首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

To investigate the effect of CoenzymeQ10 (CoQ10) on pain severity and cartilage degeneration in an experimental model of rat osteoarthritis (OA).

Materials and Methods

OA was induced in rats by intra-articular injection of monosodium iodoacetate (MIA) to the knee. Oral administration of CoQ10 was initiated on day 4 after MIA injection. Pain severity was assessed by measuring secondary tactile allodynia using the von Frey assessment test. The degree of cartilage degradation was determined by measuring cartilage thickness and the amount of proteoglycan. The mankin scoring system was also used. Expressions of matrix metalloproteinase-13 (MMP-13), interleukin-1β (IL-1β), IL-6, IL-15, inducible nitric oxide synthase (iNOS), nitrotyrosine and receptor for advanced glycation end products (RAGE) were analyzed using immunohistochemistry.

Results

Treatment with CoQ10 demonstrated an antinociceptive effect in the OA animal model. The reduction in secondary tactile allodynia was shown by an increased pain withdrawal latency and pain withdrawal threshold. CoQ10 also attenuated cartilage degeneration in the osteoarthritic joints. MMP-13, IL-1β, IL-6, IL-15, iNOS, nitrotyrosine and RAGE expressions were upregulated in OA joints and significantly reduced with CoQ10 treatment.

Conclusion

CoQ10 exerts a therapeutic effect on OA via pain suppression and cartilage degeneration by inhibiting inflammatory mediators, which play a vital role in OA pathogenesis.  相似文献   

2.
Various factors may account for the positive association between meniscal repair and anterior cruciate ligament reconstruction, one being the modulation of healing response of meniscal fibrochondrocytes by growth factors released with intra-articular bleeding and fibrin clot formation. Analysis of vascular endothelial growth factor (VEGF) and its receptors, VEGFR1 and VEGFR2, may be useful in the clinical assessment of bone and soft-tissue remodeling. We measured systemic and local levels of VEGF (VEGF165), VEGFR1 and VEGFR2 after either arthroscopic partial meniscectomy (APM) or single-bundle anterior cruciate ligament reconstruction (ACLR) in order to determine the local effect of bone tunnelling and notchplasty on the release of these growth factors. The study population included 40 patients: 20 consecutive patients had undergone ACLR with hamstring grafts and 20 had undergone APM. Thirty minutes after the end of the operation, knee joint fluid samples were collected via the drainage tube and at the same time venous blood samples were drawn. In both sets of samples, VEGF, VEGFR1 and VEGFR2 concentrations were determined by enzyme-linked immunosorbent assay (ELISA). No significant differences in VEGF, VEGFR1 or VEGFR2 concentrations in the venous blood were observed between the two treatment groups. In contrast, VEGF and VEGFR2 levels were significantly higher in the knee joint fluid of the ACLR group; furthermore, VEGF and VEGFR1 were significantly higher in the knee joint fluid than in the venous blood, whereas VEGFR2 was lower in the knee joint fluid than in the venous blood. Local release of VEGF and its angiogenetic receptor VEGFR2, but not the negative regulator VEGFR1, was significantly higher after ACLR than after APM, indicating a better vasculogenic potential for enhanced bone-graft and meniscus healing. These results could suggest that VEGF and VEGFRs could be considered as good biomarkers of tissue healing after knee joint surgery.  相似文献   

3.
4.

Background

Recent data have suggested a relationship between acute arthritic pain and acid sensing ion channel 3 (ASIC3) on primary afferent fibers innervating joints. The purpose of this study was to clarify the role of ASIC3 in a rat model of osteoarthritis (OA) which is considered a degenerative rather than an inflammatory disease.

Methods

We induced OA via intra-articular mono-iodoacetate (MIA) injection, and evaluated pain-related behaviors including weight bearing measured with an incapacitance tester and paw withdrawal threshold in a von Frey hair test, histology of affected knee joint, and immunohistochemistry of knee joint afferents. We also assessed the effect of ASIC3 selective peptide blocker (APETx2) on pain behavior, disease progression, and ASIC3 expression in knee joint afferents.

