首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mycobacterium smegmatis Lhr (MsmLhr; 1507-aa) is the founder of a novel clade of bacterial helicases. MsmLhr consists of an N-terminal helicase domain (aa 1–856) with a distinctive tertiary structure (Lhr-Core) and a C-terminal domain (Lhr-CTD) of unknown structure. Here, we report that Escherichia coli Lhr (EcoLhr; 1538-aa) is an ATPase, translocase and ATP-dependent helicase. Like MsmLhr, EcoLhr translocates 3′ to 5′ on ssDNA and unwinds secondary structures en route, with RNA:DNA hybrid being preferred versus DNA:DNA duplex. The ATPase and translocase activities of EcoLhr inhere to its 877-aa Core domain. Full-length EcoLhr and MsmLhr have homo-oligomeric quaternary structures in solution, whereas their respective Core domains are monomers. The MsmLhr CTD per se is a homo-oligomer in solution. We employed cryo-EM to solve the structure of the CTD of full-length MsmLhr. The CTD protomer is composed of a series of five winged-helix (WH) modules and a β-barrel module. The CTD adopts a unique homo-tetrameric quaternary structure. A Lhr-CTD subdomain, comprising three tandem WH modules and the β-barrel, is structurally homologous to AlkZ, a bacterial DNA glycosylase that recognizes and excises inter-strand DNA crosslinks. This homology is noteworthy given that Lhr is induced in mycobacteria exposed to the inter-strand crosslinker mitomycin C.  相似文献   

2.
The increased prevalence of drug resistant strains of Mycobacterium tuberculosis (Mtb) indicates that significant mutagenesis occurs during tuberculosis disease in humans. DNA damage by host-derived reactive oxygen/nitrogen species is hypothesized to be critical for the mutagenic process in Mtb thus, highlighting an important role for DNA repair enzymes in maintenance of genome fidelity. Formamidopyrimidine (Fpg/MutM/Fapy) and EndonucleaseVIII (Nei) constitute the Fpg/Nei family of DNA glycosylases and together with EndonucleaseIII (Nth) are central to the base excision repair pathway in bacteria. In this study we assess the contribution of Nei and Nth DNA repair enzymes in Mycobacterium smegmatis (Msm), which retains a single nth homologue and duplications of the Fpg (fpg1 and fpg2) and Nei (nei1 and nei2) homologues. Using an Escherichia coli nth deletion mutant, we confirm the functionality of the mycobacterial nth gene in the base excision repair pathway. Msm mutants lacking nei1, nei2 and nth individually or in combination did not display aberrant growth in broth culture. Deletion of nth individually results in increased UV-induced mutagenesis and combinatorial deletion with the nei homologues results in reduced survival under oxidative stress conditions and an increase in spontaneous mutagenesis to rifampicin. Deletion of nth together with the fpg homolgues did not result in any growth/survival defects or changes in mutation rate. Furthermore, no differential emergence of the common rifampicin resistance conferring genotypes were noted. Collectively, these data confirm a role for Nth in base excision repair in mycobacteria and further highlight a novel interplay between the Nth and Nei homologues in spontaneous mutagenesis.  相似文献   

3.
Rifampicin (Rif) is a first line drug used for tuberculosis treatment. However, the emergence of drug resistant strains has necessitated synthesis and testing of newer analogs of Rif. Mycobacterium smegmatis is often used as a surrogate for M. tuberculosis. However, the presence of an ADP ribosyltransferase (Arr) in M. smegmatis inactivates Rif, rendering it impractical for screening of Rif analogs or other compounds when used in conjunction with them (Rif/Rif analogs). Rifampicin is also used in studying the role of various DNA repair enzymes by analyzing mutations in RpoB (a subunit of RNA polymerase) causing Rif resistance. These analyses use high concentrations of Rif when M. smegmatis is used as model. Here, we have generated M. smegmatis strains by deleting arr (Δarr). The M. smegmatis Δarr strains show minimum inhibitory concentration (MIC) for Rif which is similar to that for M. tuberculosis. The MICs for isoniazid, pyrazinamide, ethambutol, ciprofloxacin and streptomycin were essentially unaltered for M. smegmatis Δarr. The growth profiles and mutation spectrum of Δarr and, Δarr combined with ΔudgB (udgB encodes a DNA repair enzyme that excises uracil) strains were similar to their counterparts wild-type for arr. However, the mutation spectrum of ΔfpgΔarr strain differed somewhat from that of the Δfpg strain (fpg encodes a DNA repair enzyme that excises 8-oxo-G). Our studies suggest M. smegmatis Δarr strain as an ideal model system in drug testing and mutation spectrum determination in DNA repair studies.  相似文献   

