首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.  相似文献   

2.
DNA double-strand breaks (DSBs) with 5′ adducts are frequently formed from many nucleic acid processing enzymes, in particular DNA topoisomerase 2 (TOP2). The key intermediate of TOP2 catalysis is the covalent complex (TOP2cc), consisting of two TOP2 subunits covalently linked to the 5′ ends of the nicked DNA. In cells, TOP2ccs can be trapped by cancer drugs such as etoposide and then converted into DNA double-strand breaks (DSBs) that carry adducts at the 5′ end. The repair of such DSBs is critical to the survival of cells, but the underlying mechanism is still not well understood. We found that etoposide-induced DSBs are efficiently resected into 3′ single-stranded DNA in cells and the major nuclease for resection is the DNA2 protein. DNA substrates carrying model 5′ adducts were efficiently resected in Xenopus egg extracts and immunodepletion of Xenopus DNA2 also strongly inhibited resection. These results suggest that DNA2-mediated resection is a major mechanism for the repair of DSBs with 5′ adducts.  相似文献   

3.
Non-homologous end joining (NHEJ) is the main repair pathway for DNA double-strand breaks (DSBs) in cells with limited 5′ resection. To better understand how overhang polarity of chromosomal DSBs affects NHEJ, we made site-specific 5′-overhanging DSBs (5′ DSBs) in yeast using an optimized zinc finger nuclease at an efficiency that approached HO-induced 3′ DSB formation. When controlled for the extent of DSB formation, repair monitoring suggested that chromosomal 5′ DSBs were rejoined more efficiently than 3′ DSBs, consistent with a robust recruitment of NHEJ proteins to 5′ DSBs. Ligation-mediated qPCR revealed that Mre11-Rad50-Xrs2 rapidly modified 5′ DSBs and facilitated protection of 3′ DSBs, likely through recognition of overhang polarity by the Mre11 nuclease. Next-generation sequencing revealed that NHEJ at 5′ DSBs had a higher mutation frequency, and validated the differential requirement of Pol4 polymerase at 3′ and 5′ DSBs. The end processing enzyme Tdp1 did not impact joining fidelity at chromosomal 5′ DSBs as in previous plasmid studies, although Tdp1 was recruited to only 5′ DSBs in a Ku-independent manner. These results suggest distinct DSB handling based on overhang polarity that impacts NHEJ kinetics and fidelity through differential recruitment and action of DSB modifying enzymes.  相似文献   

4.
RecJ exonuclease: substrates, products and interaction with SSB   总被引:4,自引:0,他引:4  
The RecJ exonuclease from Escherichia coli degrades single-stranded DNA (ssDNA) in the 5′–3′ direction and participates in homologous recombination and mismatch repair. The experiments described here address RecJ's substrate requirements and reaction products. RecJ complexes on a variety of 5′ single-strand tailed substrates were analyzed by electrophoretic mobility shift in the absence of Mg2+ ion required for substrate degradation. RecJ required single-stranded tails of 7 nt or greater for robust binding; addition of Mg2+ confirmed that substrates with 5′ tails of 6 nt or less were poor substrates for RecJ exonuclease. RecJ is a processive exonuclease, degrading ~1000 nt after a single binding event to single-strand DNA, and releases mononucleotide products. RecJ is capable of degrading a single-stranded tail up to a double-stranded junction, although products in such reactions were heterogeneous and RecJ showed a limited ability to penetrate the duplex region. RecJ exonuclease was equally potent on 5′ phosphorylated and unphosphorylated ends. Finally, DNA binding and nuclease activity of RecJ was specifically enhanced by the pre-addition of ssDNA-binding protein and we propose that this specific interaction may aid recruitment of RecJ.  相似文献   

