首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
C Magoulas  D A Hickey 《Génome》1992,35(1):133-139
Several cDNA and genomic clones were isolated from Drosophila melanogaster gene libraries by hybridization with a region of a mammalian gene that contains a simple repetitive sequence of six GCN repeats. One of the cDNA clones, E6, was completely sequenced and it was shown that it contains a region of 16 GCN repeats; these repeats encode a polyalanine stretch within a long open reading frame. The sequencing of three different genomic clones (A, B, and D) revealed that all the isolated Drosophila clones are similar to one another in a short region containing variable numbers of the GCN repeat. The genomic clone B was found to be the genomic counterpart of the cDNA clone E6. The other genomic clones, A and D, also hybridize with Drosophila cDNA clones at high stringency. These results indicate that the short GCN repetitive sequences, which we have named ala, are found within transcribed regions of the Drosophila genome. These Drosophila genes containing the ala repeat do not show significant sequence similarity to any presently known gene; we have named these novel genes ala-A, ala-B, and ala-D. The cDNA clone from gene ala-B was named ala-E6.  相似文献   

3.
4.
A genomic clone was isolated from the tobacco hornworm, Manduca sexta, by virtue of its similarity to a Drosophila larval cuticle gene. RNA analysis shows that this clone, B311, is expressed at times appropriate for a larval cuticle gene. Hybrid-selection experiments using B311 DNA show that it encodes a 14 x 10(3) Mr protein, LCP-14, which is precipitated by an antiserum to Manduca larval cuticle. We have sequenced both genomic and cDNA clones for the LCP-14 gene. A conceptual translation of the cDNA sequence shows that the LCP-14 protein is similar not only to another Manduca cuticle protein, but also to Drosophila, Sarcophaga and Hyalophora cecropia cuticle proteins. Since these proteins are found in flexible cuticle and have similar sequences, we conclude they are encoded by homologous genes.  相似文献   

5.
6.
Acetylcholine is a major excitatory neurotransmitter in the central nervous system of insects. Using DNA probes of the Torpedo nicotinic acetylcholine receptor (AChR) we have isolated two overlapping cDNA clones encoding a putative neuronal AChR protein from the fruitfly, Drosophila melanogaster. The predicted mature protein consists of 497 amino acids, has a calculated mol. wt of 57 340 and shows extensive homology to known AChR subunits from different species along its entire amino acid sequence. Northern analysis revealed a hybridizing mRNA of 3.2 kb in late embryo and in pupae. Expression of the corresponding AChR gene thus characterizes periods of neuronal differentiation in Drosophila.  相似文献   

7.
8.
Using the Drosophila melanogaster S2 cell line, stably expressing a cloned muscarinic acetylcholine receptor (AChR), DM1, we have applied gene silencing by double-stranded RNA interference (RNAi) to knock down gene products involved in DM1-mediated calcium signalling. We have shown that RNAi knock down of either the inositol 1,4,5-trisphosphate receptor (Ins(1,4,5)P(3)R), or the SERCA calcium pump in the S2-DM1 cells blocks the increase in intracellular calcium concentration ([Ca(2+)](i)) resulting from activation of the DM1 receptor by 100 microM carbamylcholine (CCh). When RNAi designed to knock down the ryanodine receptor (RyR) was tested, there was no change in the calcium increase detected in response to CCh, consistent with a failure to detect RyRs in S2-DM1 cells using RT-PCR. A combination of RNAi and calcium imaging has provided a direct demonstration of key roles for the Ins(1,4,5)P(3)R and the SERCA pump in the response to DM1 receptor activation.Thus, we show that silencing of individual genes by RNAi in a well characterised Drosophila S2 cell line offers experimental opportunities for cell-signalling studies. Future investigations with RNAi libraries taking full advantage of the wealth of new information available from sequencing the Drosophila genome, may help identify novel components of cell-signalling pathways and functionally linked gene products.  相似文献   

