首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An egg-specific NADase has been purified to homogeneity from the ovotestis of the opisthobranch mollusk Aplysia californica. Unlike other NADases, the Aplysia enzyme generates primarily cyclic-ADP-ribose (cADPR) rather than ADP-ribose from NAD. cADPR has been shown to stimulate the release of Ca2+ from microsomes prepared from sea urchin egg and, when injected into intact eggs, to activate the cortical reaction, multiple nuclear cycles, and DNA synthesis. The Aplysia enzyme was initially identified as an inhibitor of cholera and pertussis toxin-catalyzed ADP-ribosylation. By the use of an NADase assay, it was purified from the aqueous-soluble fraction of ovotestis by sequential column chromatography. The enzyme has an apparent molecular mass of 29 kDa, a Km for NAD of 0.7 mM, and a turnover rate of approximately 27,000 mol NAD.min-1.mol enzyme-1 at 30 degrees C. Monoclonal antibodies were generated to the NADase. Immunoblots of two-dimensional gels revealed multiple isoforms of the enzyme, with pls ranging from 8.1 to 9.8. The multiple isoforms were resolved with a cation exchange high-pressure liquid chromatography column and shown to generate cADPR. Immunohistochemical analysis of cryostat sections of Aplysia ovotestis shows that the enzyme is specific to the eggs and restricted to large 5- to 10-microns granules or vesicles. To date the cADPR-generating enzyme activity has been identified in various organisms, including mammals. The Aplysia enzyme is the first example in which the enzyme that generates cADPR has been purified. All of the available evidence indicates that this NADase is a second-messenger enzyme, implying that other NADases may serve a similar function.  相似文献   

2.
Cyclic ADP-ribose (cADPR) is a metabolite of NAD+ that is as active as inositol trisphosphate (IP3) in mobilizing intracellular Ca2+ in sea urchin eggs. The activity of the enzyme responsible for synthesizing cADPR is found not only in sea urchin eggs but also in various mammalian tissue extracts, suggesting that cADPR may be a general messenger for Ca2+ mobilization in cells. An aqueous soluble enzyme, thought to be an NADase, has been purified recently from the ovotestis of Aplysia californica (Hellmich and Strumwasser, 1991). This paper shows that the Aplysia enzyme catalyzes the conversion of NAD+ to cADPR and nicotinamide. The Aplysia enzyme was purified by fractionating the soluble extract of Aplysia ovotestis on a Spectra/gel CM column. The purified enzyme appeared as a single band of approximately 29,000 Da on SDS-PAGE but could be further separated into multiple peaks by high-resolution, cation-exchange chromatography. All of the protein peaks had enzymatic activity, indicating that the enzyme had multiple forms differing by charge. Analysis of the reaction products of the enzyme by anion-exchange high-pressure liquid chromatography (HPLC) indicated no ADP-ribose was produced; instead, each mole of NAD+ was converted to equimolar of cADPR and nicotinamide. The identification of the product as cADPR was further substantiated by proton NMR and also by its Ca(2+)-mobilizing activity. Addition of the product to sea urchin egg homogenates induced Ca2+ release and desensitized the homogenate to authentic cADPR but not to IP3. Microinjection of the product into sea urchin eggs elicited Ca2+ transients as well as the cortical exocytosis reaction. Therefore, by the criteria of HPLC, NMR, and calcium-mobilizing activity, the product was identical to cADPR. To distinguish the Aplysia enzyme from the conventional NADases that produce ADP-ribose, we propose to name it ADP-ribosyl cyclase.  相似文献   

3.
Cyclic ADP-ribose (cADPR), a putative Ca(2+)-mobilizing second messenger, has been reported to operate in several mammalian cells. To investigate whether cADPR is involved in electrolyte secretion from airway glands, we used a patch-clamp technique, the measurement of microsomal Ca(2+) release, quantification of cellular cADPR, and RT-PCR for CD38 mRNA in human and feline tracheal glands. cADPR (>6 microM), infused into the cell via the patch pipette, caused ionic currents dependent on cellular Ca(2+). Infusions of lower concentrations (2-4 microM) of cADPR or inositol 1,4,5-trisphosphate (IP(3)) alone were without effect on the baseline current, but a combined application of cADPR and IP(3) mimicked the cellular response to low concentrations of acetylcholine (ACh). Microsomes derived from the isolated glands released Ca(2+) in response to both IP(3) and cADPR. cADPR released Ca(2+) from microsomes desensitized to IP(3) or those treated with heparin. The mRNA for CD38, an enzyme protein involved in cADPR metabolism, was detected in human tissues, including tracheal glands, and the cellular content of cADPR was increased with physiologically relevant concentrations of ACh. We conclude that cADPR, in concert with IP(3), operates in airway gland acinar cells to mobilize Ca(2+), resulting in Cl(-) secretion.  相似文献   