5.
To characterize the repair pathways of chromosome double-strand breaks (DSBs), one approach involves monitoring the repair of site-specific DSBs generated by rare-cutting endonucleases, such as I-SceI. Using this method, we first describe the roles of Ercc1, Msh2, Nbs1, Xrcc4, and Brca1 in a set of distinct repair events. Subsequently, we considered that the outcome of such assays could be influenced by the persistent nature of I-SceI-induced DSBs, in that end-joining (EJ) products that restore the I-SceI site are prone to repeated cutting. To address this aspect of repair, we modified I-SceI-induced DSBs by co-expressing I-SceI with a non-processive 3′ exonuclease, Trex2, which we predicted would cause partial degradation of I-SceI 3′ overhangs. We find that Trex2 expression facilitates the formation of I-SceI-resistant EJ products, which reduces the potential for repeated cutting by I-SceI and, hence, limits the persistence of I-SceI-induced DSBs. Using this approach, we find that Trex2 expression causes a significant reduction in the frequency of repair pathways that result in substantial deletion mutations: EJ between distal ends of two tandem DSBs, single-strand annealing, and alternative-NHEJ. In contrast, Trex2 expression does not inhibit homology-directed repair. These results indicate that limiting the persistence of a DSB causes a reduction in the frequency of repair pathways that lead to significant genetic loss. Furthermore, we find that individual genetic factors play distinct roles during repair of non-cohesive DSB ends that are generated via co-expression of I-SceI with Trex2.  相似文献   

6.
We describe a new assay for in vitro repair of oxidatively induced DNA double-strand breaks (DSBs) by HeLa cell nuclear extracts. The assay employs linear plasmid DNA containing DNA DSBs produced by the radiomimetic drug bleomycin. The bleomycin-induced DSB possesses a complex structure similar to that produced by oxidative processes and ionizing radiation. Bleomycin DSBs are composed of blunt ends or ends containing a single 5′-base overhang. Regardless of the 5′-end structure, all bleomycin-induced DSBs possess 3′-ends blocked by phosphoglycolate. Cellular extraction and initial end joining conditions for our assay were optimized with restriction enzyme-cleaved DNA to maximize ligation activity. Parameters affecting ligation such as temperature, time, ionic strength, ATP utilization and extract protein concentration were examined. Similar reactions were performed with the bleomycin-linearized substrate. In all cases, end-joined molecules ranging from dimers to higher molecular weight forms were produced and observed directly in agarose gels stained with Vistra Green and imaged with a FluorImager 595. This detection method is at least 50-fold more sensitive than ethidium bromide and permits detection of ≤0.25 ng double-stranded DNA per band in post-electrophoretically stained agarose gels. Consequently, our end-joining reaction requires ≤100 ng substrate DNA and ≥50% conversion of substrate to product is achieved with simple substrates such as restriction enzyme-cleaved DNA. Using our assay we have observed a 6-fold lower repair rate and a lag in reaction initiation for bleomycin-induced DSBs as compared to blunt-ended DNA. Also, end joining reaction conditions are DSB end group dependent. In particular, bleomycin-induced DSB repair is considerably more sensitive to inhibition by increased ionic strength than repair of blunt-ended DNA.  相似文献   

7.
Non-homologous end-joining (NHEJ), the preferred pathway to repair double-strand breaks (DSBs) in higher eukaryotes, relies on a collection of molecular tools to process the broken ends, including specific DNA polymerases. Among them, Polµ is unique as it can catalyze DNA synthesis upon connection of two non-complementary ends. Here, we demonstrate that this capacity is intrinsic to Polµ, not conferred by other NHEJ factors. To understand the molecular determinants of its specific function in NHEJ, the interaction of human Polµ with DNA has been directly visualized by electromobility shift assay and footprinting assays. Stable interaction with a DNA gap requires the presence of a recessive 5′-P, thus orienting the catalytic domain for primer and nucleotide binding. Accordingly, recognition of the 5′-P is crucial to align the two DNA substrates of the NHEJ reaction. Site-directed mutagenesis demonstrates the relevance of three specific residues (Lys249, Arg253 and Arg416) in stabilizing the primer strand during end synapsis, allowing a range of microhomology-induced distortions beneficial for NHEJ. Moreover, our results suggest that the Polµ BRCT domain, thought to be exclusively involved in interaction with NHEJ core factors, has a direct role in binding the DNA region neighbor to the 5′-P, thus boosting Polµ-mediated NHEJ reactions.  相似文献   