Results

OA rats showed not only weight-bearing pain but also mechanical hyperalgesia outside the knee joint (secondary hyperalgesia). ASIC3 expression in knee joint afferents was significantly upregulated approximately twofold at Day 14. Continuous intra-articular injections of APETx2 inhibited weight distribution asymmetry and secondary hyperalgesia by attenuating ASIC3 upregulation in knee joint afferents. Histology of ipsilateral knee joint showed APETx2 worked chondroprotectively if administered in the early, but not late phase.

Conclusions

Local ASIC3 immunoreactive nerve is strongly associated with weight-bearing pain and secondary hyperalgesia in MIA-induced OA model. APETx2 inhibited ASIC3 upregulation in knee joint afferents regardless of the time-point of administration. Furthermore, early administration of APETx2 prevented cartilage damage. APETx2 is a novel, promising drug for OA by relieving pain and inhibiting disease progression.  相似文献   

5.
Existing literature demonstrates that fibroblast growth factor-2 (FGF-2) exerts opposing, contradictory biological effects on cartilage homeostasis in different species. In human articular cartilage, FGF-2 plays a catabolic and anti-anabolic role in cartilage homeostasis, driving homeostasis toward degeneration and osteoarthritis (OA). In murine joints, however, FGF-2 has been identified as an anabolic mediator as ablation of the FGF-2 gene demonstrated increased susceptibility to OA. There have been no previous studies specifically addressing species-specific differences in FGF-2-mediated biological effects. In this study, we provide a mechanistic understanding by which FGF-2 exerts contradictory biological effects in human versus murine tissues. Using human articular cartilage (ex vivo) and a medial meniscal destabilization (DMM) animal model (in vivo), species-specific expression patterns of FGFR receptors (FGFRs) are elucidated between human and murine articular cartilage. In the murine OA model followed by intra-articular injection of FGF-2, we further correlate FGFR profiles to changes in behavioral pain perception, proteoglycan content in articular cartilage, and production of inflammatory (CD11b) and angiogenic (VEGF) mediators in synovium lining cells. Our results suggest that the fundamental differences in cellular responses between human and murine tissues may be secondary to distinctive expression patterns of FGFRs that eventually determine biological outcomes in the presence of FGF-2. The complex interplay of FGFRs and the downstream signaling cascades induced by FGF-2 in human cartilage should add caution to the use of this particular growth factor for biological therapy in the future.  相似文献   

6.
Li X  Gibson G  Kim JS  Kroin J  Xu S  van Wijnen AJ  Im HJ 《Gene》2011,480(1-2):34-41
Because miR-146a is linked to osteoarthritis (OA) and cartilage degeneration is associated with pain, we have characterized the functional role of miR-146a in the regulation of human articular cartilage homeostasis and pain-related factors. Expression of miRNA 146a was analyzed in human articular cartilage and synovium, as well as in dorsal root ganglia (DRG) and spinal cord from a rat model for OA-related pain assessment. The functional effects of miR-146a on human chondrocytic, synovial, and microglia cells were studied in cells transfected with miR-146a. Using real-time PCR, we assessed the expression of chondrocyte metabolism-related genes in chondrocytes, genes for inflammatory factors in synovial cells, as well as pain-related proteins and ion channels in microglial cells. Previous studies showed that miR-146a is significantly upregulated in human peripheral knee OA joint tissues. Transfection of synthetic miR-146a significantly suppresses extracellular matrix-associated proteins (e.g., Aggrecan, MMP-13, ADAMTS-5, collagen II) in human knee joint chondrocytes and regulates inflammatory cytokines in synovial cells from human knee joints. In contrast, miR-146a is expressed at reduced levels in DRGs and dorsal horn of the spinal cords isolated from rats experiencing OA-induced pain. Exogenous supplementation of synthetic miR-146a significantly modulates inflammatory cytokines and pain-related molecules (e.g., TNFα, COX-2, iNOS, IL-6, IL8, RANTS and ion channel, TRPV1) in human glial cells. Our findings suggest that miR-146a controls knee joint homeostasis and OA-associated algesia by balancing inflammatory responses in cartilage and synovium with pain-related factors in glial cells. Hence, miR-146a may be useful for the treatment of both cartilage regeneration and pain symptoms caused by OA.  相似文献   

