite systems where host interclutch variation is continuous and overall low or moderate. To date there is also no evidence that parasites prefer certain egg phenotypes in systems where it should be most advantageous, i.e., when both hosts and parasites lay polymorphic eggs. Hence, the existence of an ability to select host nests to maximize mimicry by brood parasites appears unlikely, but this possibility should be further explored in cuckoo-host systems where the host has evolved discrete egg phenotypes.  相似文献   

15.
Biologists commonly assume that parasites are locally adapted since they have shorter generation times and higher fecundity than their hosts, and therefore evolve faster in the arms race against the host's defences. As a result, parasites should be better able to infect hosts within their local population than hosts from other allopatric populations. However, recent mathematical modelling has demonstrated that when hosts have higher migration rates than parasites, hosts may diversify their genes faster than parasites and thus parasites may become locally maladapted. This new model was tested on the Canarian endemic lizard and its blood parasite (haemogregarine genus). In this host–parasite system, hosts migrate more than parasites since lizard offspring typically disperse from their natal site soon after hatching and without any contact with their parents who are potential carriers of the intermediate vector of the blood parasite (a mite). Results of cross-infection among three lizard populations showed that parasites were better at infecting individuals from allopatric populations than individuals from their sympatric population. This suggests that, in this host–parasite system, the parasites are locally maladapted to their host.  相似文献   

16.
Life-history theory predicts that sexually reproducing organisms have evolved to resolve resource-allocation trade-offs between growth/survival versus reproduction, and current versus future reproduction. Malaria parasites replicate asexually in their vertebrate hosts, but must reproduce sexually to infect vectors and be transmitted to new hosts. As different specialized stages are required for these functions, the division of resources between these life-history components is a fundamental evolutionary problem. Here, we test how drug-sensitive and drug-resistant isolates of the human malaria parasite Plasmodium falciparum resolve the trade-off between in-host replication and between-host transmission when exposed to treatment with anti-malarial drugs. Previous studies have shown that parasites increase their investment in sexual stages when exposed to stressful conditions, such as drugs. However, we demonstrate that sensitive parasites facultatively decrease their investment in sexual stages when exposed to drugs. In contrast to previous studies, we tested parasites from a region where treatment with anti-malarial drugs is common and transmission is seasonal. We hypothesize that when exposed to drugs, parasites invest in their survival and future transmission by diverting resources from reproduction to replication. Furthermore, as drug-resistant parasites did not adjust their investment when exposed to drugs, we suggest that parasites respond to changes in their proliferation (state) rather the presence of drugs.  相似文献   

17.
Social parasites may exploit their hosts by mimicking other organisms that the hosts normally benefit from investing in or responding to in some other way. Some parasites exaggerate key characters of the organisms they mimic, possibly in order to increase the response from the hosts. The huge gape and extreme begging intensity of the parasitic common cuckoo chick (Cuculus canorus) may be an example. In this paper, the evolutionary stability of manipulating hosts through exaggerated signals is analysed using game theory. Our model indicates that a parasite's signal intensity must be below a certain threshold in order to ensure acceptance and that this threshold depends directly on the rate of parasitism. The only evolutionarily stable strategy (ESS) combination is when hosts accept all signallers and parasites signal at their optimal signal intensity, which must be below the threshold. Supernormal manipulation by parasites is only evolutionarily stable under sufficiently low rates of parasitism. If the conditions for the ESS combination are not satisfied, rejector hosts can invade using signal intensity as a cue for identifying parasites. These qualitative predictions are discussed with respect to empirical evidence from parasitic mimicry systems that have been suggested to involve supernormal signalling, including evicting avian brood parasites and insect-mimicking Ophrys orchids.  相似文献   

