首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perfusion effluent from isolated rat and hamster lungs caused a relaxation of superfused strip of bovine coronary artery (BCA). This relaxation was abolished by pulmonary infusion of indomethacin. Pre-exposure of rats and hamsters to cigarette smoke during half an hour before the lung perfusion did not change the degree of this initial relaxation of BCA. Injection of 10 μg of sodium arachidonate (AA) into the pulmonary circulation of isolated hamster lungs caused a contraction of BCA, which was not changed by cigarette smoke pre-exposure. When AA (10 μg) was injected into the pulmonary circulation of isolated hamster lungs during cigarette smoke ventilation the contractions of superfused BCA and rat stomach strip (RSS) were not significantly different from those during the preceding and following air ventilation. In experiments with isolated rat lungs the initial relaxation of superfused BCA was accompanied by a contraction of superfused RSS. AA injection (10 μg) into rat lungs caused a further relaxation of BCA and contraction of RSS, which were abolished by pulmonary infusion of indomethacin. Cigarette smoke ventilation of isolated rat lungs caused a relaxation of superfused BCA, which was not abolished by indomethacin. During cigarette smoke ventilation injection of AA (10 μg) into the pulmonary circulation of rat lungs caused a relaxation of BCA and a contraction of RSS.The present study indicates that neither cigarette smoke ventilation nor pre-exposure to cigarette smoke has a drastic effect on the metabolism of arachidonic acid to myotropic compounds in isolated hamster and rat lungs.  相似文献   

2.
The effects of cigarette smoke on the metabolism of exogenous arachidonic acid (AA) were investigated in isolated hamster lungs. Arachidonate was injected into the pulmonary circulation and the metabolites were analysed from the nonrecirculating perfusion effluent by thin layer chromatography. After the pulmonary injection of 66 nmol of 14C-AA about 20 % of the injected radioactivity appreated in the perfusion effluent mostly as metabolites in six minutes. When isolated lungs were ventilated with cigarette smoke during the perfusion, the amounts of PGF, PGE2 and two unidentified metabolite groups increased in the lung effluent. In two other experimental series hamsters were exposed to cigarette smoke before the lung perfusion either once for 30 min or during one hour daily for ten consecutive days. Neither pre-exposures caused any changes in the amounts of arachidonate metabolites in the lung effluent.  相似文献   

3.
The effects of cigarette smoke on the metabolism of exogenous PGE2 and PGF were investigated in isolated rat and hamster lungs. When isolated lungs from animals were ventilated with cigarette smoke during pulmonary infusion of 100 nmol of PGE2 or PGF, the amounts of the 15-keto-metabolites in the perfusion effluent were decreased. Pre-exposure of animals to cigarette smoke daily for 3 weeks did not change the metabolism of PGE2 when the lungs were ventilated with air. Cigarette smoke ventilation of lungs from pre-exposed animals caused, however, a similar decrease in the metabolism of PGE2 as in animals not previously exposed to smoke. After pulmonary injection of 10 nmol of 14C-PGE2 the radioactivity appeared more rapidly in the effluent during cigarette smoke ventilation suggesting inhibition of the PGE2 uptake mechanism. In rat lungs pulmonary vascular pressor responses to PGE2 and PGF were inhibited by smoke ventilation.  相似文献   

4.
Thromboxane-induced pulmonary vasoconstriction: involvement of calcium   总被引:3,自引:0,他引:3  
Infusion of tert-butyl hydroperoxide (t-bu-OOH) or arachidonic acid into rabbit pulmonary arteries stimulated thromboxane B2 (TxB2) production and caused pulmonary vasoconstriction. Both phenomena were blocked by cyclooxygenase inhibitors or a thromboxane synthase inhibitor. The increase in pulmonary arterial pressure caused by either t-bu-OOH or arachidonic acid infusion correlated with the concentration of TxB2 in the effluent perfusate. The concentration of TxB2 in the effluent perfusate, however, was always 10-fold greater after arachidonic acid infusion. In the rabbit pulmonary vascular bed lipoxygenase products did not appear involved in the vasoactive response to t-bu-OOH or exogenous arachidonic acid infusion. Calcium entry blockers or a calcium-free perfusate prevented the thromboxane-induced pulmonary vasoconstriction. Calmodulin inhibitors also blocked the pulmonary vasoconstriction induced by t-bu-OOH without affecting the production of TxB2 or prostacyclin. These results suggest that thromboxane causes pulmonary vasoconstriction by increasing cytosol calcium concentration.  相似文献   