7.
Vascular endothelial growth factors (VEGFs) are critical regulators of vascular and lymphatic function during development, in health and in disease. There are five mammalian VEGF ligands and three VEGF receptor tyrosine kinases. In addition, several VEGF co-receptors that lack intrinsic catalytic activity, but that indirectly modulate the responsiveness to VEGF contribute to the final biological effect. This review describes the molecular features of VEGFs, VEGFRs and co-receptors with focus on their role in the treatment of cancer.  相似文献   

8.
The chondroprotective effect of olive leaf extract (OLE) on knee osteoarthritis (OA) was studied with STR/ort mice (n = 5). OLE was administrated with a dosage of 100 mg/kg for 8 weeks and the OA severity score of hind limb knee joints was then measured. The Mankin scores of the knee joints of the non-OA control group, OA control group and OLE-treated group were 3.50, 11.13 and 7.20, respectively. This suggests that oral OLE supplements help prevent cartilage degeneration in STR/ort mice. In vitro, the synthesis of high molecular weight hyaluronan in synovial cells (HIG-82) was increased by OLE stimulation. This suggests that OLE modulates hyaluronan metabolism in synovial cells and improves OA symptoms. Our findings indicate that OLE intake inhibits cartilage destruction by increasing high molecular weight hyaluronan and thus preventing OA progress.  相似文献   

9.
Aggrecan is a critical component of the extracellular matrix of all cartilages. One of the early hallmarks of osteoarthritis (OA) is the loss of aggrecan from articular cartilage followed by degeneration of the tissue. Mesenchymal progenitor cell (MPC) populations in joints, including those in the synovium, have been hypothesized to play a role in the maintenance and/or repair of cartilage, however, the mechanism by which this may occur is unknown. In the current study, we have uncovered that aggrecan is secreted by synovial MPCs from healthy joints yet accumulates inside synovial MPCs within OA joints. Using human synovial biopsies and a rat model of OA, we established that this observation in aggrecan metabolism also occurs in vivo. Moreover, the loss of the “anti-proteinase” molecule alpha-2 macroglobulin (A2M) inhibits aggrecan secretion in OA synovial MPCs, whereas overexpressing A2M rescues the normal secretion of aggrecan. Using mice models of OA and cartilage repair, we have demonstrated that intra-articular injection of aggrecan into OA joints inhibits cartilage degeneration and stimulates cartilage repair respectively. Furthermore, when synovial MPCs overexpressing aggrecan were transplanted into injured joints, increased cartilage regeneration was observed vs. wild-type MPCs or MPCs with diminished aggrecan expression. Overall, these results suggest that aggrecan secreted from joint-associated MPCs may play a role in tissue homeostasis and repair of synovial joints.Subject terms: Mesenchymal stem cells, Cartilage, Experimental models of disease  相似文献   

10.
Osteoarthritis (OA) is the most common age‐related joint disorder with no effective therapy. According to the World Health Organization, OA affects over 500 million people and is characterized by degradation of cartilage and other joint tissues, severe pain, and impaired mobility. Mitochondrial dysfunction contributes to OA pathology. However, interventions to rescue mitochondrial defects in human OA are not available. Urolithin A (Mitopure) is a natural postbiotic compound that promotes mitophagy and mitochondrial function and beneficially impacts muscle health in preclinical models of aging and in elderly and middle‐aged humans. Here, we showed that Urolithin A improved mitophagy and mitochondrial respiration in primary chondrocytes from joints of both healthy donors and OA patients. Furthermore, Urolithin A reduced disease progression in a mouse model of OA, decreasing cartilage degeneration, synovial inflammation, and pain. These improvements were associated with increased mitophagy and mitochondrial content, in joints of OA mice. These findings indicate that UA promotes joint mitochondrial health, alleviates OA pathology, and supports Urolithin A''s potential to improve mobility with beneficial effects on structural damage in joints.  相似文献   

