首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The liposome-bound cellulase was prepared by covalently coupling cellulase with the enzyme-free liposomes bearing aldehyde groups so that cellulase was located solely on the outer membrane of liposomes. The modified cellulase possessed the higher activity efficiency and lipid-based specific activity than the cellulase-containing liposomes reported previously. The enzyme-free liposomes bearing aldehyde groups were covalently immobilized with the chitosan gel beads and the free cellulase was coupled with the treated gel beads to prepare the immobilized liposome-bound cellulase. The activity efficiency of the immobilized liposome-bound cellulase was much higher than that of the conventionally immobilized cellulase. The results on reusability of the immobilized liposome-bound cellulase in the hydrolysis of either soluble or insoluble cellulose showed that the immobilized liposome-bound cellulase had the higher remaining cellulase activity and reusability than the conventionally immobilized cellulase for the hydrolysis of either type of cellulose. The liposomal membrane was suggested to be efficient in maintaining the cellulase activity during the hydrolysis.  相似文献   

2.
Bovine kidney γ-glutamyl transpeptidase, a membrane enzyme, was immobilized in gel beads by application of the method of Wallstén et al. (Biochim. Biophys. Acta, 982, 47–52, 1989). The gel beads were equilibrated with a dispersion of the enzyme, phospholipids, and cholate and subsequently dialyzed against a buffer for reconstitution and immobilization of enzyme-bound liposomes in the pores of the beads. From the standpoints of the immobilized contents of protein and phospholipids and of the reactivity of γ-glutamyl transpeptidase, a dialysis buffer of Tris-HCl (pH 7.5), a phospholipid concentration of 45 mg/ml in the enzyme-phospholipid-cholate dispersion, and the use of Sepharose CL-6B as the support gel were found to be most appropriate for the immobilization of γ-glutamyl transpeptidase, γ-Glutamyl transpeptidase was activated and stabilized by reconstitution in liposomes. In operation with a packed bed reactor, liposome-bound γ-glutamyl transpeptidase immobilized in Sepharose CL-6B exhibited relatively stable and constant activity for 12 h. In addition, it was found that enzyme substrates were able to pass through the pores of the gel beads to interact with the enzyme present on the outer surface of the liposome membrane in the gel beads. These results thus indicated that a novel support made up of liposomes and Sepharose CL-6B would permit efficient immobilization of lipid-requiring and/or membrane enzymes.  相似文献   

3.
We have developed a high-performance liquid chromatography (HPLC) method for measurement of cholesterol in the major classes of serum lipoproteins, i.e., HDL, LDL, IDL, VLDL, and chylomicrons. Lipoproteins in serum were separated on a column containing diethylaminoethyl-ligand nonporous polymer-based gel by elution with a step gradient of sodium perchlorate concentration, and detected by post-column reaction with a reagent containing cholesterol esterase and cholesterol oxidase. The within-day assay and between-day assay coefficients of variation for cholesterol concentration in lipoproteins were in the ranges of 0.9-6.4% and 1.1-11.9%, respectively. The correlation coefficients between the values of HDL, LDL, IDL, VLDL, and chylomicron cholesterol measured by the HPLC method and those estimated by an ultracentrifugation method were 0.892, 0.921, 0.840, 0.930, and 0.873, respectively. Values of remnant-like particle cholesterol measured by an immunoseparation technique (Japan Immunoresearch Laboratories, Japan) were significantly correlated with VLDL and chylomicron cholesterol values measured by the HPLC method (r = 0.883 and r = 0.729, respectively).This rapid and accurate HPLC method was successfully applied to the analysis of plasma lipoproteins of patients with hyperlipidemia.  相似文献   

4.
The ‘cholesterol efflux capacity (CEC)’ assay is a simple in vitro measure of the capacities of individual sera to promote the first step of the reverse cholesterol transport pathway, the delivery of cellular cholesterol to plasma HDL.This review describes the cell biology of this model and critically assesses its application as a marker of cardiovascular risk. We describe the pathways for cell cholesterol export, current cell models used in the CEC assay with their limitations and consider the contribution that measurement of serum CEC provides to our understanding of HDL function in vivo.  相似文献   