5.
In this study we examined the action of arachidonic acid in the isolated rat lung perfused with a cell- and protein-free physiological salt solution. When pulmonary vascular tone was elevated by hypoxia, bolus injection of a large dose of arachidonic acid (75 micrograms) caused transient vasoconstriction followed by vasodilation. When arachidonic acid (100 micrograms) was injected during normoxia and at base-line perfusion pressure (low vascular tone) or when vascular tone was elevated by KCl, arachidonic acid (50 micrograms) caused only vasoconstriction. Doses less than 7.5 micrograms caused vasodilation only when injected during hypoxic vasoconstriction and subsequent blunting of either angiotensin II- or hypoxia-induced pulmonary vasoconstriction. The higher doses of arachidonic acid (7.5 and 75 micrograms), but not the lower doses (7.5-750 ng), caused increases in effluent 6-ketoprostaglandin F1 alpha, thromboxane B2, and prostaglandin E2 and F2 alpha. 6-Ketoprostaglandin F1 alpha was the major cyclooxygenase product. Meclofenamate (10(-5) M) blocked the increased metabolite synthesis over the entire dose range of arachidonic acid tested (7.5 ng-75 micrograms). Because vasodilation immediately after arachidonic acid was cyclooxygenase-independent, we investigated whether this effect was due to the unsaturated fatty acid properties of arachidonic acid and compared its action with that of oleic acid and docosahexaenoic acid. Because neither compound mimicked the vasodilation observed with arachidonic acid, we concluded that the cyclooxygenase-independent action of arachidonic acid could not be explained by unsaturated fatty acid properties per se. Because 1-aminobenzotriazole, a cytochrome P-450 inhibitor, partially inhibited the immediate arachidonic acid-induced pulmonary vasodilation, we concluded that cytochrome P-450-dependent metabolites can account for some of the cyclooxygenase-independent vasodilation of arachidonic acid.  相似文献   

6.
The effect of aspirin on the fate of exogenous arachidonic acid (AA) was investigated in isolated perfused lungs of female hamsters. During pulmonary infusion of aspirin (10 μM, 100 μM or 1 mM) 45 nmol of 14C-AA was infused in two minutes into the pulmonary circulation. The nonrecirculating perfusion effluent was collected for 6 minutes after the beginning of the AA infusion. Arachidonate infusion increased the perfusion pressure. This pressor response was completely abolished by 1 mM aspirin. When aspirin was infused into the pulmonary circulation, the amount of radioactivity was increased in the perfused lungs and decreased dose dependently in the nonrecirculating perfusion effluent. The amount of unmetabolized free arachidonate was not changed significantly by aspirin in the perfused lungs or in the perfusion effluent. In the effluent the amounts of all arachidonate metabolites, which were extracted with ethyl acetate first at pH 7.4 and then at pH 3.5 and analysed by thin layer chromatography, were decreased quite similarly by aspirin. The formation of arachidonate metabolites was completely inhibited by 1 mM aspirin. In the perfused lung tissue the amount of 14C-AA was increased by aspirin in phospholipids and neutral lipids. The present study indicates that the metabolism of arachidonic acid is inhibited by aspirin in hamster lungs not only via cyclo-oxygenase but also via other lipoxygenases.  相似文献   

