首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pro-inflammatory cytokines are involved in the pathogenesis of many inflammatory diseases, and the excessive expression of many of them is normally counteracted by glucocorticoids (GCs), which are steroids that bind to the glucocorticoid receptor (GR). Hence, GCs are potent inhibitors of inflammation, and they are widely used to treat inflammatory diseases, such as asthma, rheumatoid arthritis and inflammatory bowel disease. However, despite the success of GC therapy, many patients show some degree of GC unresponsiveness, called GC resistance (GCR). This is a serious problem because it limits the full therapeutic exploitation of the anti-inflammatory power of GCs. Patients with reduced GC responses often have higher cytokine levels, and there is a complex interplay between GCs and cytokines: GCs downregulate pro-inflammatory cytokines while cytokines limit GC action. Treatment of inflammatory diseases with GCs is successful when GCs dominate. But when cytokines overrule the anti-inflammatory actions of GCs, patients become GC insensitive. New insights into the molecular mechanisms of GR-mediated actions and GCR are needed for the design of more effective GC-based therapies.  相似文献   

2.
3.
Pre‐eclampsia (PE) is deemed an ischemia‐induced metabolic disorder of the placenta due to defective invasion of trophoblasts during placentation; thus, the driving role of metabolism in PE pathogenesis is largely ignored. Since trophoblasts undergo substantial glycolysis, this study aimed to investigate its function and regulatory mechanism by AMPK in PE development. Metabolomics analysis of PE placentas was performed by gas chromatography–mass spectrometry (GC–MS). Trophoblast‐specific AMPKα1‐deficient mouse placentas were generated to assess morphology. A mouse PE model was established by Reduced Uterine Perfusion Pressure, and placental AMPK was modulated by nanoparticle‐delivered A769662. Trophoblast glucose uptake was measured by 2‐NBDG and 2‐deoxy‐d‐[3H] glucose uptake assays. Cellular metabolism was investigated by the Seahorse assay and GC–MS.PE complicated trophoblasts are associated with AMPK hyperactivation due not to energy deficiency. Thereafter, AMPK activation during placentation exacerbated PE manifestations but alleviated cell death in the placenta. AMPK activation in trophoblasts contributed to GLUT3 translocation and subsequent glucose metabolism, which were redirected into gluconeogenesis, resulting in deposition of glycogen and accumulation of phosphoenolpyruvate; the latter enhanced viability but compromised trophoblast invasion. However, ablation of AMPK in the mouse placenta resulted in decreased glycogen deposition and structural malformation. These data reveal a novel homeostasis between invasiveness and viability in trophoblasts, which is mechanistically relevant for switching between the ‘go’ and ‘grow’ cellular programs.

Pre‐eclampsia (PE) is associated with trophoblast AMPK hyperactivation, presumably due to LKB1 phosphorylation, and glucose uptake is consequently increased via trafficking of GLUT3 from the cytosol to the plasma membrane. Such translocation enhances glycolytic flux and redirects glucose metabolic intermediates into gluconeogenesis, resulting in PEP accumulation, which not only benefits cell survival but also suppresses invasion by repressing MMPs, and thus in turn modulates switching between the ‘go’ and ‘grow’ cellular programs.  相似文献   

4.
5.
6.
7.
Brain renin‐angiotensin (Ang) system (RAS) is implicated in neuroinflammation, a major characteristic of aging process. Angiotensin (Ang) II, produced by angiotensin‐converting enzyme (ACE), activates immune system via angiotensin type 1 receptor (AT1), whereas Ang(1–7), generated by ACE2, binds with Mas receptor (MasR) to restrain excessive inflammatory response. Therefore, the present study aims to explore the relationship between RAS and neuroinflammation. We found that repeated lipopolysaccharide (LPS) treatment shifted the balance between ACE/Ang II/AT1 and ACE2/Ang(1–7)/MasR axis to the deleterious side and treatment with either MasR agonist, AVE0991 (AVE) or ACE2 activator, diminazene aceturate, exhibited strong neuroprotective actions. Mechanically, activation of ACE2/Ang(1–7)/MasR axis triggered the Forkhead box class O1 (FOXO1)‐autophagy pathway and induced superoxide dismutase (SOD) and catalase (CAT), the FOXO1‐targeted antioxidant enzymes. Meanwhile, knockdown of MasR or FOXO1 in BV2 cells, or using the selective FOXO1 inhibitor, AS1842856, in animals, suppressed FOXO1 translocation and compromised the autophagic process induced by MasR activation. We further used chloroquine (CQ) to block autophagy and showed that suppressing either FOXO1 or autophagy abrogated the anti‐inflammatory action of AVE. Likewise, Ang(1–7) also induced FOXO1 signaling and autophagic flux following LPS treatment in BV2 cells. Cotreatment with AS1842856 or CQ all led to autophagic inhibition and thereby abolished Ang(1–7)‐induced remission on NLRP3 inflammasome activation caused by LPS exposure, shifting the microglial polarization from M1 to M2 phenotype. Collectively, these results firstly illustrated the mechanism of ACE2/Ang(1–7)/MasR axis in neuroinflammation, strongly indicating the involvement of FOXO1‐mediated autophagy in the neuroimmune‐modulating effects triggered by MasR activation.  相似文献   