4.
Repetitive DNA sequences with the potential to form alternative DNA conformations, such as slipped structures and cruciforms, can induce genetic instability by promoting replication errors and by serving as a substrate for DNA repair proteins, which may lead to DNA double-strand breaks (DSBs). However, the contribution of each of the DSB repair pathways, homologous recombination (HR), non-homologous end-joining (NHEJ) and single-strand annealing (SSA), to this sort of genetic instability is not fully understood. Herein, we assessed the genome-wide distribution of repetitive DNA sequences in the Mycobacterium smegmatis, Mycobacterium tuberculosis and Escherichia coli genomes, and determined the types and frequencies of genetic instability induced by direct and inverted repeats, both in the presence and in the absence of HR, NHEJ, and SSA. All three genomes are strongly enriched in direct repeats and modestly enriched in inverted repeats. When using chromosomally integrated constructs in M. smegmatis, direct repeats induced the perfect deletion of their intervening sequences ∼1,000-fold above background. Absence of HR further enhanced these perfect deletions, whereas absence of NHEJ or SSA had no influence, suggesting compromised replication fidelity. In contrast, inverted repeats induced perfect deletions only in the absence of SSA. Both direct and inverted repeats stimulated excision of the constructs from the attB integration sites independently of HR, NHEJ, or SSA. With episomal constructs, direct and inverted repeats triggered DNA instability by activating nucleolytic activity, and absence of the DSB repair pathways (in the order NHEJ>HR>SSA) exacerbated this instability. Thus, direct and inverted repeats may elicit genetic instability in mycobacteria by 1) directly interfering with replication fidelity, 2) stimulating the three main DSB repair pathways, and 3) enticing L5 site-specific recombination.  相似文献   

5.
The DNA repair host-mediated assay was further calibrated by testing 7 chemotherapeutic agents known to possess carcinogenic activity, namely bleomycin (BLM), cis-diamminedichloroplatinum-II (cis-Pt), cyclophosphamide (CP), diethylstilboestrol (DES), isonicotinic acid hydrazide (isoniazid, INH), natulan (NAT) and mitomycin C (MMC). Differential survival of wild-type and uvrB/recA E. coli strains served as a measure of genotoxic activity. In in vitro assays, BLM, cis-Pt and MMC exhibited high genotoxic activity. The other 4 compounds had no measurable effect on the survival of the two strains, either with or without mouse liver preparations. In the host-mediated assays BLM, cis-Pt, MMC and also NAT induced strong killing of the DNA repair-deficient bacteria recovered from liver, spleen, lungs, kidneys and the blood of treated mice compared to the wild-type strain. The results are not indicative of large organ-specific differences in genotoxically active amounts of the drugs immediately after their application to the host animals. CP, INH and DES did not show geneotix activity in these assays even at very high exposure levels. To compare the genetic endpoint measured in the DNA repair assays, i.e. induction of repairable DNA damage, with the induction of gene mutations, the ability of the 7 drugs to induce valine-resistant (VALr) mutants in E. coli was measured in host-mediated assays under identical treatment conditions. INH showed considerable mutagenic activity in E. coli cells recovered from liver and spleen, while BLM and MMC induced a 3–4-fold increase in VALr mutants above spontaneous levels. The other compounds showed no mutagenic activity under these in vivo conditions. From these results it can be concluded that (i) the type of primary DNA lesions produced by these chemotherapeutic agents (cross-links by MMC and cis-Pt, and strand breaks by BLM and possibly by NAT; base alkylation by INH) appears to determine whether a compound will be highly positive in the DNA repair assay as in the case of BLM, cis-Pt, MMC and NAT, and less effective in inducing mutations under similar conditions, or whether the opposite will occur, as in the case of INH; (ii) DES and CP probably do not interact sufficiently with bacterial DNA to show an effect in either of the genetic endpoints; and (iii) the present DNA repair host-mediated assay may represent a sensitive, rapid and economic method for monitoring genotoxic factors in various organs of experimental animals which have been treated with cytostatic drugs.  相似文献   