9.
A recombinant DNA plasmid has been constructed that contains sequences of the gene coding for the acetylcholine binding subunit (alpha-subunit, 40 000 daltons) of Torpedo marmorata acetylcholine receptor protein (AChR). Polyadenylated RNA purified from Torpedo electric organ was used to construct a cDNA library. The AChR alpha-subunit cDNA clone was then identified by a two-step screening of 700 recombinant clones. As AChR is present in Torpedo electric organ but not in Torpedo liver or spleen, differential screening led to the selection of 12 clones specific for the electric organ. We then tested the ability of cDNA inserts to hybridize alpha-subunit mRNA specifically, as judged by cell-free translation and immunoprecipitation. The insert from one clone, p alpha-1, selectively hybridized with a mRNA species which elicited the synthesis of a 38 000 mol. wt. polypeptide. This polypeptide was precipitated by: (1) a rabbit serum raised against purified denatured alpha-subunit (the pure alpha-subunit displaced the complex); and (2) a rat monoclonal antibody specific for the denatured alpha-subunit. It was thus identified as a precursor of the alpha chain. Blot hybridization analysis of polyadenylated RNA from Torpedo electric organ with the p alpha-1 probe revealed a major species of 2.0 kb, which thus contains approximately 800 non-coding nucleotides.  相似文献   

10.
A region of 25 nucleotides is highly conserved in genes coding for the alpha, beta, gamma, and delta subunits of the nicotinic acetylcholine receptor (AChR) of human, mouse, calf, chicken, and Torpedo. Based on this observation, a 2-fold degenerate oligonucleotide was synthesized and used as a probe to screen a cDNA library made from a mouse myogenic cell line. Clones coding for the beta, gamma, and delta subunits were identified by the probe. The protein sequence deduced from the beta subunit clones codes for a precursor polypeptide of 501 amino acids with a calculated molecular weight of 56,930 daltons, which includes a signal peptide of 23 amino acids. The protein sequence and structural features of the beta subunits of mouse, calf, and Torpedo are conserved. A clone coding for the mouse gamma subunit was isolated, and its identity was confirmed by alignment of its sequence to previously published cDNA sequences for the mouse and calf gamma subunits. The clone contained approximately 200 nucleotides more at its 3' end untranslated region than a mouse gamma clone recently described. Northern blot analysis, utilizing as probes these beta and gamma subunit cDNAs and previously characterized alpha and delta subunit cDNAs, shows that the steady-state levels of the four AChR mRNAs increase coordinately during terminal differentiation of cultured C2 and C2i mouse myoblasts. The increase in mRNA levels can account for the rise of cell surface receptors during myogenesis and suggests that the muscle AChR genes may be regulated during development by a common mechanism. Utilization of this oligonucleotide probe should prove useful for screening a variety of libraries made from different species and tissues which are known to express AChRs.  相似文献   

11.
The cellular homologs of the ets gene from the avian erythroblastosis retrovirus E26 have been studied in chickens, humans, mice, and cats. In this report a further evolutionary step is taken by isolating and characterizing a Drosophila ets-related genomic clone. Sequence analysis of this clone has shown it to contain the 3' end of the v-ets gene, called ets-2, corresponding to the last two exons of chicken ets. The predicted amino acid sequence was found to have over 90% homology when compared to that of v-ets. This is the highest level of conservation observed for any previously characterized Drosophila oncogene homolog. Expression of the ets-2 gene occurs throughout development, but is highest during the embryonic and pupal stages. By in situ hybridization, the ets-2 chromosomal position was determined to be 58A/B which corresponds to no known phenotypic mutant. As this is a highly conserved gene, the Drosophila model system should prove useful for the determination of the ets gene function.  相似文献   