8.
Myocardial ischemia/reperfusion injury (MI/RI) is the main cause of deaths in the worldwide, leading to severe cardiac dysfunction. Resveratrol (RSV) is a polyphenol plant‐derived compound. Our study aimed to elucidate the underlying molecular mechanism of preconditioning RSV in protecting against MI/RI. Mice were ligated and re‐perfused by the left anterior descending branch with or without RSV (30 mg/kg·ip) for 7 days. Firstly, we found that RSV pretreatment significantly alleviated myocardial infarct size, improved cardiac function and decreased oxidative stress. Furthermore, RSV activated p‐AMPK and SIRT1, ameliorated inflammation including the level of TNF‐α and IL‐1β, and promoting autophagy level. Moreover, neonatal rat ventricular myocytes (NRVMs) and H9c2 cells with knockdown the expression of AMPK, SIRT1 or FOXO1 were used to uncover the underlying molecular mechanism for the cardio‐protection of RSV. In NRVMs, RSV increased cellular viability, decreased LDH release and reduced oxidative stress. Importantly, Compound C(CpC) and EX527 reversed the effect of RSV against MI/RI in vivo and in vitro and counteracted the autophagy level induced by RSV. Together, our study indicated that RSV could alleviate oxidative stress in cardiomyocytes through activating AMPK/SIRT1‐FOXO1 signallingpathway and enhanced autophagy level, thus presenting high potential protection on MI/RI.  相似文献   

9.

Introduction

AMP-activated protein kinase (AMPK) maintains cultured chondrocyte matrix homeostasis in response to inflammatory cytokines. AMPK activity is decreased in human knee osteoarthritis (OA) chondrocytes. Liver kinase B1 (LKB1) is one of the upstream activators of AMPK. Hence, we examined the relationship between LKB1 and AMPK activity in OA and aging cartilages, and in chondrocytes subjected to inflammatory cytokine treatment and biomechanical compression injury, and performed translational studies of AMPK pharmacologic activation.

Methods

We assessed activity (phosphorylation) of LKB1 and AMPKα in mouse knee OA cartilage, in aging mouse cartilage (6 to 24 months), and in chondrocytes after mechanical injury by dynamic compression, via immunohistochemistry or western blot. We knocked down LKB1 by siRNA transfection. Nitric oxide, matrix metalloproteinase (MMP)-3, and MMP-13 release were measured by Griess reaction and ELISA, respectively.

Results

Knockdown of LKB1 attenuated chondrocyte AMPK activity, and increased nitric oxide, MMP-3 and MMP-13 release (P <0.05) in response to IL-1β and TNFα. Both LKB1 and AMPK activity were decreased in mouse knee OA and aged knee cartilage, and in bovine chondrocytes after biomechanical injury. Pretreatment of bovine chondrocytes with AMPK activators AICAR and A-769662 inhibited both AMPKα dephosphorylation and catabolic responses after biomechanical injury.

Conclusion

LKB1 is required for chondrocyte AMPK activity, thereby inhibiting matrix catabolic responses to inflammatory cytokines. Concurrent loss of LKB1 and AMPK activity in articular chondrocytes is associated with OA, aging and biomechanical injury. Conversely, pharmacologic AMPK activation attenuates catabolic responses to biomechanical injury, suggesting a potentially novel approach to inhibit OA development and progression.  相似文献   

10.

