首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘伟丰  陶勇 《生物工程学报》2013,29(8):1123-1132
合成生物学以创建人工生命体系为目的.实践中人们希望人工生命体系具有更强的生产能力、转化能力、环境适应与监测能力,从而获得更优质的生产方式.生命体系的优化涉及到多层次的调控网络,而根本上还是对细胞中蛋白质的含量、定位、活性的控制.在蛋白质表达水平上进行控制是合成生物学元件设计、模块组装以及适配性研究最核心的手段.类似于工厂中的成本计算,合成生物学创建的人工生命体系(人工细胞工厂)以蛋白质预算为依据.优化蛋白质预算的研究策略已经成功应用于合成生物学研究实践中.  相似文献   

2.
固有无序蛋白(intrinsically disordered proteins,IDPs)是指在生理条件下缺乏有序稳定的高级结构,整体或局部不折叠,但能够参与多种生物学过程、行使特定生物学功能的一类蛋白质.固有无序蛋白决定了其不同于经典蛋白质"序列-结构-功能"的功能范式,丰富了蛋白质"结构-功能"的多样性.固有无序...  相似文献   

3.
吴萌  李竑  陈铭 《生命的化学》2021,41(2):353-360
蛋白质是生命活动的主要承担者.蛋白质种类繁多,结构多样,具有十分广泛的生物学功能,可作为载体蛋白、酶蛋白和信号肽等参与调控细胞内的各种代谢活动.生物体内蛋白质与其他分子的相互作用,尤其是蛋白质-蛋白质之间的相互作用,是蛋白质行使这些重要生物学功能的基础.通过研究可以相互作用的蛋白质形成的各种复合体,对揭示蛋白质的功能,...  相似文献   

4.
固有无序蛋白质(intrinsically disordered proteins,IDPs)是天然条件下自身不能折叠为明确唯一的空间结构,却具有生物学功能的一类新发现的蛋白质.这类蛋白质的发现是对传统的"结构-功能"关系认识模式的挑战.本文首先总结了无序蛋白质的实验鉴定手段、预测方法、数据库;并介绍了无序蛋白质结构(包括一级结构、二级结构、结构域无序性及变构效应)和功能特征;然后重点总结了无序蛋白质在进化角度研究的进展,包括无序区域产生的进化机制、进化速率,蛋白无序性的进化在蛋白质功能进化及生物学复杂性增加等方面的重要作用;最后展望了无序蛋白质在医药方面的应用前景.本文对于深入认识无序蛋白质的形成机制、结构和功能特征及其潜在的临床应用前景具有重要意义.  相似文献   

5.
在"蛋白质工程"一节教学中,以《普通高中生物学课程标准(2017年版)》为依据,采用"科学-技术-社会"的教学策略,由胰岛素的工业合成引入话题,通过资料分析和小组讨论等方式,引导学生形成"蛋白质工程是基因工程的延伸"的核心概念,提高基于已有知识和新信息解决实际问题的能力,关注基因工程在药物生产中的实际应用,认同基因工程和蛋白质工程等生物技术的应用价值和发展前景。  相似文献   

6.
蛋白质是生命的重要物质基础之一,也是生命活动的主要承担者.蛋白质丰度与其执行的生物学功能息息相关,受基因表达各个过程严格精密的调控.蛋白质丰度的直接影响因素包括相应mRNA初始量、蛋白质合成速率和降解速率.细胞对此3因素的调控将决定蛋白质最终的丰度.得益于定量蛋白质组学的飞速发展,规模化蛋白质丰度数据的产出,使得研究者可致力于发掘蛋白质丰度与其内在性质(如进化特征、结构特征、功能类型等)间规律性的相关性,这对于深入认识生命系统组成的基本原则具有重要意义.本文总结了蛋白质丰度调控及蛋白质丰度与其内在性质相关性的最新研究进展,及对这些规律性现象反映的生物学意义的解读.  相似文献   

7.
人重组磷脂酶D_2变构体cDNA和蛋白质序列分析   总被引:1,自引:0,他引:1  
采用VectorNTI、DNATools等计算机分析软件及信息库,研究人重组磷脂酶D2(rhPLD2)变构体的生物学特征。rhPLD2具有多种基因结构和功能调控元件,其编码的蛋白质具有发挥功能所必需的活性保守基序和一定的空间结构,表明rhPLD2应是一种具有一定生物学功能的异质性蛋白质。  相似文献   