6.
The pyrazinamidase from Mycobacterium smegmatis was purified to homogeneity to yield a product of approximately 50 kDa. The deduced amino-terminal amino acid sequence of this polypeptide was used to design an oligonucleotide probe for screening a DNA library of M. smegmatis. An open reading frame, designated pzaA, which encodes a polypeptide of 49.3 kDa containing motifs conserved in several amidases was identified. Targeted knockout of the pzaA gene by homologous recombination yielded a mutant, pzaA::aph, with a more-than-threefold-reduced level of pyrazinamidase activity, suggesting that this gene encodes the major pyrazinamidase of M. smegmatis. Recombinant forms of the M. smegmatis PzaA and the Mycobacterium tuberculosis pyrazinamidase/nicotinamidase (PncA) were produced in Escherichia coli and were partially purified and compared in terms of their kinetics of nicotinamidase and pyrazinamidase activity. The comparable Km values obtained from this study suggested that the unique specificity of pyrazinamide (PZA) for M. tuberculosis was not based on an unusually high PZA-specific activity of the PncA protein. Overexpression of pzaA conferred PZA susceptibility on M. smegmatis by reducing the MIC of this drug to 150 μg/ml.  相似文献   

7.
8.
Mammalian NOTCH1-4 receptors are all associated with human malignancy, although exact roles remain enigmatic. Here we employ glp-1(ar202), a temperature-sensitive gain-of-function C. elegans NOTCH mutant, to delineate NOTCH-driven tumor responses to radiotherapy. At ≤20°C, glp-1(ar202) is wild-type, whereas at 25°C it forms a germline stem cell⁄progenitor cell tumor reminiscent of human cancer. We identify a NOTCH tumor phenotype in which all tumor cells traffic rapidly to G2⁄M post-irradiation, attempt to repair DNA strand breaks exclusively via homology-driven repair, and when this fails die by mitotic death. Homology-driven repair inactivation is dramatically radiosensitizing. We show that these concepts translate directly to human cancer models.  相似文献   

9.
Orthologs of Escherichia coli ygjD and yeaZ genes are highly conserved in various organisms. The genome of the radioresistant bacterium Deinococcus radiodurans possesses single orthologs of ygjD (DR_0382) and yeaZ (DR_0756). Complete loss of either one or both genes did not result in any significant changes in cell growth efficiency, indicating that both genes are not essential for cell viability in D. radiodurans, unlike the case with other species such as E. coli, Bacillus subtilis and Saccharomyces cerevisiae. Survival rates following DNA damage induced by hydrogen peroxide (H2O2), N-methyl-N??-nitro-N-nitrosoguanidine (MNNG), ultra violet (UV) radiation, ??-rays, cisplatin and mitomycin C (MMC) were compared among the wild-type strain and D. radiodurans ygjD/yeaZ null mutants. Cell viability of the null mutants did not decrease following exposure to H2O2 or MNNG. In addition, the reduction in cell viability following exposure to ??-rays, UV radiation or cisplatin was marginal in the null mutants compared to the wild-type strain. Interestingly, the null mutants exhibited high sensitivity to MMC, which mainly causes interstrand DNA cross-links. The sensitivity of the null mutants to MMC was restored to that of the wild type by transformation with plasmids expressing these genes. These results suggest that D. radiodurans ygjD and yeaZ genes are involved in DNA repair and play a role in the repair of DNA cross-links.  相似文献   

10.
11.
This study unveils Mycobacterium smegmatis DinB2 as the founder of a clade of Y-family DNA polymerase that is naturally adept at incorporating ribonucleotides by virtue of a leucine in lieu of a canonical aromatic steric gate. DinB2 efficiently scavenges limiting dNTP and rNTP substrates in the presence of manganese. DinB2''s sugar selectivity factor, gauged by rates of manganese-dependent dNMP versus rNMP addition, is 2.7- to 3.8-fold. DinB2 embeds ribonucleotides during DNA synthesis when rCTP and dCTP are at equimolar concentration. DinB2 can incorporate at least 16 consecutive ribonucleotides. In magnesium, DinB2 has a 26- to 78-fold lower affinity for rNTPs than dNTPs, but only a 2.6- to 6-fold differential in rates of deoxy versus ribo addition (kpol). Two other M. smegmatis Y-family polymerases, DinB1 and DinB3, are characterized here as template-dependent DNA polymerases that discriminate strongly against ribonucleotides, a property that, in the case of DinB1, correlates with its aromatic steric gate side chain. We speculate that the unique ability of DinB2 to utilize rNTPs might allow for DNA repair with a ‘ribo patch’ when dNTPs are limiting. Phylogenetic analysis reveals DinB2-like polymerases, with leucine, isoleucine or valine steric gates, in many taxa of the phylum Actinobacteria.  相似文献   