Background

Acute ozone exposure causes lung oxidative stress and inflammation leading to lung injury. At least one mechanism underlying the lung toxicity of ozone involves excessive production of reactive oxygen and nitrogen intermediates such as peroxynitrite. In addition and beyond its major prooxidant properties, peroxynitrite may nitrate tyrosine residues altering phosphorylation of many protein kinases involved in cell signalling. It was recently proposed that peroxynitrite activates 5''-AMP-activated kinase (AMPK), which regulates metabolic pathways and the response to cell stress. AMPK activation as a consequence of ozone exposure has not been previously evaluated. First, we tested whether acute ozone exposure in mice would impair alveolar fluid clearance, increase lung tissue peroxynitrite production and activate AMPK. Second, we tested whether loss of AMP-activated protein kinase alpha1 subunit in mouse would prevent enhanced oxidative stress and lung injury induced by ozone exposure.

Methods

Control and AMPKα1 deficient mice were exposed to ozone at a concentration of 2.0 ppm for 3 h in glass cages. Evaluation was performed 24 h after ozone exposure. Alveolar fluid clearance (AFC) was evaluated using fluorescein isothiocyanate tagged albumin. Differential cell counts, total protein levels, cytokine concentrations, myeloperoxidase activity and markers of oxidative stress, i.e. malondialdehyde and peroxynitrite, were determined in bronchoalveolar lavage (BAL) and lung homogenates (LH). Levels of AMPK-Thr172 phosphorylation and basolateral membrane Na(+)-K(+)-ATPase abundance were determined by Western blot.

Results

In control mice, ozone exposure induced lung inflammation as evidence by increased leukocyte count, protein concentration in BAL and myeloperoxidase activity, pro-inflammatory cytokine levels in LH. Increases in peroxynitrite levels (3 vs 4.4 nM, p = 0.02) and malondialdehyde concentrations (110 vs 230 μmole/g wet tissue) were detected in LH obtained from ozone-exposed control mice. Ozone exposure consistently increased phosphorylated AMPK-Thr172 to total AMPK ratio by 80% in control mice. Ozone exposure causes increases in AFC and basolateral membrane Na(+)-K(+)-ATPase abundance in control mice which did not occur in AMPKα1 deficient mice.

Conclusions

Our results collectively suggest that AMPK activation participates in ozone-induced increases in AFC, inflammation and oxidative stress. Further studies are needed to understand how the AMPK pathway may provide a novel approach for the prevention of ozone-induced lung injury.  相似文献   

11.
Fractalkine (CX3CL1, FKN), a CX3C gene sequence inflammatory chemokine, has been found to have pro‐inflammatory and pro‐adhesion effects. Macrophages are immune cells with a critical role in regulating the inflammatory response. The imbalance of M1/M2 macrophage polarization can lead to aggravated inflammation. This study attempts to investigate the mechanisms through which FKN regulates macrophage activation and the acute kidney injury (AKI) involved in inflammatory response induced by lipopolysaccharide (LPS) by using FKN knockout (FKN‐KO) mice and cultured macrophages. It was found that FKN and Wnt/β‐catenin signalling have a positive interaction in macrophages. FKN overexpression inhibited LPS‐induced macrophage apoptosis. However, it enhanced their cell viability and transformed them into the M2 type. The effects of FKN overexpression were accelerated by activation of Wnt/β‐catenin signalling. In the in vivo experiments, FKN deficiency suppressed macrophage activation and reduced AKI induced by LPS. Inhibition of Wnt/β‐catenin signalling and FKN deficiency further mitigated the pathologic process of AKI. In summary, we provide a novel mechanism underlying activation of macrophages in LPS‐induced AKI. Although LPS‐induced murine AKI was unable to completely recapitulate human AKI, the positive interactions between FKN and Wnt/β‐catenin signalling pathway may be a therapeutic target in the treatment of kidney injury.  相似文献   

12.
ZBP1 is an interferon‐induced cytosolic nucleic acid sensor that facilitates antiviral responses via RIPK3. Although ZBP1‐mediated programmed cell death is widely described, whether and how it promotes inflammatory signaling is unclear. Here, we report a ZBP1‐induced inflammatory signaling pathway mediated by K63‐ and M1‐linked ubiquitin chains, which depends on RIPK1 and RIPK3 as scaffolds independently of cell death. In human HT29 cells, ZBP1 associated with RIPK1 and RIPK3 as well as ubiquitin ligases cIAP1 and LUBAC. ZBP1‐induced K63‐ and M1‐linked ubiquitination of RIPK1 and ZBP1 to promote TAK1‐ and IKK‐mediated inflammatory signaling and cytokine production. Inhibition of caspase activity suppressed ZBP1‐induced cell death but enhanced cytokine production in a RIPK1‐ and RIPK3 kinase activity‐dependent manner. Lastly, we provide evidence that ZBP1 signaling contributes to SARS‐CoV‐2‐induced cytokine production. Taken together, we describe a ZBP1‐RIPK3‐RIPK1‐mediated inflammatory signaling pathway relayed by the scaffolding role of RIPKs and regulated by caspases, which may induce inflammation when ZBP1 is activated below the threshold needed to trigger a cell death response.  相似文献   