8.
Futile short-patch DNA base excision repair of adenine:8-oxoguanine mispair   总被引:4,自引:2,他引:2  
8-Oxo-7, 8-dihydrodeoxyguanosine (8-oxo-dG), one of the representative oxidative DNA lesions, frequently mispairs with the incoming dAMP during mammalian DNA replication. Mispaired dA is removed by post-replicative base excision repair (BER) initiated by adenine DNA glycosylase, MYH, creating an apurinic (AP) site. The subsequent mechanism ensuring a dC:8-oxo-dG pair, a substrate for 8-oxoguanine DNA glycosylase (OGG1), remains to be elucidated. At the nucleotide insertion step, none of the mammalian DNA polymerases examined exclusively inserted dC opposite 8-oxo-dG that was located in a gap. AP endonuclease 1, which possesses 3′→5′ exonuclease activity and potentially serves as a proofreader, did not discriminate dA from dC that was located opposite 8-oxo-dG. However, human DNA ligases I and III joined 3′-dA terminus much more efficiently than 3′-dC terminus when paired to 8-oxo-dG. In reconstituted short-patch BER, repair products contained only dA opposite 8-oxo-dG. These results indicate that human DNA ligases discriminate dC from dA and that MYH-initiated short-patch BER is futile and hence this BER must proceed to long-patch repair, even if it is initiated as short-patch repair, through strand displacement synthesis from the ligation-resistant dC terminus to generate the OGG1 substrate, dC:8-oxo-dG pair.  相似文献   

9.
RNA and DNA ligases catalyze the formation of a phosphodiester bond between the 5′-phosphate and 3′-hydroxyl ends of nucleic acids. In this work, we describe the ability of the thermophilic RNA ligase MthRnl from Methanobacterium thermoautotrophicum to recognize and modify the 3′-terminal phosphate of RNA and single-stranded DNA (ssDNA). This ligase can use an RNA 3′p substrate to generate an RNA 2′,3′-cyclic phosphate or convert DNA3′p to ssDNA3′pp5′A. An RNA ligase from the Thermus scotoductus bacteriophage TS2126 and a predicted T4 Rnl1-like protein from Thermovibrio ammonificans, TVa, were also able to adenylate ssDNA 3′p. These modifications of RNA and DNA 3′-phosphates are similar to the activities of RtcA, an RNA 3′-phosphate cyclase. The initial step involves adenylation of the enzyme by ATP, which is then transferred to either RNA 3′p or DNA 3′p to generate the adenylated intermediate. For RNA 3′pp5′A, the third step involves attack of the adjacent 2′ hydroxyl to generate the RNA 2′,3′-cyclic phosphate. These steps are analogous to those in classical 5′ phosphate ligation. MthRnl and TS2126 RNA ligases were not able to modify a 3′p in nicked double-stranded DNA. However, T4 DNA ligase and RtcA can use 3′-phosphorylated nicks in double-stranded DNA to produce a 3′-adenylated product. These 3′-terminal phosphate-adenylated intermediates are substrates for deadenylation by yeast 5′Deadenylase. Our findings that classic ligases can duplicate the adenylation and phosphate cyclization activity of RtcA suggests that they have an essential role in metabolism of nucleic acids with 3′-terminal phosphates.  相似文献   