11.
Vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) drive angiogenesis, and several VEGFR inhibitors are already approved for use as single agents or in combination with chemotherapy. Although there is a clear benefit with these drugs in a variety of tumors, the clinical response varies markedly among individuals. Therefore, there is a need for an efficient method to identify patients who are likely to respond to antiangiogenic therapy and to monitor its effects over time. We have recently developed a molecular imaging tracer for imaging VEGFRs known as scVEGF/99mTc; an engineered single-chain (sc) form of VEGF radiolabeled with technetium Tc 99m (99mTc). After intravenous injection, scVEGF/99mTc preferentially binds to and is internalized by VEGFRs expressed within tumor vasculature, providing information on prevalence of functionally active receptors. We now report that VEGFR imaging readily detects the effects of pazopanib, a small-molecule tyrosine kinase inhibitor under clinical development, which selectively targets VEGFR, PDGFR, and c-Kit in mice with HT29 tumor xenografts. Immunohistochemical analysis confirmed that the changes in VEGFR imaging reflect a dramatic pazopanib-induced decrease in the number of VEGFR-2+/CD31+ endothelial cells (ECs) within the tumor vasculature followed by a relative increase in the number of ECs at the tumor edges. We suggest that VEGFR imaging can be used for the identification of patients that are responding to VEGFR-targeted therapies and for guidance in rational design, dosing, and schedules for combination regimens of antiangiogenic treatment.  相似文献   

12.
Acupuncture is an emerging alternative therapy that has been beneficial for the pain of osteoarthritis (OA). However, the underlying mechanism of protective effect remains unclear. MCP1/CCR2 axis can be stimulated in various periods of OA, and we hypothesize that acupuncture may treat OA by regulating the MCP1/CCR2 axis. This study aimed to explore the effect of acupuncture at points ST35 and ST36 on the effects of hyperalgesia and cartilage in OA rats including the expression of chemokines, nerve growth factor (NGF), and inflammatory-related proteins. OA was induced in male Sprague–Dawley rats by anterior cruciate ligament transection at the right knee. The first acupuncture intervention was performed on the seventh day after surgery and once a day for seven weeks. The knee-pain-related behaviors, histology, and related protein were examined in this study. We have found that electroacupuncture at ST35 and ST36 can significantly alleviate the hyperalgesia and cartilage degeneration as well as reducing nerve sprouting in OA knee joint. Moreover, acupuncture treatment may inhibit the MCP1/CCR2 axis as well as down-regulate inflaming factor and NGF in cartilage and synovial tissue. The data presented here indicate that acupuncture exerts a protective effect against hyperalgesia and cartilage degeneration, and the mechanism might involve in chemokines and NGF pathway.  相似文献   

13.
Bone morphogenetic protein-7 (BMP-7) regulates cartilage metabolism and promotes matrix synthesis. However, the effect of BMP-7 on inflammatory arthritis remains unknown. We investigated the effect and mechanism of exogenous BMP-7 on cartilage and synovium in vivo in rat zymosan-induced arthritis. Zymosan was injected into the left knees of Wistar rats. Phosphate-buffered saline or BMP-7 at 10, 100, or 1000 ng per joint was injected into the left knee every 2 days. Normal joints acted as normal controls. The knee joints were analyzed histologically and immunohistologically at 14 days. Joint swelling was evaluated by measuring the transverse diameter of the knee joints. Synovial lysates were collected, and the concentrations of interleukin-1β (IL-1β), IL-6, and IL-10 were measured by enzyme-linked immunosorbent assay. Intra-articular injection of zymosan resulted in acute inflammation and was followed by cartilage degeneration. Local administrations of BMP-7 inhibited this loss of cartilage matrix in a dose-dependent manner. Immunohistochemical analysis demonstrated enhanced type II collagen levels in cartilage and enhanced BMP-7 levels in cartilage and synovium after exogenous BMP-7 treatment. Joint swelling and cell infiltration into synovium were significantly reduced by BMP-7 injections. Administration of BMP-7 decreased IL-1β production significantly and increased IL-10 production in the synovium. Thus, intra-articular injections of BMP-7 had a protective effect on cartilage degeneration in the inflammatory arthritis model by enhancing levels of BMP-7 in cartilage and suppressing the production of IL-1β in synovium.  相似文献   