13.
Metformin, a frontline treatment for type II diabetes mellitus, decreases production of the pro-form of the inflammatory cytokine IL-1β in response to LPS in macrophages. We found that it specifically inhibited pro-IL-1β production, having no effect on TNF-α. Furthermore, metformin boosted induction of the anti-inflammatory cytokine IL-10 in response to LPS. We ruled out a role for AMP-activated protein kinase (AMPK) in the effect of metformin because activation of AMPK with A769662 did not mimic metformin here. Furthermore, metformin was still inhibitory in AMKPα1- or AMPKβ1-deficient cells. The activity of NADH:ubiquinone oxidoreductase (complex I) was inhibited by metformin. Another complex I inhibitor, rotenone, mimicked the effect of metformin on pro-IL-1β and IL-10. LPS induced reactive oxygen species production, an effect inhibited by metformin or rotenone pretreatment. MitoQ, a mitochondrially targeted antioxidant, decreased LPS-induced IL-1β without affecting TNF-α. These results, therefore, implicate complex I in LPS action in macrophages.  相似文献   

14.
Metformin, a well‐known AMPK agonist, has been widely used as the first‐line drug for treating type 2 diabetes. There had been a significant concern regarding the use of metformin in people with cardiovascular diseases (CVDs) due to its potential lactic acidosis side effect. Currently growing clinical and preclinical evidence indicates that metformin can lower the incidence of cardiovascular events in diabetic patients or even non‐diabetic patients beyond its hypoglycaemic effects. The underlying mechanisms of cardiovascular benefits of metformin largely involve the cellular energy sensor, AMPK, of which activation corrects endothelial dysfunction, reduces oxidative stress and improves inflammatory response. In this minireview, we summarized the clinical evidence of metformin benefits in several widely studied cardiovascular diseases, such as atherosclerosis, ischaemic/reperfusion injury and arrhythmia, both in patients with or without diabetes. Meanwhile, we highlighted the potential AMPK‐dependent mechanisms in in vitro and/or in vivo models.  相似文献   

15.
16.
Preventing pathologic tissue inflammation is key to treating obesity-induced insulin resistance and type 2 diabetes. Previously, we synthesized a series of methylhonokiol analogs and reported that compounds with a carbamate structure had inhibitory function against cyclooxygenase-2 in a cell-free enzyme assay. However, whether these compounds could inhibit the expression of inflammatory genes in macrophages has not been investigated. Here, we found that a new 4-O-methylhonokiol analog, 3′,5-diallyl-4′-methoxy-[1,1′-biphenyl]-2-yl morpholine-4-carboxylate (GS12021) inhibited LPS- or TNFα-stimulated inflammation in macrophages and adipocytes, respectively. LPS-induced phosphorylation of nuclear factor-kappa B (NF-κB)/p65 was significantly decreased, whereas NF-κB luciferase activities were slightly inhibited, by GS12021 treatment in RAW 264.7 cells. Either mitogen-activated protein kinase phosphorylation or AP-1 luciferase activity was not altered by GS12021. GS12021 increased the phosphorylation of AMP-activated protein kinase (AMPK) α and the expression of sirtuin (SIRT) 1. Inhibition of mRNA expression of inflammatory genes by GS12021 was abolished in AMPKα1-knockdown cells, but not in SIRT1 knockout cells, demonstrating that GS12021 exerts anti-inflammatory effects through AMPKα activation. The transwell migration assay results showed that GS12021 treatment of macrophages prevented the cell migration promoted by incubation with conditioned medium obtained from adipocytes. GS12021 suppression of p65 phosphorylation and macrophage chemotaxis were preserved in AMPKα1-knockdown cells, indicating AMPK is not required for these functions of GS12021. Identification of this novel methylhonokiol analog could enable studies of the structure-activity relationship of this class of compounds and further evaluation of its in vivo potential for the treatment of insulin-resistant states and other chronic inflammatory diseases.  相似文献   