10.
RECQ5 DNA helicase suppresses homologous recombination (HR) possibly through disruption of RAD51 filaments. Here, we show that RECQ5 is constitutively associated with the MRE11–RAD50–NBS1 (MRN) complex, a primary sensor of DNA double-strand breaks (DSBs) that promotes DSB repair and regulates DNA damage signaling via activation of the ATM kinase. Experiments with purified proteins indicated that RECQ5 interacts with the MRN complex through both MRE11 and NBS1. Functional assays revealed that RECQ5 specifically inhibited the 3′→5′ exonuclease activity of MRE11, while MRN had no effect on the helicase activity of RECQ5. At the cellular level, we observed that the MRN complex was required for the recruitment of RECQ5 to sites of DNA damage. Accumulation of RECQ5 at DSBs was neither dependent on MDC1 that mediates binding of MRN to DSB-flanking chromatin nor on CtIP that acts in conjunction with MRN to promote resection of DSBs for repair by HR. Collectively, these data suggest that the MRN complex recruits RECQ5 to sites of DNA damage to regulate DNA repair.  相似文献   

11.
An NAD+-dependent DNA ligase from the hyperthermophilic bacterium Aquifex aeolicus was cloned, expressed in Escherichia coli and purified to homogeneity. The enzyme is most active in slightly alkaline pH conditions with either Mg2+ or Mn2+ as the metal cofactor. Ca2+ and Ni2+ mainly support formation of DNA–adenylate intermediates. The catalytic cycle is characterized by a low kcat value of 2 min–1 with concomitant accumulation of the DNAadenylate intermediate when Mg2+ is used as the metal cofactor. The ligation rates of matched substrates vary by up to 4-fold, but exhibit a general trend of T/A G/C < C/G < A/T on both the 3′- and 5′-side of the nick. Consistent with previous studies on Thermus ligases, this Aquifex ligase exhibits greater discrimination against a mismatched base pair on the 3′-side of the nick junction. The requirement of 3′ complementarity for a ligation reaction is reaffirmed by results from 1 nt insertions on either the 3′- or 5′-side of the nick. Furthermore, most of the unligatable 3′ mismatched base pairs prohibit formation of the DNAadenylate intermediate, indicating that the substrate adenylation step is also a control point for ligation fidelity. Unlike previously studied ATP ligases, gapped substrates cannot be ligated and intermediate accumulation is minimal, suggesting that complete elimination of base pair complementarity on one side of the nick affects substrate adenylation on the 5′-side of the nick junction. Relationships among metal cofactors, ligation products and intermediate, and ligation fidelity are discussed.  相似文献   

12.
Tyrosyl-DNA phosphodiesterase (TDP1) is a DNA repair enzyme that removes peptide fragments linked through tyrosine to the 3′ end of DNA, and can also remove 3′-phosphoglycolates (PGs) formed by free radical-mediated DNA cleavage. To assess whether TDP1 is primarily responsible for PG removal during in vitro end joining of DNA double-strand breaks (DSBs), whole-cell extracts were prepared from lymphoblastoid cells derived either from spinocerebellar ataxia with axonal neuropathy (SCAN1) patients, who have an inactivating mutation in the active site of TDP1, or from closely matched normal controls. Whereas extracts from normal cells catalyzed conversion of 3′-PG termini, both on single-strand oligomers and on 3′ overhangs of DSBs, to 3′-phosphate termini, extracts of SCAN1 cells did not process either substrate. Addition of recombinant TDP1 to SCAN1 extracts restored 3′-PG removal, allowing subsequent gap filling on the aligned DSB ends. Two of three SCAN1 lines examined were slightly more radiosensitive than normal cells, but only for fractionated radiation in plateau phase. The results suggest that the TDP1 mutation in SCAN1 abolishes the 3′-PG processing activity of the enzyme, and that there are no other enzymes in cell extracts capable of processing protruding 3′-PG termini. However, the lack of severe radiosensitivity suggests that there must be alternative, TDP1-independent pathways for repair of 3′-PG DSBs.  相似文献   