5.
Biological membranes immobilized in chromatographic gel beads constitute a multifunctional affinity matrix. Membrane protein-solute interactions and drug partitioning into the lipid bilayers can conveniently be studied. By the use of confocal laser-scanning microscopy (CLSM) the distribution of immobilized model membranes in the beads has been visualized for the first time. Freeze-thaw-immobilized liposomes in Superdex 200 gel beads were situated in a thick shell surrounding a liposome-free core. The amount of phospholipids immobilized by freeze-thawing was dependent on the temperature in the cooling bath and the type of test tube used. A bath temperature of -25 degrees C gave higher immobilization yield than freezing at -75 or -8 degrees C did. Freeze-thawing in the presence of liposomes did not affect the gel bead shape or the refractive index homogeneity of the agarose network of the beads, as shown by confocal microscopy.  相似文献   

6.
Hydrophobic interactions between nine model proteins and net-neutral lipid bilayer membranes (liposomes) under stress conditions were quantitatively examined by using immobilized liposome chromatography (ILC). Small or large unilamellar liposomes were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and immobilized in a gel matrix by utilizing covalent coupling between amino-containing lipids and activated gel beads or avidin–biotin biospecific binding. Retardation of bovine carbonic anhydrase (CAB) in ILC was pronounced at particular temperatures (50 and 60 °C) where the local hydrophobicity of theses protein molecules becomes sufficiently large. Protein-induced leakage of a hydrophilic dye (calcein) from immobilized liposomes interior was also drastically enhanced at particular temperatures where large retardation was observed. For other proteins examined, similar results were also observed. The specific capacity factor of the proteins characteristic for the ILC and the amount of calcein released from immobilized liposomes were successfully expressed as a function of the product of the local hydrophobicities of proteins and liposomes, regardless of protein species and the type of the stress conditions applied (denaturant and heating). These findings indicate that lipid membranes have an ability to non-specifically recognize local hydrophobicities of proteins to form stress-mediated supramolecular assemblies with proteins, which may have potential applications in bioprocesses such as protein refolding and separation. ILC was thus found to be a very useful method for the quantitative detection of dynamic protein–liposome interactions triggered by stress conditions.  相似文献   

7.
The capacity of HDL to induce cell cholesterol efflux is considered one of its main antiatherogenic properties. Little is known about the impact of such HDL function on vascular physiology. We investigated the relationship between ABCA1-dependent serum cholesterol efflux capacity (CEC), an HDL functionality indicator, and pulse wave velocity (PWV), an indicator of arterial stiffness. Serum of 167 healthy subjects was used to conduct CEC measurement, and carotid-femoral PWV was measured with a high-fidelity tonometer. J774 macrophages, labeled with [3H]cholesterol and stimulated to express ABCA1, were exposed to sera; the difference between cholesterol efflux from stimulated and unstimulated cells provided specific ABCA1-mediated CEC. PWV is inversely correlated with ABCA1-dependent CEC (r = −0.183; P = 0.018). Moreover, controlling for age, sex, body mass index, mean arterial pressure, serum LDL, HDL-cholesterol, and fasting plasma glucose, PWV displays a significant negative regression on ABCA1-dependent CEC (β = −0.204; 95% confidence interval, −0.371 to −0.037). The finding that ABCA1-dependent CEC, but not serum HDL cholesterol level (r = −0.002; P = 0.985), is a significant predictor of PWV in healthy subjects points to the relevance of HDL function in vascular physiology and arterial stiffness prevention.  相似文献   