17.
SARS‐CoV‐2 infection causes broad‐spectrum immunopathological disease, exacerbated by inflammatory co‐morbidities. A better understanding of mechanisms underpinning virus‐associated inflammation is required to develop effective therapeutics. Here, we discover that SARS‐CoV‐2 replicates rapidly in lung epithelial cells despite triggering a robust innate immune response through the activation of cytoplasmic RNA sensors RIG‐I and MDA5. The inflammatory mediators produced during epithelial cell infection can stimulate primary human macrophages to enhance cytokine production and drive cellular activation. Critically, this can be limited by abrogating RNA sensing or by inhibiting downstream signalling pathways. SARS‐CoV‐2 further exacerbates the local inflammatory environment when macrophages or epithelial cells are primed with exogenous inflammatory stimuli. We propose that RNA sensing of SARS‐CoV‐2 in lung epithelium is a key driver of inflammation, the extent of which is influenced by the inflammatory state of the local environment, and that specific inhibition of innate immune pathways may beneficially mitigate inflammation‐associated COVID‐19.  相似文献   

18.
Phosgene gas leakage can cause life‐threatening acute lung injury (ALI), which is characterized by inflammation, increased vascular permeability, pulmonary oedema and oxidative stress. Although the downregulation of neuronal precursor cell‐expressed developmentally downregulated 4 (NEDD4) is known to be associated with inflammation and oxidative damage, its functions in phosgene‐induced ALI remain unclear. In this study, rats with phosgene‐induced ALI were intravenously injected with NEDD4‐overexpressing lentiviruses to determine the functions of NEDD4 in this inflammatory condition. NEDD4 expression was decreased in the lung parenchyma of phosgene‐exposed control rats, whereas its expression level was high in the NEDD4‐overexpressing rats. Phosgene exposure increased the wet‐to‐dry lung weight ratio, but NEDD4 abrogated this effect. NEDD4 overexpression attenuated phosgene‐induced lung inflammation, lowering the high lung injury score (based on total protein, inflammatory cells and inflammatory factors in bronchoalveolar lavage fluid) and also reduced phosgene‐induced oxidative stress and cell apoptosis. Finally, NEDD4 was found to interact with Notch1, enhancing its ubiquitination and thereby its degradation, thus attenuating the inflammatory responses to ALI. Therefore, we demonstrated that NEDD4 plays a protective role in alleviating phosgene‐induced ALI, suggesting that enhancing the effect of NEDD4 may be a new approach for treating phosgene‐induced ALI.  相似文献   

19.
20.
Paeonia is a well‐known species of ornamental plants, traditional Chinese medicines, and emerging oilseed crops. Apart from nutritional unsaturated fatty acids, the seeds of peonies are rich in stilbenes characterized by their wide‐ranging health‐promoting properties. Although the typical stilbene resveratrol has been widely reported for its multiple bioactivities, it remains uncertain whether the trimer of resveratrol trans‐gnetin H has properties that regulate cancer cell viability, let alone the underlying mechanism. Autophagy regulated by trans‐gnetin H was detected by western blotting, immunofluorescence, and quantitative real‐time PCR. The effects of trans‐gnetin H on apoptosis and proliferation were examined by flow cytometry, colony formation and Cell Counting Kit‐8 assays. Transgnetin H significantly inhibits cancer cell viability through autophagy by suppressing the phosphorylation of TFEB and promoting its nuclear transport. Mechanistically, trans‐gnetin H inhibits the activation and lysosome translocation of mTORC1 by inhibiting the activation of AMPK, indicating that AMPK is a checkpoint for mTORC1 inactivation induced by trans‐gnetin H. Moreover, the binding of TSC2 to Rheb was markedly increased in response to trans‐gnetin H stimulation. Similarly, trans‐gnetin H inhibited the interaction between Raptor and RagC in an AMPK‐dependent manner. More importantly, trans‐gnetin H‐mediated autophagy highly depends on the AMPK‐mTORC1 axis. We propose a regulatory mechanism by which trans‐gnetin H inhibits the activation of the mTORC1 pathway to control cell autophagy.

  • Proposed a mechanism by which trans‐gnetin H inhibits the activation of the mTORC1 pathway to control cell autophagy.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号