14.
The purpose of this work was to establish a controlled and reversible muscle weakness model for studying the effects of weakness on joint degeneration leading to osteoarthritis (OA). The knee extensor muscles of rabbits were injected with single or repeat doses of Botulinum type-A toxin (BTX-A) to partially inhibit acetylcholine (ACh) release at the neuromuscular junction. BTX-A-injected muscles atrophied, they became weaker and push-off forces during hopping were reduced compared to control. BTX-A injections had the greatest effect at short-muscle length and low-stimulation frequencies. Superimposing BTX-A injections on anterior cruciate ligament transection did not cause greater muscle atrophy or weakness than BTX-A injections alone. Monthly repeat injections could be used to keep muscles weak for half a year without any obvious adverse effects to the animals. Gross morphology of the knees and histology of articular cartilage suggested that, in some animals, 4 weeks of muscle weakness resulted in initial signs of joint degeneration, indicating that weakness may be an independent risk factor for joint degeneration leading to OA.  相似文献   

15.
Osteoarthritis(OA) refers to a chronic joint disease characterized by degenerative changes of articular cartilage and secondary bone hyperplasia. Since articular cartilage has a special structure, namely the absence of blood vessels as well as the low conversion rate of chondrocytes in the cartilage matrix, the treatment faces numerous clinical challenges. Traditional OA treatment(e.g., arthroscopic debridement, microfracture, autologous or allogeneic cartilage transplantation,chondrocyte transplantation) is primarily symptomatic treatment and pain management, which cannot contribute to regenerating degenerated cartilage or reducing joint inflammation. Also, the generated mixed fibrous cartilage tissue is not the same as natural hyaline cartilage. Mesenchymal stem cells(MSCs) have turned into the most extensively explored new therapeutic drugs in cell-based OA treatment as a result of their ability to differentiate into chondrocytes and their immunomodulatory properties. In this study, the preliminary results of preclinical(OA animal model)/clinical trials regarding the effects of MSCs on cartilage repair of knee joints are briefly summarized, which lay a solid application basis for more and deeper clinical studies on cell-based OA treatment.  相似文献   

16.
Maintaining the self-renewal of embryonic stem cells (ESCs) could be achieved by activating the extrinsic signaling, i.e., the use of leukemia inhibitory factor (LIF), or blocking the intrinsic differentiation pathways, i.e., the use of GSK3 and MEK inhibitors (2i). Here we found that even in medium supplemented with LIF, mESCs still tend to differentiate toward meso-endoderm lineages after long-term culture and the culture spontaneously secretes vascular endothelial growth factors (VEGFs). Blocking VEGF signaling with sunitinib, an anti-cancer drug and a receptor tyrosine kinase (RTK) inhibitor mainly targeting VEGF receptors (VEGFRs), is capable of maintaining the mESCs in the undifferentiated state without the need for feeder cells or LIF. Sunitinib facilitates the derivation of mESCs from blastocysts, and the mESCs maintained in sunitinib-containing medium remain pluripotent and are able to contribute to chimeric mice. Sunitinib also promotes iPSC generation from MEFs with only Oct4. Knocking down VEGFR2 or blocking it with neutralizing antibody mimicks the effect of sunitinib, indicating that blocking VEGF/VEGFR signaling is indeed beneficial to the self-renewal of mESCs. We also found that hypoxia-inducible factor alpha (HIF1α) and endoplasmic reticulum (ER) stress are involved in the production of VEGF in mESCs. Blocking both pathways inhibits the expression of VEGF and prevents spontaneous differentiation of mESCs. Interestingly, LIF may also exert its effect by downregulating HIF1α and ER stress pathways and subsequent VEGF expression. These results indicate the existence of an intrinsic differentiation pathway in mESCs by activating the autocrine VEGF signaling. Blocking VEGF signaling with sunitinib or other small molecules help to maintain the mESCs in the ground state of pluripotency.  相似文献   

17.