12.
13.
Agrin induces both phosphorylation and aggregation of nicotinic acetylcholine receptors (AChRs) when added to myotubes in culture, apparently by binding to a specific receptor on the myotube surface. One such agrin receptor is alpha-dystroglycan, although binding to alpha-dystroglycan appears not to mediate AChR aggregation. To determine whether agrin-induced AChR phosphorylation is mediated by alpha-dystroglycan or by a different agrin receptor, fragments of recombinant agrin that differ in affinity for alpha-dystroglycan were examined for their ability to induce AChR phosphorylation and aggregation in mouse C2 myotubes. The carboxy-terminal 95 kDa agrin fragment agrin-c95(A0B0), which binds to alpha-dystroglycan with high affinity, failed to induce AChR phosphorylation and aggregation. In contrast, agrin-c95(A4B8) which binds less strongly to alpha-dystroglycan, induced both phosphorylation and aggregation, as did a small 21 kDa fragment of agrin, agrin-c21(B8), that completely lacks the binding domain for alpha-dystroglycan. We conclude that agrin-induced AChR phosphorylation and aggregation are triggered by an agrin receptor that is distinct from alpha-dystroglycan.  相似文献   

14.
采用RT PCR技术克隆了大鼠肌肉LIM蛋白 (MLP) 6 40bp的全长cDNA序列 .以此cDNA为探针进行的Northern印迹表明 ,MLP于C2C12细胞在分化的第 3d至第 5d表达 .将MLPcDNA亚克隆至pcDNA3,构建真核表达质粒pcDNA3 MLP ,同时构建AChRγ启动子序列 (96 0bp)调控的荧光素酶报告基因真核表达质粒pGL3 γ .C2C12细胞转染及荧光素酶活性分析表明 ,复合转染pcD NA3 MLP和pGL3 γ的分化肌细胞表达的荧光素酶活性约为对照的 4倍 ;而在 3T3或未分化肌细胞复合转染pcDNA3 MLP和pGL3 γ均未检出报告基因表达 ,说明MLP可促进生肌素对AChRγ亚基基因启动子的反式激活作用 .  相似文献   

15.
16.
We screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to conserved amino acid sequences from the five known rat somatostatin receptors. This yielded alignment with a Drosophila genomic clone that contained a DNA sequence coding for a protein, having amino acid sequence identities with the rat galanin receptors. Using PCR with Drosophila cDNA as a template, and oligonucleotide probes coding for the exons of the presumed Drosophila gene, we were able to clone the cDNA for this receptor. The Drosophila receptor has most amino acid sequence identity with the three mammalian galanin receptors (37% identity with the rat galanin receptor type-1, 32% identity with type-2, and 29% identity with type-3). Less sequence identity exists with the mammalian opioid/nociceptin-orphanin FQ receptors (26% identity with the rat micro opioid receptor), and mammalian somatostatin receptors (25% identity with the rat somatostatin receptor type-2). The novel Drosophila receptor gene contains ten introns and eleven exons and is located at the distal end of the X chromosome.  相似文献   

17.
A series of genomic clones containing DNA that encodes the chicken gamma-aminobutyric acidA (GABAA) receptor beta 4 subunit have been isolated. These have been restriction mapped and partially sequenced to determine the structural organization and the size of the beta 4-subunit gene. This gene, which comprises nine exons, spans more than 65 kb. The organization of the chicken GABAA receptor beta 4-subunit gene has been compared to that of the murine GABAA receptor delta-subunit gene and to those of the genes that encode other members of the ligand-gated ion-channel superfamily, namely muscle and neuronal nicotinic acetylcholine receptors (AChRs). Although the positions of the intron/exon boundaries of GABAA receptor subunit genes are seen to be highly conserved, there are significant differences between the genes that encode GABAA receptor and AChR subunits. These results are discussed in relation to the proposal that this superfamily of ligand-gated ion-channel receptor genes arose by duplication of an ancestral receptor gene.  相似文献   