12.
Repair of DNA cross-links by mitomycin C (MMC) was studied in mammalian cells. Skin cells from a patient with Fanconi's anemia (FA9 cells) were about 6 times as sensitive to MMC killing as HeLa S3 cells with normal excision repair ability, while excision-reduced mouse L and human xeroderma pigmentosum (XP2OS) cells were more resistant to it than HeLa S3 cells. Alkaline sucrose sedimentation of DNA revealed that perhaps half-excision of cross-links and its repair occurred efficiently until 4 h of post-MMC time in L-cells and, though more slowly, in HeLa S3 cells. Thus, the excision repair pathway is the first step of the cross-link repair in mammalian cells, but it seems different from the uvrA-dependent pathway in E. coli, since XP2OS cells survived MMC almost normally. Contrarily, FA9 DNA sedimented much faster at 4 h of post-MMC time, suggesting a possible impairment in FA cell's ability to unhook cross-links.  相似文献   

13.
Sensitivity to the monofunctional alkylating agent methyl methanesulfonate (MMS) has been tested as a selection technique to isolate mutant strains which can provide insights into the genetic control of DNA replication, DNA repair and recombination in the complex eucaryote, Drosophila melanogaster. The successful isolation of an X-linked MMS-sensitive strain, muts, has suggested that mutagen sensitivity is a feasible methodology for the selection of mutant strains of Drosophila which will be useful in the genetic and biochemical analysis of these cellular functions. Preliminary characterization of this mutant strain indicates that: (A) it is extremely sensitive to killing by MMS; (B) it is more mutable by MMS than the parent wildtype strain; and (C) it appears to possess mutator gene activity.  相似文献   

14.
Huntington''s disease (HD), a neurodegenerative disease characterized by progressive dementia, psychiatric problems, and chorea, is known to be caused by CAG repeat expansions in the HD gene HTT. However, the mechanism of this pathology is not fully understood. The translesion DNA polymerase θ (Polθ) carries a large insertion sequence in its catalytic domain, which has been shown to allow DNA loop-outs in the primer strand. As a result of high levels of oxidative DNA damage in neural cells and Polθ''s subsequent involvement in base excision repair of oxidative DNA damage, we hypothesized that Polθ contributes to CAG repeat expansion while repairing oxidative damage within HTT. Here, we performed Polθ-catalyzed in vitro DNA synthesis using various CAG•CTG repeat DNA substrates that are similar to base excision repair intermediates. We show that Polθ efficiently extends (CAG)n•(CTG)n hairpin primers, resulting in hairpin retention and repeat expansion. Polθ also triggers repeat expansions to pass the threshold for HD when the DNA template contains 35 repeats upward. Strikingly, Polθ depleted of the catalytic insertion fails to induce repeat expansions regardless of primers and templates used, indicating that the insertion sequence is responsible for Polθ''s error-causing activity. In addition, the level of chromatin-bound Polθ in HD cells is significantly higher than in non-HD cells and exactly correlates with the degree of CAG repeat expansion, implying Polθ''s involvement in triplet repeat instability. Therefore, we have identified Polθ as a potent factor that promotes CAG•CTG repeat expansions in HD and other neurodegenerative disorders.  相似文献   

15.
One of the main mechanisms for double stranded DNA break (DSB) repair is through the non-homologous end-joining (NHEJ) pathway. Using plasmid and chromosomal repair assays, we showed that deletion mutant strains for interacting proteins Pph3p and Psy2p had reduced efficiencies in NHEJ. We further observed that this activity of Pph3p and Psy2p appeared linked to cell cycle Rad53p and Chk1p checkpoint proteins. Pph3/Psy2 is a phosphatase complex, which regulates recovery from the Rad53p DNA damage checkpoint. Overexpression of Chk1p checkpoint protein in a parallel pathway to Rad53p compensated for the deletion of PPH3 or PSY2 in a chromosomal repair assay. Double mutant strains Δpph3/Δchk1 and Δpsy2/Δchk1 showed additional reductions in the efficiency of plasmid repair, compared to both single deletions which is in agreement with the activity of Pph3p and Psy2p in a parallel pathway to Chk1p. Genetic interaction analyses also supported a role for Pph3p and Psy2p in DNA damage repair, the NHEJ pathway, as well as cell cycle progression. Collectively, we report that the activity of Pph3p and Psy2p further connects NHEJ repair to cell cycle progression.  相似文献   