8.
Unilamellar liposomes composed of phosphatidylcholine with an entrapped self-quenching fluorescent dye, calcein, were immobilized in chromatographic gel beads by avidin-biotin binding. Bee venom phospholipase A(2) (PLA(2)) was applied in a small amount onto the immobilized liposome column. The release of calcein from the immobilized liposomes resulting from the catalyzed hydrolysis of the phospholipids was detected online by immobilized liposome chromatography (ILC) using a flow fluorescent detector. The PLA(2)-catalyzed membrane leakage of the immobilized liposomes as studied with ILC was found to be affected by the gel pore size used for immobilization, by liposome size, and as expected by the concentration of calcium, but was unaffected by the flow rate of ILC. The largest PLA(2)-induced calcein release from the liposome column was detected on large unilamellar liposomes immobilized on TSK G6000PW or Sephacryl S-1000 gel in the presence of 1 mM Ca(2+) in the aqueous mobile phase. Comparison with the PLA(2)-catalyzed membrane leakage in free liposome suspensions, we conclude that the fluorescent leakage from liposomes hydrolyzed by PLA(2) can be rapidly and sensitively detected by ILC runs using large amount of immobilized liposomes with entrapped fluorescent dye.  相似文献   

9.
We have successfully cloned and expressed core-streptavidin in Escherichia coli. Core-streptavidin was expressed in shaker flask culture as a soluble protein, isolated by periplasmic extraction, purified by immobilized metal affinity chromatography column, and analyzed for its size, thermal stability, and biotin-binding activity. In Western blots using streptavidin-horseradish peroxidase (HRP) as a probe, we identified a contaminant that co-purified with core-streptavidin, identified as biotin carboxyl carrier protein (BCCP). Although BCCP cannot be detected on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it appears as a prominent band in Western blot when probed with streptavidin peroxidase conjugate. Based on the results from in vitro gel digestion, mass spectrometry and Mascot database search results, we confirmed the presence of BCCP. It was found that BCCP can complex with core-streptavidin and can dissociate when heated above 80°C. BCCP could be successfully removed and recovered by using core-streptavidin immobilized magnetic beads under mild conditions. In addition, the enriched fractions of core-streptavidin oligotetramers were separated, which may be the by-products of BCCP binding to core-streptavidin in various ratios. Finally, enzyme linked immunosorbent assay results have shown that the amount of biotin-HRP binding to core-streptavidin was higher compared to commercially available streptavidin.  相似文献   

10.
Oligonucleotide primers were designed against rRNA sequences to give a DNA-based PCR assay for the rapid identification/detection of Brochothrix spp. The PCR products could be confirmed by hybridization to an internal oligonucleotide probe. The method successfully and sensitively detected/identified these organisms in pure cultures but was of limited value as a detection method because the detection sensitivity, in relation to conventional plate counts, varied and the assay sensitivity was reduced in the presence of staphylococci. Furthermore, sensitivity was also lost when the assay was applied directly to meat samples. However, a separation step using a lectin (from Agaricus bisporus ) immobilized on magnetic beads prior to the PCR assay, allowed the direct detection of low numbers (> 10 cfu g-1) of Brochothrix in meat samples within a working day.  相似文献   

11.
In order to study the affinity binding of c-type cytochromes to the photosynthetic reaction center (RC) by quantitative affinity chromatography (QAC), RC from Rhodobacter sphaeroides was reconstituted into liposomes composed of egg phosphatidylcholine (EPC) and 2 mol% of biotinyl phosphatidylethanolamine simultaneously as the liposomes were formed and immobilized in (strept)avidin-coupled gel beads by rotary detergent dialysis. The immobilized amount was up to 80 nmol of RC and 33 micromol of lipid/g of moist gel in streptavidin-coupled Sephacryl S-1000 gel. By QAC frontal runs, retardation of mitochondrial cyt c on immobilized RC liposome columns was demonstrated. The dissociation constant for the RC-cyt c interaction was determined to be 0.20-0.57 microM. QAC studies also allowed evaluation of the orientation of reconstituted RC in immobilized liposomes by comparison of the total amount of cyt c binding sites with the amount of available binding sites obtained by QAC. It seems that the RC proteoliposomes immobilized in Sephacryl S-1000 gel exposed the cyt c binding sites on the outer surface of the liposomes due to effects of the gel network pore size and the resulting liposomal size.  相似文献   