13.
Zhu H  Shuman S 《Nucleic acids research》2007,35(11):3631-3645
Agrobacterium tumefaciens encodes a single NAD+-dependent DNA ligase and six putative ATP-dependent ligases. Two of the ligases are homologs of LigD, a bacterial enzyme that catalyzes end-healing and end-sealing steps during nonhomologous end joining (NHEJ). Agrobacterium LigD1 and AtuLigD2 are composed of a central ligase domain fused to a C-terminal polymerase-like (POL) domain and an N-terminal 3′-phosphoesterase (PE) module. Both LigD proteins seal DNA nicks, albeit inefficiently. The LigD2 POL domain adds ribonucleotides or deoxyribonucleotides to a DNA primer-template, with rNTPs being the preferred substrates. The LigD1 POL domain has no detectable polymerase activity. The PE domains catalyze metal-dependent phosphodiesterase and phosphomonoesterase reactions at a primer-template with a 3′-terminal diribonucleotide to yield a primer-template with a monoribonucleotide 3′-OH end. The PE domains also have a 3′-phosphatase activity on an all-DNA primer-template that yields a 3′-OH DNA end. Agrobacterium ligases C2 and C3 are composed of a minimal ligase core domain, analogous to Mycobacterium LigC (another NHEJ ligase), and they display feeble nick-sealing activity. Ligation at DNA double-strand breaks in vitro by LigD2, LigC2 and LigC3 is stimulated by bacterial Ku, consistent with their proposed function in NHEJ.  相似文献   

14.
The Mre11-Rad50-Xrs2 nuclease complex, together with Sae2, initiates the 5′-to-3′ resection of Double-Strand DNA Breaks (DSBs). Extended 3′ single stranded DNA filaments can be exposed from a DSB through the redundant activities of the Exo1 nuclease and the Dna2 nuclease with the Sgs1 helicase. In the absence of Sae2, Mre11 binding to a DSB is prolonged, the two DNA ends cannot be kept tethered, and the DSB is not efficiently repaired. Here we show that deletion of the yeast 53BP1-ortholog RAD9 reduces Mre11 binding to a DSB, leading to Rad52 recruitment and efficient DSB end-tethering, through an Sgs1-dependent mechanism. As a consequence, deletion of RAD9 restores DSB repair either in absence of Sae2 or in presence of a nuclease defective MRX complex. We propose that, in cells lacking Sae2, Rad9/53BP1 contributes to keep Mre11 bound to a persistent DSB, protecting it from extensive DNA end resection, which may lead to potentially deleterious DNA deletions and genome rearrangements.  相似文献   

15.
To track the processing of damaged DNA double-strand break (DSB) ends in vivo, a method was devised for quantitative measurement of 3′-phosphoglycolate (PG) termini on DSBs induced by the non-protein chromophore of neocarzinostatin (NCS-C) in the human Alu repeat. Following exposure of cells to NCS-C, DNA was isolated, and labile lesions were chemically stabilized. All 3′-phosphate and 3′-hydroxyl ends were enzymatically capped with dideoxy termini, whereas 3′-PG ends were rendered ligatable, linked to an anchor, and quantified by real-time Taqman polymerase chain reaction. Using this assay and variations thereof, 3′-PG and 3′-phosphate termini on 1-base 3′ overhangs of NCS-C-induced DSBs were readily detected in DNA from the treated lymphoblastoid cells, and both were largely eliminated from cellular DNA within 1 h. However, the 3′-PG termini were processed more slowly than 3′-phosphate termini, and were more persistent in tyrosyl-DNA phosphodiesterase 1-mutant SCAN1 than in normal cells, suggesting a significant role for tyrosyl-DNA phosphodiesterase 1 in removing 3′-PG blocking groups for DSB repair. DSBs with 3′-hydroxyl termini, which are not directly induced by NCS-C, were formed rapidly in cells, and largely eliminated by further processing within 1 h, both in Alu repeats and in heterochromatic α-satellite DNA. Moreover, absence of DNA-PK in M059J cells appeared to accelerate resolution of 3′-PG ends.  相似文献   