Introduction

Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration.

Methods

sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness.

Results

All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation.

Conclusions

Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage damage, but also resulted in pronounced subchondral sclerosis, synovial macrophage activation, and osteophyte formation.  相似文献   

18.

Introduction

We tested the hypothesis that there exist relationships between the onset of early stage radiographically defined knee osteoarthritis (OA), pain and changes in biomarkers of joint metabolism.

Methods

Using Kellgren-Lawrence (K/L) grading early radiographic knee OA (K/L 2) was detected in 16 of 46 patients. These grades (K/L 1 is no OA and K/L 2 is early OA) were divided into two groups according to the presence or absence of persistent knee pain. Sera (s) and urines (u) were analysed with biomarkers for cartilage collagen cleavage (sC2C and uCTX-II) and synthesis (sCPII), bone resorption (uNTx) and synovitis (hyaluronic acid: sHA).

Results

sCPII decreased and sC2C/sCPII, uCTX-II/sCPII and sHA increased with onset of OA (K/L 2 versus K/L 1) irrespective of joint pain. In contrast, sC2C and uCTX-II remained unchanged in early OA patients. Of the patients with K/L grades 1 and 2 sC2C, sCPII, sHA, uNTX and uCTX-II were all significantly increased in patients with knee pain independent of grade. Among the K/L grade 2 subjects, only uCTX-II and uCTX-II/sCPII were increased in those with knee pain. In grade 1 patients both sC2C and sCPII were increased in those with knee pain. No such grade specific changes were seen for the other biomarkers including sHA.

Conclusions

These results suggest that changes in cartilage matrix turnover detected by molecular biomarkers may reflect early changes in cartilage structure that account directly or indirectly for knee pain. Also K/L grade 1 patients with knee pain exhibit biomarker features of early OA.  相似文献   

19.
20.
Vascular endothelial growth factor (VEGF) promotes cartilage-degrading pathways, and there is evidence for the involvement of reactive oxygen species (ROS) in cartilage degeneration. However, a relationship between ROS and VEGF has not been reported. Here, we investigate whether the expression of VEGF is modulated by ROS. Aspirates of synovial fluid from patients with osteoarthritis (OA) were examined for intra-articular VEGF using ELISA. Immortalized C28/I2 chondrocytes and human knee cartilage explants were exposed to phorbol myristate acetate (PMA; 0-20 microg/ml), which is a ROS inducer, or 3-morpholino-sydnonimine hydrochloride (SIN-1; 0-20 microM), which is a ROS donor. The levels of VEGF protein and nitric oxide (NO) production were determined in the medium supernatant, using ELISA and Griess reagent, respectively. Gene expression of VEGF-121 and VEGF-165 was determined by splice variant RT-PCR. Expression of VEGF and VEGF receptors (VEGFR-1 and VEGFR-2) was quantified by real-time RT-PCR. Synovial fluid from OA patients revealed markedly elevated levels of VEGF. Common RT-PCR revealed that the splice variants were present in both immortalized chondrocytes and cartilage discs. In immortalized chondrocytes, stimulation with PMA or SIN-1 caused increases in the levels of VEGF, VEGFR-1 and VEGFR-2 mRNA expression. Cartilage explants produced similar results, but VEGFR-1 was only detectable after stimulation with SIN-1. Stimulation with PMA or SIN-1 resulted in a dose-dependent upregulation of the VEGF protein (as determined using ELISA) and an increase in the level of NO in the medium. Our findings indicate ROS-mediated induction of VEGF and VEGF receptors in chondrocytes and cartilage explants. These results demonstrate a relationship between ROS and VEGF as multiplex mediators in articular cartilage degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号