12.
The glucose oxidase-containing liposomes (GOL) were prepared by entrapping glucose oxidase (GO) in the liposomes composed of phosphatidylcholine (PC), dimyristoyl L-alpha-phosphatidylethanolamine (DMPE), and cholesterol (Chol) and then covalently immobilized in the glutaraldehyde-activated chitosan gel beads. The immobilized GOL gel beads (IGOL) were characterized to obtain a highly stable biocatalyst applicable to bioreactor. At first, the glutaraldehyde concentration used in the gel beads activation as well as the immobilizing temperature and time were optimized to enhance the immobilization yield of the GOL to the highest extent. The liposome membrane composition and liposome size were then optimized to obtain the greatest possible immobilization yield of the GOL, the highest possible activity efficiency of the IGOL, and the lowest possible leakage of the entrapped GO during the GOL immobilization. As a result, the optimal immobilization conditions were found to be as follows: the liposome composition, PC/DMPE/Chol = 65/5/30 (molar percentage); the liposome size, 100 nm; the glutaraldehyde concentration, 2% (w/v); the immobilizing temperature, 4 degrees C; and the immobilizing time, 10 h. Furthermore, the optimal IGOL prepared were characterized by its rapidly increasing effective GO activity to the externally added substrate (glucose) with increasing temperature from 20 to 40 degrees C, and also by its high stability at 40 degrees C against not only the thermal denaturation in a long-term (7 days) incubation but also the bubbling stress in a bubble column. Finally, compared to the conventionally immobilized glucose oxidase (IGO), the higher operational stability of the optimal IGOL was verified by using it either repeatedly (4 times) or for a long time (7 days) to catalyze the glucose oxidation in a small-scale airlift bioreactor.  相似文献   

13.
High LDL-cholesterol (LDL-C) characterizes familial hypercholesterolemia (FH) and familial combined hyperlipidemia (FCH). LDL-apheresis, used in these patients to reduce LDL-C levels, has been shown to also affect HDL levels and composition. We studied LDL-apheresis effects on six FH and nine FCH subjects' serum capacity to modulate cellular cholesterol efflux, an index of HDL functionality, and to load macrophages with cholesterol. Serum cholesterol efflux capacity (CEC) and macrophage cholesterol loading capacity (CLC) were measured before, immediately after, and two days after LDL-apheresis. The procedure reduced total cholesterol (TC), LDL-C, and apoB plasma levels (-69%, -80% and -74%, respectively), parameters only partially restored two days later. HDL-C and apoA-I plasma levels, reduced after LDL-apheresis (-27% and -16%, respectively), were restored to almost normal levels two days later. LDL-apheresis reduced serum aqueous diffusion (AD) CEC, SR-BI-CEC, and ABCA1-CEC. AD and SR-BI were fully restored whereas ABCA1-CEC remained low two days later. Sera immediately and two days after LDL-apheresis had a lower CLC than pre-LDL-apheresis sera. In conclusion, LDL-apheresis transiently reduces HDL-C levels and serum CEC, but it also reduces also serum capacity to deliver cholesterol to macrophages. Despite a potentially negative effect on HDL levels and composition, LDL-apheresis may counteract foam cells formation.  相似文献   

14.
Apolipoprotein A-I (apoA-I) spontaneously associates with dimyristoylphosphatidylcholine (DMPC) liposomes to form discoidal high-density lipoprotein (HDL) recombinants. The uptake of cholesterol by this model HDL was studied by incubation with Celite-dispersed cholesterol. Separation of the resulting complexes by gradient centrifugation and gel filtration showed a heterogeneous distribution of particle size and composition as a consequence of the disruption and rearrangement of the recombinants. Quantitation of the amount of cholesterol taken up gave values between about 28 and 40 mol% cholesterol for the fractions within the protein peaks; the fractions with the lowest DMPC/apoA-I ratios had the lowest cholesterol contents. In another set of experiments, the association of apoA-I with DMPC-cholesterol liposomes was shown to result in complexes with characteristics similar to those obtained by the cholesterol-uptake experiments. Low concentrations of cholesterol in the liposomes enhanced the rate of lipid-protein association, but larger amounts decreased the yield of complexes by making the process thermodynamically and kinetically unfavorable. The enthalpy of recombinant formation increased with decreasing lipid/protein ratio and increasing cholesterol content, and became endothermic at about 23 mol% cholesterol. The effect of cholesterol on the thermal properties of HDL recombinants suggests that cholesterol is partially excluded from the boundary region adjacent to apoA-I. It is concluded that discoidal HDL recombinants, as a model for 'nascent' HDL, can acquire substantial amounts of cholesterol, which may be of great physiological importance for the reverse cholesterol transport and prevention of atherosclerosis.  相似文献   