4.
A full-length cDNA (rc55) encoding the major rabbit zona pellucida (ZP) glycoprotein (55 kDa) has been cloned and sequenced. A lambda gt11 expression library was constructed using poly(A)+ mRNA isolated from sexually immature rabbit ovaries which contain large numbers of developing follicles. The rc55 cDNA was identified using affinity purified polyclonal antibodies specific to ZP antigens which are shared among mammalian species. The deduced amino acid sequence of the full-length rc55 clone was matched to the NH2-terminal 25-amino acid sequence obtained for this protein. The predicted amino acid sequence consists of 540 amino acids including a putative signal peptide of 18-24 residues and six potential N-glycosylation sites. The cDNA hybridizes to a 2000-base species of mRNA from rabbit ovary which is not detected in other rabbit tissues. The message is present early in ovarian follicular development and is approximately 600-fold greater in sexually immature as compared with sexually mature rabbit ovaries. This cDNA was expressed as a cro-beta-galactosidase fusion protein using the pEX expression vector. Antibodies against native rabbit ZP, affinity-purified on the recombinant 55-kDa ZP protein, were found to recognize the native rabbit ZP glycoprotein, indicating partial conservation of native epitopes in the expressed recombinant protein.  相似文献   

5.
A full-length cDNA clone for a cysteine proteinase inhibitor (cystatin) was isolated from a lambda gt10 cDNA library of immature corn kernels by screening with a mixture of cDNA inserts for oryzacystatins I and II. The cDNA clone spans 960 base pairs, encoding a 135-amino-acid protein containing a signal peptide fragment. The protein, named corn cystatin I, is considered to be a member of the cystatin superfamily, since it contains the commonly conserved Gln-Val-Val-Ala-Gly region that exists in most known cystatins as a probable binding site and is significantly similar to other cystatins in its overall amino acid sequence. Corn cystatin I expressed in Escherichia coli showed a strong papain-inhibitory activity. Northern blot analysis showed that the amount of mRNA for corn cystatin I reaches a maximum 2 weeks after flowering and then decreases gradually.  相似文献   

6.
7.
The accumulation of the Kunitz-type chymotrypsin inhibitor WCI-3 in winged bean seeds is controlled developmentally. In vitro translation experiments showed that the WCI-3 mRNA was present in 35- and 40-day-old immature seeds after flowering. The size of the in vitro translation product is about 2 000 Da larger than that of the mature WCI-3 protein. The WCI-3 cDNA clones were isolated from a gtll cDNA library of 35-day-old immature seeds by immunoscreening. A nearly full-length cDNA clone was obtained containing an open reading frame of 207 amino acid residues. The deduced sequence of the 183 carboxy terminal amino acids coincides precisely with the amino acid sequence determined for purified WCI-3. The amino terminal extension of 24 residues has the characteristics of a signal peptide. Northern hybridization analysis of total poly(A)+ RNA showed that the WCI-3 mRNA is approximately 900 nucleotides long and accumulates in 35- and 40-day-old but not in 30-day-old immature seeds.  相似文献   

8.
Sarcoplasmic reticulum Ca2+-ATPase cDNA clones have been isolated from an adult rat heart cDNA library and the nucleotide sequence of the Ca2+-ATPase mRNA determined. The sequence has an open reading frame of 997 codons. It is identical to a cDNA isolated from a rat stomach cDNA library and 90% isologous to the rabbit and human slow/cardiac cDNAs. Nuclease S1 mapping analysis indicates that this sequence corresponds to the main Ca2+-ATPase mRNA present in heart and in slow skeletal muscle and that it is expressed in various proportions in smooth and non-muscle tissues, together with another isoform which differs from the cardiac form in the sequence of its 3'-end.  相似文献   