16.
The sensitivity of Escherichia coli B/r to X-irradiation is correlated with the replication cycle of deoxyribonucleic acid (DNA). The sensitivity to X-irradiation in the wild type can be attributed to the presence of nuclear targets plus DNA repair mechanisms. The effects of nuclear targets are observed in the recombination-deficient (rec−) mutant B/r, but the sensitivity reflected by changes in the slope of killing curves is absent. A study of different growth conditions indicates that maximal resistance to X rays occurs toward the middle of the division cycle. Evidence is offered that branched chromosomes respond as one-hit targets to X-irradiation. The killing effects of heavy-ion bombardment on E. coli are due primarily to ionizing radiation.  相似文献   

17.
18.
The oxidation and deamination of 5-methylcytosine (5mC) in DNA generates a base-pair between 5-hydroxymethyluracil (5hmU) and guanine. 5hmU normally forms a base-pair with adenine. Therefore, the conversion of 5mC to 5hmU is a potential pathway for the generation of 5mC to T transitions. Mammalian cells have high levels of activity of 5hmU-DNA glycosylase, which excises 5hmU from DNA. However, glycosylases that similarly excise 5hmU have not been observed in yeast or Escherichia coli. Recently, we found that E.coli MutM, Nei and Nth have DNA glycosylase activity for 5-formyluracil, which is another type of oxidation product of the thymine methyl group. In this study, we examined whether or not E.coli MutM, Nei and Nth have also DNA glycosylase activity that acts on 5hmU in vitro. When incubated with synthetic duplex oligonucleotides containing 5hmU:G or 5hmU:A, purified MutM, Nei and Nth cleaved the 5hmU:G oligonucleotide 58, 5 and 37 times, respectively, more efficiently than the 5hmU:A oligonucleotide. In E.coli, the 5hmU-DNA glycosylase activities of MutM, Nei and Nth may play critical roles in the repair of 5hmU:G mispairs to avoid 5mC to T transitions.  相似文献   

19.
Modulation of the DNA repair pathway is an emerging target for the development of anticancer drugs. DNA interstrand cross-links (ICLs), one of the most severe forms of DNA damage caused by anticancer drugs such as cisplatin and mitomycin C (MMC), activates the Fanconi anemia (FA)/BRCA DNA repair pathway. Inhibition of the FA/BRCA pathway can enhance the cytotoxic effects of ICL-inducing anticancer drugs and can reduce anticancer drug resistance. To find FA/BRCA pathway inhibitory small molecules, we established a cell-based high-content screening method for quantitating the activation of the FA/BRCA pathway by measuring FANCD2 foci on DNA lesions and then applied our method to chemical screening. Using commercial LOPAC1280 chemical library screening, ouabain was identified as a competent FA/BRCA pathway inhibitory compound. Ouabain, a member of the cardiac glycoside family, binds to and inhibits Na+/K+-ATPase and has been used to treat heart disease for many years. We observed that ouabain, as well as other cardiac glycoside family members―digitoxin and digoxin―down-regulated FANCD2 and FANCI mRNA levels, reduced monoubiquitination of FANCD2, inhibited FANCD2 foci formation on DNA lesions, and abrogated cell cycle arrest induced by MMC treatment. These inhibitory activities of ouabain required p38 MAPK and were independent of cellular Ca2+ ion increase or the drug uptake-inhibition effect of ouabain. Furthermore, we found that ouabain potentiated the cytotoxic effects of MMC in tumor cells. Taken together, we identified an additional effect of ouabain as a FA/BRCA pathway-inhibiting chemosensitization compound. The results of this study suggest that ouabain may serve as a chemosensitizer to ICL-inducing anticancer drugs.  相似文献   

20.
The base excision repair DNA glycosylase MutY homolog (MYH) is responsible for removing adenines misincorporated into DNA opposite guanine or 7,8-dihydro-8-oxo-guanine (8-oxoG), thereby preventing G:C to T:A mutations. Biallelic germline mutations in the human MYH gene predispose individuals to multiple colorectal adenomas and carcinoma. We have recently demonstrated that hMYH interacts with the mismatch repair protein hMSH6, and that the hMSH2/hMSH6 (hMutSα) heterodimer stimulates hMYH activity. Here, we characterize the functional effect of two missense mutations (R227W and V232F) associated with hMYH polyposis that lie within, or adjacent to, the putative hMSH6 binding domain. Neither missense mutation affects the physical interaction between hMYH and hMSH6. However, hMYH(R227W) has a severe defect in A/8-oxoG binding and glycosylase activities, while hMYH(V232F) has reduced A/8-oxoG binding and glycosylase activities. The glycosylase activity of the V232F mutant can be partially stimulated by hMutSα but cannot be restored to the wild-type level. Both mutants also fail to complement mutY-deficiency in Escherichia coli. These data define the pathogenic mechanisms underlying two further hMYH polyposis-associated mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号