15.
Apolipoprotein A-I (ApoA-I), a major component of HDL, binds haptoglobin, a plasma protein transporting to liver or macrophages free Hb for preventing hydroxyl radical production. This work aimed to assess whether haptoglobin protects ApoA-I against this radical. Human ApoA-I structure, as analyzed by electrophoresis and MS, was found severely altered by hydroxyl radicals in vitro. Lower alteration of ApoA-I was found when HDL was oxidized in the presence of haptoglobin. ApoA-I oxidation was limited also when the complex of haptoglobin with both high-density lipoprotein and Hb, immobilized on resin beads, was exposed to hydroxyl radicals. ApoA-I function to stimulate cholesterol esterification was assayed in vitro by using ApoA-I-containing liposomes. Decreased stimulation was observed when liposomes oxidized without haptoglobin were used. Conversely, after oxidative stress in the presence of haptoglobin (0.5 microM monomer), the liposome activity did not change. Plasma of carrageenan-treated mice was analyzed by ELISA for the levels of haptoglobin and ApoA-I, and used to isolate HDL for MS analysis. Hydroxyproline-containing fragments of ApoA-I were found associated with low levels of haptoglobin (18 microM monomer), whereas they were not detected when the haptoglobin level increased (34-70 microM monomer). Therefore haptoglobin, when circulating at enhanced levels with free Hb during the acute phase of inflammation, might protect ApoA-I structure and function against hydroxyl radicals.  相似文献   

16.
Lipoprotein-deficient milieu, freshly isolated human peripheral blood lymphocytes lose about 50% of their membrane cholesterol into the medium within 8 h. The cholesterol loss is counter-regulated by de novo synthesis commencing after a lag phase of 8-12 h, and reaching a steady state within 24 h at a diminished membrane cholesterol level. About 50 micrograms free cholesterol/ml, offered in the form of low-density lipoproteins (LDL) and cholesterol/phosphatidylcholine liposomes, suppressed cholesterol synthesis to about 20% of that controls (lipoprotein-deficient culture). By contrast, pure phosphatidylcholine liposomes enhanced cholesterol synthesis to about 150% of control values. High-density lipoproteins (HDL) exerted a slightly suppressive effect on cholesterol synthesis only at high concentrations (greater than 100 micrograms HDL cholesterol/ml). HDL added to cultures containing fixed concentrations of LDL led to a dose-dependent neutralization of LDL suppression of cholesterol synthesis. Culture medium containing complete serum caused a suppression of cholesterol synthesis to about 50% of the control. The lesser reduction in cholesterol synthesis caused by complete serum compared with LDL or cholesterol/phosphatidylcholine liposomes can be explained by the presence of HDL in the former. Our results support the view that the cholesterol requirement of blood lymphocytes in their lipid-rich milieu is met by cholesterol neosynthesis as well as an exchange mechanism with surrounding lipoproteins. In our system, the cholesterol neosynthesis appears to be controlled by the ratio of LDL to HDL in the surrounding medium.  相似文献   

17.
For immobilized (proteo)liposome chromatography, unilamellar liposomes were covalently bound within gel beads that had been activated by CNBr, N-hydroxysuccinimide, tresyl, or chloroformate. Liposomes composed of phosphatidylcholine (PC) and 2 mol% of amino-containing lipid (phosphatidylethanolamine-caproylamine) were immobilized in the activated gels at 5-35 micromol lipid/ml gel and yields of 11-70%. The highest immobilized amount was found in chloroformate-activated TSK G6000PW gel, which contains large pore size (>100 nm). Liposomes composed of PC alone could also be attached to the chloroformate-activated gels at 33-42 micromol/ml gel and yields of 58-65%, probably by crosslinking of the phosphate moiety of phospholipid with the active group of the adsorbent. Liposomes prepared by various phospholipids with or without amino-containing lipids can generally be immobilized in the chloroformate-activated gels. The covalently bound liposomes were characterized by their high stability, unilamellarity, permeability of the membranes, and drug-membrane partition properties. A stable membrane phase was constructed for chromatographic experiments to be performed under extreme elution conditions.  相似文献   