7.
Following the injection of 4 nmol of 14C-arachidonic acid into the pulmonary circulation of rat isolated lungs more than 90% of the radioactivity was retained by the lung tissue. When dipyridamole (20 microM) was infused into the pulmonary circulation during 14C-arachidonate injection the amount of radiolabel was increased in diacylglycerols as well as in phosphatidylinositol and phosphatidylserine of the perfused lungs whereas the amount of radioactivity was decreased in phosphatidylethanolamine. When dipyridamole was infused into the lungs prelabelled with 14C-arachidonic acid the distribution of radiolabel in different lung lipid fractions was not changed significantly. However, dipyridamole seemed to stimulate the formation of prostacyclin in rat lungs as the amount of 6-keto-PGF1 alpha was increased in the perfusion effluent. The present study indicates that dipyridamole interferes with the incorporation of arachidonic acid into different lipids in rat lungs. In addition, the release of prostacyclin seems to be stimulated by dipyridamole.  相似文献   

8.
N Simberg  P Uotila 《Prostaglandins》1983,25(5):629-638
The developmental pattern of fetal and neonatal rabbit lungs to metabolize arachidonic acid (AA) to different cyclo-oxygenase products was studied in isolated rabbit lungs, which were perfused with Krebs bicarbonate buffer. 14C-AA (66 nmol) was injected into the pulmonary circulation and the nonrecirculating perfusion effluent was collected for four minutes. About ten per cent of the injected radioactivity was found in the 0-4 min perfusion effluent. The metabolites of AA in the effluent were analyzed by thin layer chromatography. The major metabolites of AA were PGE2 and its 15-keto-derivates, but also PGF2 alpha and its 15-keto-derivates, TXB2 and 6-keto-PGF1 alpha were found in the effluent. The most drastic developmental change was the increase in the amount of 15-keto-metabolites of PGE2 from late fetal period to the lungs of one day old rabbits (1.8 fold increase between birth and first postnatal day). Smaller changes were detected in the amounts of other cyclo-oxygenase products.  相似文献   

9.
Distension of the main pulmonary artery (MPA) induces pulmonary hypertension, most probably by neurogenic reflex pulmonary vasoconstriction, although constriction of the pulmonary vessels has not actually been demonstrated. In previous studies in dogs with increased pulmonary vascular resistance produced by airway hypoxia, exogenous arachidonic acid has led to the production of pulmonary vasodilator prostaglandins. Hence, in the present study, we investigated the effect of arachidonic acid in seven intact anesthetized dogs after pulmonary vascular resistance was increased by MPA distention. After steady-state pulmonary hypertension was established, arachidonic acid (1.0 mg/min) was infused into the right ventricle for 16 min; 15-20 min later a 16-mg bolus of arachidonic acid was injected. MPA distension was maintained throughout the study. Although the infusion of arachidonic acid significantly lowered the elevated pulmonary vascular resistance induced by MPA distension, the pulmonary vascular resistance returned to control levels only after the bolus injection of arachidonic acid. Notably, the bolus injection caused a biphasic response which first increased the pulmonary vascular resistance transiently before lowering it to control levels. In dogs with resting levels of pulmonary vascular resistance, administration of arachidonic acid in the same manner did not alter the pulmonary vascular resistance. It is concluded that MPA distension does indeed cause reflex pulmonary vasoconstriction which can be reversed by vasodilator metabolites of arachidonic acid. Even though this reflex may help maintain high pulmonary vascular resistance in the fetus, its function in the adult is obscure.  相似文献   