8.
蛋白质为行使其生物学功能,通常与其它蛋白质发生相互作用,而这些相互作用的区域被称为"热点"区域,某些异常的相互作用可能会导致一些疾病的产生,而某些特定结构的小分子药物可以抑制这些相互作用,进而达到治疗疾病的目的。文章综述了蛋白质-蛋白质相互作用(protein-protein interactions,PPIs)中"热点"区域的构成、"热点"区域的变异与疾病之间的关系、"热点"区域的预测,以及几个"热点"区域与药物小分子的相互作用,为开发调节PPIs的小分子药物提供参考依据。  相似文献   

9.
在蛋白质工程、绿色生物制造以及合成生物学等研究领域中,对重要催化反应的重塑和合成路径的优化搭建,都依赖于对相关蛋白质结构与功能的深入了解。合成生物技术近年来的飞速发展对关键菌种及生物催化过程中的蛋白质的性能提出了更高要求,相关研究的关键是获得大批量、高纯度目的蛋白,并进行快速、准确的构效关系研究。中国科学院天津工业生物技术研究所建所10年来,在工业蛋白质领域进行了多年的积累,成功搭建成了蛋白质结构生物学平台;并在植物天然产物合成相关萜类合成酶、白色污染降解的聚对苯二甲酸乙二酯(polyethylene terephthalate, PET)塑料降解酶以及生物质转化利用相关酶等方面获得了一些进展,通过对这些蛋白进行结构和功能的研究,为许多研究工作提供了理论依据。蛋白质结构功能研究相关技术的不断发展,将加速合成生物学的学术和工业应用研究,推动我国生物制造领域的科技创新升级。  相似文献   

10.
蛋白质残基替换是基因突变的产物之一,它可能改变蛋白质三维结构,对其生物学功能产生重大影响,因此研究蛋白质残基替换与结构改变的关系具有重要意义.随着实验解析蛋白质结构的数量迅猛增长,越来越多的野生型-突变体被应用于结构生物学的比较研究中.本研究从蛋白质三维结构数据库(PDB)出发,收集和计算了大量结构特征数据,构建了一个目前已知最大的野生型-突变体(单残基差异)的结构对数据库DRSP,展示出氨基酸类型和主链偏好性对结构保守性的相关性.DRSP的开放使用可为高精度的蛋白质结构分析预测提供有用信息,它的数据库网址是http://www.labshare.cn/drsp/index.php.  相似文献   

11.
<正>细胞的各种生物学过程同时发生并协调进行,而且每一个生物学过程都包含合成、催化、调控等一系列功能。这些功能的完成几乎都有蛋白质复合物或蛋白质构成的复杂网络参与。疾病的发生通常会表现出蛋白质的异常改变,因此疾病发生和诊断往往会涉及蛋白质或多肽的变化和检测[1]。寻找和确定反映疾病发生的早期指标是生物医学研究的主要目标之一,  相似文献   

12.
随着"蛋白质组学"的蓬勃发展和人类对生物大分子功能机制的知识积累,涌现出海量的蛋白质相互作用数据。随之,研究者开发了300多个蛋白质相互作用数据库,用于存储、展示和数据的重利用。蛋白质相互作用数据库是系统生物学、分子生物学和临床药物研究的宝贵资源。本文将数据库分为3类:(1)综合蛋白质相互作用数据库;(2)特定物种的蛋白质相互作用数据库;(3)生物学通路数据库。重点介绍常用的蛋白质相互作用数据库,包括BioGRID、STRING、IntAct、MINT、DIP、IMEx、HPRD、Reactome和KEGG等。  相似文献   

13.
韩云宾  黄琛  冯雁 《生命科学》2011,(9):869-874
催化元件以及由多个催化元件组成的合成途径的设计与组装为人工合成体系的建立奠定了基础,是合成生物学的重要研究内容。除从自然生物中挖掘大量的天然酶和途径可供人工合成体系使用外,将计算生物学、蛋白质工程以及组合生物合成等技术相结合,理性地、有目的地进行催化元件和途径的人工设计与组装,将提供新功能酶以及新物质合成途径。介绍了催化元件和合成途径人工设计与组装的研究策略和最新进展。  相似文献   