18.
Trophically transmitted parasites often alter their intermediate host's phenotype, thereby predisposing hosts to increased predation. This is generally considered to be a parasite strategy evolved to enhance transmission to the next host. However, the adaptive value of host manipulation is not clear, as it may be associated with costs, such as increased susceptibility to predator species that are unsuitable next hosts for the parasites. Thus, it has been proposed that, to be adaptive, manipulation should be specific by predisposing hosts more strongly to predation by target hosts (next host in the life cycle) than to non-hosts. Here we formally evaluate this prediction, and show that manipulation does not have to be specific to be adaptive. However, when manipulation is nonspecific, it needs to effectively increase the overall predation risk of infected hosts if it is to increase the parasite transmission probability. Thus, when initial predation risk is low, even highly nonspecific manipulation strategies can be adaptive. However, when initial predation risk is high, manipulation needs to be more specific to increase parasite transmission success. Therefore, nonspecific host manipulation may evolve in nature, but the adaptive value of a certain manipulation strategy can vary among different parasite populations depending on the variation in initial predation risk.  相似文献   

19.
Parasitic interactions are often part of complex networks of interspecific relationships that have evolved in biological communities. Despite many years of work on the evolution of parasitism, the likelihood that sister taxa of parasites can co-evolve with their hosts to specifically infect two related lineages, even when those hosts occur sympatrically, is still unclear. Furthermore, when these specific interactions occur, the molecular and physiological basis of this specificity is still largely unknown. The presence of these specific parasitic relationships can now be tested using molecular markers such as DNA sequence variation. Here we test for specific parasitic relationships in an emerging host-parasite model, the stickleback-Schistocephalus system. Threespine and ninespine stickleback fish are intermediate hosts for Schistocephalus cestode parasites that are phenotypically very similar and have nearly identical life cycles through plankton, stickleback, and avian hosts. We analyzed over 2000 base pairs of COX1 and NADH1 mitochondrial DNA sequences in 48 Schistocephalus individuals collected from threespine and ninespine stickleback hosts from disparate geographic regions distributed across the Northern Hemisphere. Our data strongly support the presence of two distinct clades of Schistocephalus, each of which exclusively infects either threespine or ninespine stickleback. These clades most likely represent different species that diverged soon after the speciation of their stickleback hosts. In addition, genetic structuring exists among Schistocephalus taken from threespine stickleback hosts from Alaska, Oregon and Wales, although it is much less than the divergence between hosts. Our findings emphasize that biological communities may be even more complex than they first appear, and beg the question of what are the ecological, physiological, and genetic factors that maintain the specificity of the Schistocephalus parasites and their stickleback hosts.  相似文献   

20.
In nature, hosts are exposed to an assemblage of parasite species that collectively form a complex community within the host. To date, however, our understanding of how within-host–parasite communities assemble and interact remains limited. Using a larval amphibian host (Pacific chorus frog, Pseudacris regilla) and two common trematode parasites (Ribeiroia ondatrae and Echinostoma trivolvis), we experimentally examined how the sequence of host exposure influenced parasite interactions within hosts. While there was no evidence that the parasites interacted when hosts were exposed to both parasites simultaneously, we detected evidence of both intraspecific and interspecific competition when exposures were temporally staggered. However, the strength and outcome of these priority effects depended on the sequence of addition, even after accounting for the fact that parasites added early in host development were more likely to encyst compared to parasites added later. Ribeiroia infection success was reduced by 14 % when Echinostoma was added prior to Ribeiroia, whereas no such effect was noted for Echinostoma when Ribeiroia was added first. Using a novel fluorescent-labeling technique that allowed us to track Ribeiroia infections from different exposure events, we also discovered that, similar to the interspecific interactions, early encysting parasites reduced the encystment success of later arriving parasites by 41 %, which could be mediated by host immune responses and/or competition for space. These results suggest that parasite identity interacts with host immune responses to mediate parasite interactions within the host, such that priority effects may play an important role in structuring parasite communities within hosts. This knowledge can be used to assess host–parasite interactions within natural communities in which environmental conditions can lead to heterogeneity in the timing and composition of host exposure to parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号