10.
We characterized the release of arachidonic acid (AA) metabolites in lung effluent following lung ischemia-reperfusion since they may contribute to the pathophysiology of reperfusion lung injury. The left pulmonary artery of rabbits (N = 5) was occluded for 24 hrs with a surgically implanted vascular clip. At 24 hrs, the heart and lungs were removed en bloc and perfused with Ringers-albumin (0.5 gm%) at 60 ml/min while statically inflated with 95% O2-5% CO2. The lipid fraction of the lung effluent was concentrated using the Bligh-Dyer extraction and analyzed by gradient RP-HPLC. Samples obtained in the first minute of reperfusion showed significant increases in LTB4 (+180%), LTC4 (+3600%), 15-HETE (+370%), 5-HPETE (+270%), PGE2 (+140%), 6-keto-PGF1 alpha (+110%) and 12-HHT (+160%) compared to the effluent from the right control lung. The reperfusion-induced increases in LTB4, LTC4, LTD4 and 15-HETE were inhibited greater than or equal to 70% by pretreatment with the 5-LO inhibitors L663,536 or L651,392. The increases in lipid concentrations corresponded to significantly increased pulmonary arterial pressure from a baseline value of 9.5 +/- 0.3 to 29.3 +/- 2.9 (cmH2O) during the first min of reperfusion. The pulmonary arterial pressure remained elevated for at least 20 min of reperfusion. Reperfusion also resulted in PMN uptake (assessed by lung tissue myeloperoxidase content) in the reperfused lung versus control lung (25.0 +/- 2.4 vs. 10.5 +/- 2.5 units). The generation of lipoxygenase metabolites during the initial phase of reperfusion may contribute to post-reperfusion PMN uptake and pulmonary vasoconstriction.  相似文献   

11.
Isolated lungs from 20 Gray (Gy) whole body irradiated rats were perfused with Krebs-Ringer bicarbonate plus 3% bovine serum albumin (KRB-BSA). The pulmonary effluent showed a 99% (p less than .05) increase in immunoassayable thromboxane B2 (iTXB2) release compared with non-irradiated lungs. Since both arachidonic acid and cyclooxygenase products bind to albumin, studies were performed to determine if omission or substitution of this protein oncotic agent would alter the radiation-induced increase in pulmonary iTXB2 release. Irradiated, isolated lungs perfused with media from which the BSA was omitted (KRB) did not demonstrate the radiation-induced increase in pulmonary iTXB2 release. Similarly, irradiated lungs perfused with media in which Dextran 70 (KRB plus 3% Dextran 70, KRB-Dextran 70) was substituted for BSA also did not show the radiation-induced increase in pulmonary effluent iTXB2 levels. These studies demonstrate the importance of including albumin as the oncotic agent in perfused organ systems when studying cyclooxygenase product release.  相似文献   

12.
The effects of precursors in the prostaglandin synthetic pathway as well as those of analogs of cyclic endoperoxide intermediates upon the pulmonary and systemic circulations of fetal and newborn goats were examined. Exogenous arachidonic acid increased pulmonary vascular resistance and decreased systemic arterial pressure of fetuses and newborns. The effects of dihomo-y-linolenic acid on the circulation are qualitatively similar, but quantitatively less, than those of arachidonic acid. The cyclic endoperoxide analogs were strong pressors in both pulmonary and systemic circulations. The responses to the fatty acid precursors, which are totally blocked by indomethacin and meclofenamate, appear to indicate that they give rise to more than one vasoactive product. Furthermore, exogenous arachidonic acid produces effects which appear to be different from those produced by endogenous pulmonary arachidonic acid.  相似文献   

13.
Isolated perfused hearts of guinea-pigs continuously release a prostaglandin-like substance into the effluent. Polyunsaturated fatty acids, linoleic acid and arachidonic acid > linolenic acid, induced an increase in PG-efflux. Oleic acid was without effect. The results suggest that PG-formation is involved in the increase of contractile force and coronary flow after administration of linoleic, linolenic and arachidonic acids.  相似文献   