14.
无细胞体系非天然蛋白质合成研究进展   总被引:2,自引:0,他引:2  
高伟  卜宁  卢元 《生物工程学报》2018,34(9):1371-1385
无细胞非天然蛋白质合成作为蛋白质研究的新兴手段,已成功用于表征蛋白质分子间、蛋白质与核酸分子间相互作用等基础科学研究及医药蛋白、蛋白质材料等工业生产领域。无细胞非天然蛋白质合成系统不需维持细胞的生长,无细胞膜阻碍,可依据研究目的添加基因元件或化学物质从而增强工程设计和过程调控的自由性;也可赋予蛋白质新的特性、结构及功能,如可实现蛋白翻译后修饰、反应手柄引入、生物物理探针及多聚蛋白质合成等。文中系统地综述了目前应用于无细胞蛋白质合成系统中的非天然氨基酸嵌入方法,包括全局抑制及基于正交翻译体系的终止密码子抑制、移码抑制、有义密码子再分配和非天然碱基等方法的研究进展,及非天然氨基酸在蛋白质修饰、生物物理探针、酶工程、蛋白质材料以及医药蛋白质生产等领域的应用进展,并分析了该体系的发展前景及广泛工业化应用的机遇与挑战。  相似文献   

15.
生物元件是合成生物学中的三大基本要素之一,是合成生物学的基石。现阶段,生物元件的挖掘、鉴定和改造仍然是合成生物学领域的重要研究方向之一。合成生物学与基因工程和代谢工程最显著的差别在于能够将大量的生物元件进行快速、随意的组装,而实现这一目标的前提是将生物元件标准化。目前,已经有大量基因组被解析,通过这些基因组数据库的注释与功能验证,并借助于各种生物信息学软件预测启动子、终止子、操纵了、转录因子和转录因子结合位点、核糖体结合位点以及蛋白质编码区等部件,为合成生物学提供丰富的生物元件信息资源。随着元基因组技术的兴起,大量未培养微生物中的基因和基因簇信息被解析,使得我们可以从占自然界中实际存在微生物总数99%的未知微生物中挖掘更多的生物元件。另外,生物元件可以从自然界分离出来,也可以对天然生物元件进行修饰、重组和改造后得到新的元件。酵母是异源蛋白表达的通用宿主和生物基产品生产的细胞工厂,但其本身可用的启动子非常有限,近年来各国学者在酵母启动子改造和文库构建方面做了很多工作,该文也将概述酵母启动子改造和在合成生物生物学研究领域中的应用方面的研究进展。  相似文献   

16.
最近在几种生物体中连续发现了蛋白质剪接现象,由于它与通常所说的RNA剪接的区别,人们称这些在蛋白质水平被剪切掉的部分为“蛋白质内含子”.有些蛋白质内含子具有核酸内切酶功能,编码蛋白质内含子的DNA片段是一类新的可移动遗传因子.文中介绍了目前发现的几例蛋白质剪接现象,讨论了蛋白质剪接的可能机理,分析了蛋白质内含子的进化及其生物学意义.  相似文献   

17.
蛋白质芯片是生物技术和功能蛋白组学的关键技术之一. 传统的生产蛋白的方 法周期长且费用高. 无细胞蛋白质合成系统和蛋白芯片的结合, 避免了基因的克隆、 蛋白的表达、纯化和保存等繁琐过程, 使整个无细胞蛋白芯片的制备过程快捷、迅速 和高效. 本文详细综述了无细胞蛋白质合成系统及其分类、无细胞表达系统在制备蛋 白质芯片方面的研究进展, 并探讨了无细胞蛋白质芯片在蛋白组学研究中的最新应用.  相似文献   

18.
"蛋白质结构多样性的原因"在高中生物学教学中,是重点也是难点,因知识抽象学生难以理解.通过用鱼线和不同颜色的穿孔彩色塑料珠将其转化为简单易行的模拟实验,可有效帮助学生理解和构建该重要概念,进而促进其构建结构与功能观,为后续知识点的学习打下基础.  相似文献   

19.
合成生物学的迅猛发展给包括药物和化学品在内的生物制造带来了强劲动力。它助力生物合成关键元件的挖掘,丰富了智能生物制造所必需的基础(催化)元件库;底盘细胞的性能优化为高效生物制造奠定了基石和平台。合成生物学经典的"设计-构建-测试-学习"则是创建高效智能细胞工厂的核心研发内容。天然宿主的系统代谢工程和合成生物学以及无细胞体系的体外合成生物学,是实现高效生物制造和替代底盘细胞体系的可选途径。该文简要综述近年国内外的相关研究进展。  相似文献   

20.
合成生物学旨在建立一套完整的工程理论和方法,通过设计和组装基本生物学元件,更为有效地实现复杂生物系统的设计,并使其完成可编程的生物学功能。近年来随着可编程基因组元件的出现,特别是CRISPR和CRISPRi技术平台的建立和完善,使得合成生物学进入了一个全新发展的时期。本文重点综述CRISPR等基因组编辑和调控技术,其在构建可编程生物学元件和复杂基因线路的应用以及合成生物学在医学中(称为医学合成生物学)的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号