18.
The acetylcholine receptor (AChR) alpha 5 gene has been classified as a member of the AChR gene family based on sequence homology. Expression studies, however, have yet to identify a function for the alpha 5 gene product or even to demonstrate an interaction with known AChR subunits. We report here that the alpha 5 gene product is identical to the 49 kd protein previously found on immunoblots of AChRs purified from brain and ciliary ganglia. In brain the alpha 5 gene product is present both in alpha 3- and in alpha 4-based receptor subtypes, while in the ganglion it is found in an alpha 3-based receptor subtype concentrated in postsynaptic membrane. Immunoprecipitation experiments with subunit-specific monoclonal antibodies indicate that some native AChRs are likely to have at least three kinds of subunits, with two being of the alpha type. These findings support new views about the construction of AChRs in neurons.  相似文献   

19.
We have developed idiotype-anti-idiotype monoclonal antibodies that provide evidence for rabies virus binding to the acetylcholine receptor (AChR). Hybridoma cell lines 7.12 and 7.25 resulted after fusion of NS-1 myeloma cells with spleen cells from a BALB/c mouse immunized with rabies virus strain CVS. Antibody 7.12 reacted with viral glycoprotein and neutralized virus infectivity in vivo. It also neutralized infectivity in vitro when PC12 cells, which express neuronal AChR, but not CER cells or neuroblastoma cells (clone N18), which have no AChR, were used. Antibody 7.25 reacted with nucleocapsid protein. Anti-idiotypic monoclonal antibody B9 was produced from fusion of NS-1 cells with spleen cells from a mouse immunized with 7.12 Fab. In an enzyme-linked immunosorbent assay and immunoprecipitation, B9 reacted with 7.12, polyclonal rabies virus immune dog serum, and purified AChR. The binding of B9 to 7.12 and immune dog serum was inhibited by AChR. B9 also inhibited the binding of 7.12 to rabies virus both in vitro and in vivo. Indirect immunofluorescence revealed that B9 reacted at neuromuscular junctions of mouse tissue. B9 also reacted in indirect immunofluorescence with distinct neurons in mouse and monkey brain tissue as well as with PC12 cells. B9 staining of neuronal elements in brain tissue of rabies virus-infected mice was greatly reduced. Rabies virus inhibited the binding of B9 to PC12 cells. Mice immunized with B9 developed low-titer rabies virus-neutralizing antibody. These mice were protected from lethal intramuscular rabies virus challenge. In contrast, anti-idiotypic antibody raised against nucleocapsid antibody 7.25 did not react with AChR.  相似文献   

20.
BACKGROUND: The introduction of double-stranded RNA (dsRNA) can selectively interfere with gene expression in a wide variety of organisms, providing an ideal approach for functional genomics. Although this method has been used in Drosophila, it has been limited to studies of embryonic gene function. Only inefficient effects have been seen at later stages of development. RESULTS: When expressed under the control of a heat-inducible promoter, dsRNA interfered efficiently and specifically with gene expression during larval and prepupal development in Drosophila. Expression of dsRNA corresponding to the EcR ecdysone receptor gene generated defects in larval molting and metamorphosis, resulting in animals that failed to pupariate or prepupae that died with defects in larval tissue cell death and adult leg formation. In contrast, expression of dsRNA corresponding to the coding region of the betaFTZ-F1 orphan nuclear receptor had no effect on puparium formation, but led to an arrest of prepupal development, generating more severe lethal phenotypes than those seen with a weak betaFTZ-F1 loss-of-function allele. Animals that expressed either EcR or betaFTZ-F1 dsRNA showed defects in the expression of corresponding target genes, indicating that the observed developmental defects are caused by disruption of the genetic cascades that control the onset of metamorphosis. CONCLUSIONS: These results confirm and extend our understanding of EcR and betaFTZ-F1 function. They also demonstrate that dsRNA expression can inactivate Drosophila gene function at later stages of development, providing a new tool for functional genomic studies in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号