9.
A lambdaZAP II cDNA library was constructed from mRNA in immature seeds of the grass Job's tears. A cDNA clone for a cysteine proteinase inhibitor, cystatin, was isolated from the library. The cDNA clone spanned 757 base pairs and encoded 135 amino acid residues. The deduced amino acid sequence was similar to that of cystatins from the gramineous plants rice, sorghum, and corn. The central Gln-Val-Val-Ala-Gly sequence thought to be one of the binding sites of cystatins was found. A remarkable characteristic of the peptide sequence of Job's-tears cystatin was the putative signal peptide that has been found in sorghum and corn but not in rice. The cystatin cDNA was expressed in Escherichia coli as a His-tagged recombinant protein. The purified recombinant protein inhibited papain.  相似文献   

10.
Microvitellogenin is a female-specific yolk protein from the tobacco hornworm moth Manduca sexta. A cDNA library was constructed from poly(A)+ RNA isolated from adult female fat body. cDNA clones of mRNA for microvitellogenin were isolated by using antiserum against microvitellogenin. Northern blot analysis of poly(A)+ RNA isolated from different life stages and sexes reveals that mRNA coding for microvitellogenin is only present in adult female fat body. Immunoprecipitation of the protein product translated from hybrid selected mRNA indicates that the cDNA clone is specific for microvitellogenin. The complete nucleotide sequence of the 834-base pair cDNA insert has been determined by the dideoxy chain termination method. The cDNA sequence predicts that microvitellogenin is a protein of 232 residues with a calculated molecular weight of 26,201. The cDNA also predicts an amino-terminal extension of 17 residues which are not present in the mature form. This sequence appears to be a signal peptide. A comparison of the translated amino acid sequence with the sequences in the National Biomedical Foundation protein library did not establish any sequence homology with other known proteins.  相似文献   

11.
Summary The cDNA coding for the b-32 protein, an albumin expressed in maize endosperm cells under the control of the O2 and O6 loci, has been cloned and the complete amino acid sequence of the protein derived. A lambda gt11 cDNA library from mRNA of immature maize endosperm was screened for the expression of the b-32 protein using antibodies against the purified protein. One of the positive clones obtained was used to isolate a full-length cDNA clone. By Northern analysis, the size of the b-32 mRNA was estimated to be 1.2 kb. Hybrid-selected translation assays show that the message codes for a protein with an apparent molecular weight of 30–35 kDa. The nucleotide sequence shows that several internal repeats are present. The protein has a length of 303 amino acid residues (mol. wt. 32430 dalton) and its sequence shows the following features: no signal peptide is observable; it contains seven tryptophan residues, an amino acid absent in maize storage proteins; polar and hydrophobic residues are spread along the sequence; several pairs of basic residues are present in the N-terminal region; the secondary structure allows the prediction of two structural domains for the b-32 protein that would fold up giving rise to a globular shape. The cloning of this gene may help in understanding the role of the O2 and O6 loci in regulating the deposition of zein, the major storage protein of maize endosperm.  相似文献   

12.
Hseu MJ  Yen CH  Tzeng MC 《FEBS letters》1999,445(2-3):440-444
Utilizing Marathon-ready cDNA library and a gene-specific primer corresponding to a partial amino acid sequence determined previously, the complete nucleotide sequence for the cDNA of crocalbin, which binds crotoxin (a phospholipase A2) and Ca2+, was obtained by polymerase chain reaction. The open reading frame of the cDNA encodes a novel polypeptide of 315 amino acid residues, including a signal sequence of 19 residues. This protein contains six potential Ca(2+)-binding domains, one N-glycosylation site, and a large amount of acidic amino acid residues. The ability to bind Ca2+ has been ascertained by calcium overlay experiment. Evidenced by sequence similarity in addition, it is concluded that crocalbin is a new member of the reticulocalbin family of calcium-binding proteins.  相似文献   