18.
By use of multilamellar phosphatidylcholine (PC) liposomes of different acyl composition and cholesterol content as model membranes, we studied whether or not membrane fluidity affects the assembly process of Staphylococcus aureus alpha-toxin. Under conditions using fluid and solid membranes, we assayed accessibility (or hemolytic activity) of liposome-bound alpha-toxin to rabbit erythrocytes added, hexamerization of membrane-bound toxin using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nondenaturating conditions, and susceptibility of liposome-bound toxin to trypsin digestion. Our data indicated 1) that alpha-toxin bound to PC membrane as a hemolytically active monomer (or reversibly bound state); 2) that when the membrane was fluidized either by phase transition of PC or by inclusion of cholesterol over 20 mol %, the hemolytically active monomer of the toxin was irreversibly converted to nonhemolytic monomer (and/or unstable oligomer) in a first-order kinetics with a t1/2 of about 1 min, and thereafter hexamerization of the toxin gradually proceeded in the following 60-90 min; 3) that alpha-toxin might have different topology and/or conformation in PC membrane, depending on the presence or absence of cholesterol in the PC membrane; and 4) that coexistence of unsaturated acyl chain-carrying PC and cholesterol was a prerequisite for efficient hexamerization of alpha-toxin in membrane. Thus, increase in membrane fluidity promoted the assembly process of S. aureus alpha-toxin.  相似文献   

19.
Herein, we report on the design and synthesis of a novel nontoxic cationic amphiphile N,N-di-n-tetradecyl-N-[2-[N',N'-bis(2-hydroxyethyl)amino]ethyl]-N-(2-hydroxyethyl)ammonium chloride (lipid 1) whose in vitro gene transfer efficacies in CHO, COS-1, MCF-7, and HepG2 cells are remarkably enhanced when used in combination with 30 mole percent added myristic acid. Reporter gene expression assay using p-CMV-SPORT-beta-gal reporter gene revealed poor gene transfer properties of the cationic liposomes of lipid 1 and cholesterol (colipid). However, the in vitro gene delivery efficacies of lipid 1 were found to be remarkably enhanced when the cationic liposomes of lipid 1 and cholesterol were prepared in the presence of 30 mole percent added myristic acid (with respect to lipid 1) as the third liposomal ingredient. The whole cell histochemical X-gal staining of representative CHO cells further confirmed the significantly enhanced gene transfer properties of the fatty acid-loaded cationic liposomes of lipid 1 and cholesterol. Electrophoretic gel patterns in the gel mobility shift assay supports the notion that better DNA release from fatty acid lipoplexes might play a role in their enhanced gene transfer properties. In addition, such myristic acid-loaded lipoplexes of lipid 1 were also found to be serum-compatible up to 30% added serum. Taken together, our present findings demonstrate that the transfection efficacies of fatty acid-loaded lipoplexes are worth evaluating particularly when traditional cationic liposomes prepared with either cholesterol or DOPE colipids fail to transfect cultured cells.  相似文献   

20.
Sensitive determination of anti-glycolipid antibody titer and glycolipid content by an enzyme-linked immunosorbent assay (ELISA) using polystyrene beads was achieved. Glycolipid-coated polystyrene beads were used as the immobilized antigen. As antigen glycolipids, gangliotetraosylceramide (GA1), gangliotriosylceramide (GA2) and neolactotetraosylceramide (paragloboside) were used. Concentrations of 1-500 ng glycolipid in liposomes/ml or 0.1-100 micrograms glycolipid/ml could be used for the glycolipid determination. Glycolipid determination by the competitive inhibition method was not influenced by the presence of other glycolipids. A great advantage of this method is that the glycolipid-coated beads can be used repeatedly by washing the used beads with 3M NaSCN solution. The method was applied to the detection of auto-antibody against GA1 in ascitic fluid from cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号