14.
The developmental pattern of fetal and neonatal rabbit lungs to generate an antiaggregatory compound from arachidonic acid (AA) was studied in isolated rabbit lungs, which were perfused with Krebs bicarbonate buffer. The antiaggregatory effect of the nonrecirculating perfussion effluent was tested by adding a small portion of the effluent to human platelet rich plasma (PRP) in a Born-type aggregometer before the aggregation was induced by ADP. The production of an antiaggregatory compound was minimal, when exogenous AA was not infused into the pulmonary circulation. When arachidonate (40 nmol/min) was infused into the pulmonary circulation of rabbits which were 1 day or 1 week old, the perfusion effluent significantly inhibited the ADP induced aggregation of PRP. Perfused lungs from fetal rabbits (gestation age 28–31 days) formed also an antiaggregatory compound fro AA, but the antiaggregatory effect was not as great as 1 day after birth. It seems that neonatal rabbit lungs metabolize AA more to an antiaggregatory compound than late fetal lungs. The fact that the AA induced production of an antiaggregatory compound is inhibited by simultaneous infusion of indomethacin favours the hypothesis that this antiaggregatory compound could he PGI2.  相似文献   

15.
The effects of t-butylhydroperoxide (TBH) and cigarette smoke on lung mechanics (CDYN and RL) and glutathione status (GSH) were studied using an isolated perfused and ventilated rat lung preparation. TBH (200, 400, 1000 microM) infused via the pulmonary circulation caused a dose-related bronchoconstriction. The lung GSH-levels were also significantly reduced. Pretreatment of rats with diethylmaleate (DEM) potentiated the TBH elicited bronchoconstriction. DEM (1 mM) infused into the pulmonary circulation caused an almost complete depletion of GSH-content but no effects on lung mechanics were seen. Indomethacin (2.8 and 28 microM) infusion attenuated TBH (400 microM) induced bronchoconstriction. These findings suggest that the TBH induced bronchoconstriction is at least partly mediated via arachidonic acid metabolites. When TBH was administered intratracheally, weak and not dose-related bronchoconstriction was observed even though doses higher than those given intravascularly were used. However, the GSH-content of the lungs was markedly decreased. Cigarette smoke caused weak if any effects on lung mechanics but significantly decreased lung GSH-content.  相似文献   

16.
Pregnant rabbits were treated with aspirin (100 mg/kg/day) for ten consecutive days during the last third of the pregnancy. The ability of isolated perfused fetal rabbit lungs to metabolize arachidonic acid (AA) was studied on the 31st day of the pregnancy. After the infusion of 14C-AA (100 nmol) into the pulmonary circulation about 10 % of the radioactivity was found in the nonrecirculating perfusion effluent and about 80 % was incorporated into the lung lipids. Aspirin pretreatment of the rabbits inhibited the formation of AA metabolites in the lungs of their fetuses. The inhibition was clear when the metabolites of AA were extracted from the perfusion effluent at pH 7.4 (mainly lipoxygenase products) but a slight inhibition was also seen in the amounts of some metabolites extracted at pH 4.5 (cyclo-oxygenase products). When aspirin (1 mM) was infused simultaneously with AA into the pulmonary circulation the inhibition of AA metabolism was nearly complete. Aspirin pretreatment of the pregnant rabbits caused a slight increase in the amount of14C-AA incorporated into some of the phospholipid and neutral lipid fractions of the perfused fetal lungs. Aspirin pretreatment clearly inhibited the TXB2 formation during clotting in the blood of maternal rabbits but not significantly in the blood of their fetuses.  相似文献   

17.
Oleic acid injection produces acute lung injury and pulmonary hypertension in adult animals. In other types of acute lung injury, such as that caused by E. coli endotoxin, metabolites of arachidonic acid are important mediators of pulmonary hypertension. In order to understand the hemodynamic response of newborn animals to oleic acid injection and the contribution of arachidonic acid metabolites to that response, we injected oleic acid into awake, chronically instrumented newborn lambs. The hemodynamic response of lambs to injections of oleic acid alone was compared to their response after pretreatment with either FPL57231, a putative leukotriene receptor antagonist, or indomethacin, a cyclooxygenase synthesis inhibitor. Oleic acid caused acute pulmonary hypertension associated with an increase in protein-rich lung lymph fluid. Systemic hemodynamic effects were variable. FPL57231 completely blocked the oleic acid-induced pulmonary hypertension while indomethacin significantly attenuated the response. Therefore, metabolites of arachidonic acid metabolism appear to be important mediators of oleic acid-induced pulmonary hypertension in newborn lambs.  相似文献   