13.
14.
The yolk sac carcinoma cell line L2 secretes a chondroitin/dermatan sulfate proteoglycan that has an Mr 10,000 core protein and carries an average of 14 glycosaminoglycan chains. The amino acid sequence of the mature core protein has been determined from cloned cDNA (Bourdon, M. A., Oldberg, A., Pierschbacher, M., and Ruoslahti, E. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1321-1325). From additional cDNA sequences described in this report we have identified the prepro core protein precursor of the yolk sac carcinoma chondroitin/dermatan sulfate proteoglycan. From the amino acid sequence of the core protein precursor can be deduced the protein processing events in the biosynthesis of the proteoglycan. The amino acid sequence shows that the 104-amino acid mature core protein is processed from a 179-amino acid prepro core protein precursor which, in addition to the mature core protein, contains a 26-amino acid signal peptide as well as a 49-amino acid propeptide. The molecular weight of the prepro core protein predicted from the cDNA sequence (Mr = 18,600) was in good agreement with the molecular weight of the in vitro translation product (Mr = 19,000) of hybrid-selected mRNA. Accordingly, we have designated the proteoglycan core protein PG19. Further analysis of the PG19 mRNA by RNA sequencing confirmed the identification of the core protein translation initiation codon by revealing stop codons in all three reading frames of the upstream mRNA sequence. Primer extension analyses demonstrated that the 5' untranslated sequence of the proteoglycan mRNA is approximately 220 nucleotides in length, which, combined with the length of cDNA clones, accounts for the entire length of the coding sequence of PG19 mRNA from L2 cells. The cDNA sequences presented here establish the complete protein sequence of PG19 and provide evidence of polypeptide processing during the biosynthesis of the proteoglycan core protein.  相似文献   

15.
beta-NAD(+) is as abundant as ATP in neuronal cells. beta-NAD(+) functions not only as a coenzyme but also as a substrate. beta-NAD(+)-utilizing enzymes are involved in signal transduction. We focus on ADP-ribosyl cyclase/CD38 which synthesizes cyclic ADP-ribose (cADPR), a universal Ca(2+) mobilizer from intracellular stores, from beta-NAD(+). cADPR acts through activation/modulation of ryanodine receptor Ca(2+) releasing Ca(2+) channels. cADPR synthesis in neuronal cells is stimulated or modulated via different pathways and various factors. Subtype-specific coupling of various neurotransmitter receptors with ADP-ribosyl cyclase confirms the involvement of the enzyme in signal transduction in neurons and glial cells. Moreover, cADPR/CD38 is critical in oxytocin release from the hypothalamic cell dendrites and nerve terminals in the posterior pituitary. Therefore, it is possible that pharmacological manipulation of intracellular cADPR levels through ADP-ribosyl cyclase activity or synthetic cADPR analogues may provide new therapeutic opportunities for treatment of neurodevelopmental disorders.  相似文献   

16.
NAD(P)(+)-glycohydrolase (NADase, EC 3.2.2.6) was partially purified from microsomal membranes of human spleen after solubilization with Triton X-100. In addition to NAD+ and NADP+, the enzyme catalyzed the hydrolysis of several NAD+ analogues and the pyridine base exchange reaction with conversion of NAD+ into 3-acetylpyridine adenine dinucleotide. The enzyme also catalyzed the synthesis of cyclic ADP-ribose (cADPR) from NAD+ and the hydrolysis of cADPR to adenosine diphosphoribose (ADPR). Therefore, this enzyme is a new member of multicatalytic NADases recently identified from mammals, involved in the regulation of intracellular cADPR concentration. Human spleen NADase showed a subunit molecular mass of 45 kDa, a pI of 4.9 and a Km value for NAD+ of 26 microM. High activation of ADPR cyclase activity was observed in the presence of Ag+ ions, corresponding to NADase inhibition.  相似文献   

17.
A new protein kinase C (PKC)-related cDNA with unique tissue distribution has been isolated and characterized. This cDNA encodes a protein, nPKC theta, which consists of 707 amino acid residues and showed the highest sequence similarity to nPKC delta (67.0% in total). nPKC theta has a zinc-finger-like cysteine-rich sequence (C1 region) and a protein kinase domain sequence (C3 region), both of which are common in all PKC family members. However, nPKC theta lacks a putative Ca2+ binding region (C2 region) that is seen only in the conventional PKC subfamily (cPKC alpha, -beta I, -beta II, and -gamma) but not in the novel PKC subfamily (nPKC delta, -epsilon, -zeta, and -eta). Northern (RNA) blot analyses revealed that the mRNA for nPKC theta is expressed predominantly in skeletal muscle. Furthermore, nPKC theta mRNA is the most abundantly expressed PKC isoform in skeletal muscle among the nine PKC family members. nPKC theta expressed in COS1 cells serves as a phorbol ester receptor. By the use of an antipeptide antibody specific to the D2-D3 region of the nPKC theta sequence, nPKC theta was recognized as a 79-kDa protein upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis in mouse skeletal muscle extract and also in an extract from COS1 cells transfected with an nPKC theta cDNA expression plasmid. Autophosphorylation of immunoprecipitated nPKC theta was observed; it was enhanced by phosphatidylserine and 12-O-tetradecanoylphorbol-13-acetate but attenuated by the addition of Ca2+. These results clearly demonstrate that nPKC theta should be considered a member of the PKC family of proteins that play crucial roles in the signal transduction pathway.  相似文献   

18.
A root-specific cDNA clone, PVR3, was isolated from a bean (Phaseolus vulgaris L.) root cDNA library by a differential screening procedure. The nucleotide sequence of PVR3 contains an open reading frame coding for an 11.14 kDa polypeptide of 102 amino acid residues; the first 25 amino acids correspond to the sequence characteristic of a signal peptide. Comparison of the deduced PVR3 polypeptide sequence with the polypeptide sequences of previously cloned genes indicates that PVR3 may encode a ns-LTP-like protein. Molecular modelling of the PVR3 protein predicts that it has a three-dimensional structure that is similar to the three-dimensional model determined from the maize ns-LTP. The PVR3 mRNA accumulated mainly in the roots of young seedlings. It can be detected at low levels in flowers, but it is not detected in other organs. Genomic Southern blot analysis indicates that the genomic DNA corresponding to PVR3 cDNA is encoded by a single gene or small gene family in the bean genome.  相似文献   

19.
Endonexin II is a member of the family of Ca2+-dependent phospholipid binding proteins known as annexins. We cloned human endonexin II cDNA and expressed it in Escherichia coli. The apparent size and Ca2+-dependent phospholipid binding properties of purified recombinant endonexin II were indistinguishable from those of the placental protein. A single mRNA of approximately 1.6 kilobase pairs was found to be expressed in human cell lines and placenta and was in close agreement with the length of the cDNA clone (1.59 kilobase pairs). The cDNA predicted a 320-amino acid protein with a sequence that was in agreement with the previously determined partial amino acid sequence of endonexin II isolated from placenta. Endonexin II contained 58, 46, and 43% sequence identity to protein II, calpactin I (p36, protein I), and lipocortin I (p35), respectively. The partial sequence of bovine endonexin I was aligned with the sequence of endonexin II to give 63% sequence identity. Like these other proteins, endonexin II had a 4-fold internal repeat of approximately 70 residues preceded by an amino-terminal domain lacking similarity to the repeated region. It also had significant sequence identity with 67-kDa calelectrin (p68), a protein with an 8-fold internal repeat. Comparing the amino-terminal domains of these four proteins of known sequence revealed that, in general, only endonexin II and protein II had significant sequence identity (29%). Endonexin II was not phosphorylated by Ca2+/phospholipid-dependent enzyme (protein kinase C) even though it contained a threonine at a position analogous to the protein kinase C phosphorylation sites of lipocortin I, calpactin I, and protein II.  相似文献   

20.
A cDNA clone encoding a glycinin A1a subunit precursor of soybean.   总被引:2,自引:1,他引:1       下载免费PDF全文
T Negoro  T Momma    C Fukazawa 《Nucleic acids research》1985,13(18):6719-6731
A cDNA clone covering the whole coding region for a glycinin subunit precursor containing the A1a acidic subunit, one of the A2 family, has been identified from a library of soybean cotyledonary cDNA clones using a mixed oligonucleotide probe. Analysis of the cDNA insert revealed that it contained 1746 nucleotides of mRNA sequence with a 5'-terminal nontranslated region of 54 nucleotides, a signal peptide region corresponding to 19 amino acids, an acidic subunit region (A1a) corresponding to 291 amino acids followed by a basic subunit region corresponding to 185 amino acids, and a 3'-terminal nontranslated region of 207 nucleotides. By comparing the predicted protein sequence of this precursor with that of the legumin A precursor of pea, it was found that glycinin A2 subunit family appeared to be more closely related to the legumin than to the A3 subunit family, and that the evolutional rearrangement of glycinin genes has occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号