18.
Smoke inhalation injuries are the leading cause of mortality from burn injury. Airway obstruction due to mucus plugging and bronchoconstriction can cause severe ventilation inhomogeneity and worsen hypoxia. Studies describing changes of viscoelastic characteristics of the lung after smoke inhalation are missing. We present results of a new smoke inhalation device in sheep and describe pathophysiological changes after smoke exposure. Fifteen female Merino ewes were anesthetized and intubated. Baseline data using electrical impedance tomography and multiple-breath inert-gas washout were obtained by measuring ventilation distribution, functional residual capacity, lung clearance index, dynamic compliance, and stress index. Ten sheep were exposed to standardized cotton smoke insufflations and five sheep to sham smoke insufflations. Measured carboxyhemoglobin before inhalation was 3.87 +/- 0.28% and 5 min after smoke was 61.5 +/- 2.1%, range 50-69.4% (P < 0.001). Two hours after smoke functional residual capacity decreased from 1,773 +/- 226 to 1,006 +/- 129 ml and lung clearance index increased from 10.4 +/- 0.4 to 14.2 +/- 0.9. Dynamic compliance decreased from 56.6 +/- 5.5 to 32.8 +/- 3.2 ml/cmH(2)O. Stress index increased from 0.994 +/- 0.009 to 1.081 +/- 0.011 (P < 0.01) (all means +/- SE, P < 0.05). Electrical impedance tomography showed a shift of ventilation from the dependent to the independent lung after smoke exposure. No significant change was seen in the sham group. Smoke inhalation caused immediate onset in pulmonary dysfunction and significant ventilation inhomogeneity. The smoke inhalation device as presented may be useful for interventional studies.  相似文献   

19.
Acrolein, a component of tobacco smoke, potentiated platelet aggregation and increased thromboxane A2 (TXA2) formation caused by thrombin and arachidonic acid (AA). Acrolein produced these effects at concentrations in the range 50-5000 microM. Acrolein had no effect on platelet responses to ADP, epinephrine, collagen or the ionophore A23187. Acrolein increased the mobilization of [3H]arachidonic acid from prelabelled platelets in response to thrombin and arachidonic acid. The increased availability of substrate could partly explain the enhanced production of TXA2 and increased aggregation observed in the presence of acrolein. These findings could provide an explanation for the increased incidence of vascular disease in cigarette smokers.  相似文献   

20.
The effect of intravenous furosemide, 5 mg/kg, on renal hemodynamics as it relates to the prostaglandin cascade was examined in dogs. In 11 dogs the vasculature to the kidney was isolated and a femoral to renal arterial and a renal to femoral venous shunt was performed. With the use of a protein-free salt solution to perfuse the kidney for 3 minutes, the renal cortex was enriched with tritiated arachidonic acid. After blood perfusion to the kidney was re-established, the renal effluent radioactivity was followed before and after furosemide administration. Furosemide produced two types of response. In six dogs there was renal vasodilation, diuresis, and a three and one-half fold increase in renal venous radioactivity. In five dogs that were in renal failure, furosemide administration caused no change in renal blood flow, no diuresis and no increase in renal venous effluent radioactivity. On thin-layer chromatography most of the released radioactivity by the kidney after furosemide administration traveled as arachidonic acid. In a separate seven dogs, we measured the total unesterified arachidonic acid concentration in the plasma before and after furosemide by the use of gas chromatographyflame ionization. Even though in these dogs furosemide caused a significant increase in renal blood flow and diuresis, renal venous plasma levels of arachidonic acid were unaltered. Our data suggest that furosemide causes a release of arachidonic acid from the kidney from a small pool of fast turnover lipid stores and that the stimulus for arachidonic acid release after furosemide depends on an intrarenal mechanism whereby the diuresis is coupled to the increase in renal blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号