16.
Mammalian cells primarily rejoin DNA double-strand breaks (DSBs) by the non-homologous end-joining (NHEJ) pathway. The joining of the broken DNA ends appears directly without template and accuracy is ensured by the NHEJ factors that are under ATM/ATR regulated checkpoint control. In the current study we report the engineering of a mono-specific DNA damaging agent. This was used to study the molecular requirements for the repair of the least complex DSB in vivo. Single-chain PvuII restriction enzymes fused to protein delivery sequences transduce cells efficiently and induce blunt end DSBs in vivo. We demonstrate that beside XRCC4/LigaseIV and KU, the DNA-PK catalytic subunit (DNA-PKcs) is also essential for the joining of this low complex DSB in vivo. The appearance of blunt end 3′-hydroxyl and 5′-phosphate DNA DSBs induces a significantly higher frequency of anaphase bridges in cells that do not contain functional DNA-PKcs, suggesting an absolute requirement for DNA-PKcs in the control of chromosomal stability during end joining. Moreover, these minimal blunt end DSBs are sufficient to induce a p53 and ATM/ATR checkpoint function.  相似文献   

17.
Topoisomerase inhibitors such as camptothecin and etoposide are used as anti-cancer drugs and induce double-strand breaks (DSBs) in genomic DNA in cycling cells. These DSBs are often covalently bound with polypeptides at the 3′ and 5′ ends. Such modifications must be eliminated before DSB repair can take place, but it remains elusive which nucleases are involved in this process. Previous studies show that CtIP plays a critical role in the generation of 3′ single-strand overhang at “clean” DSBs, thus initiating homologous recombination (HR)–dependent DSB repair. To analyze the function of CtIP in detail, we conditionally disrupted the CtIP gene in the chicken DT40 cell line. We found that CtIP is essential for cellular proliferation as well as for the formation of 3′ single-strand overhang, similar to what is observed in DT40 cells deficient in the Mre11/Rad50/Nbs1 complex. We also generated DT40 cell line harboring CtIP with an alanine substitution at residue Ser332, which is required for interaction with BRCA1. Although the resulting CtIPS332A/−/− cells exhibited accumulation of RPA and Rad51 upon DNA damage, and were proficient in HR, they showed a marked hypersensitivity to camptothecin and etoposide in comparison with CtIP+/−/− cells. Finally, CtIPS332A/−/−BRCA1−/− and CtIP+/−/−BRCA1−/− showed similar sensitivities to these reagents. Taken together, our data indicate that, in addition to its function in HR, CtIP plays a role in cellular tolerance to topoisomerase inhibitors. We propose that the BRCA1-CtIP complex plays a role in the nuclease-mediated elimination of oligonucleotides covalently bound to polypeptides from DSBs, thereby facilitating subsequent DSB repair.  相似文献   

18.
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that acts upon protein–DNA covalent complexes. Tdp1 hydrolyzes 3′-phosphotyrosyl bonds to generate 3′-phosphate DNA and free tyrosine in vitro. Mutations in Tdp1 have been linked to patients with spinocerebellar ataxia, and over-expression of Tdp1 results in resistance to known anti-cancer compounds. Tdp1 has been shown to be involved in double-strand break repair in yeast, and Tdp1 has also been implicated in single-strand break repair in mammalian cells. Despite the biological importance of this enzyme and the possibility that Tdp1 may be a molecular target for new anti-cancer drugs, there are very few assays available for screening inhibitor libraries or for characterizing Tdp1 function, especially under pre-steady-state conditions. Here, we report the design and synthesis of a fluorescence-based assay using oligonucleotide and nucleotide substrates containing 3′-(4-methylumbelliferone)-phosphate. These substrates are efficiently cleaved by Tdp1, generating the fluorescent 4-methylumbelliferone reporter molecule. The kinetic characteristics determined for Tdp1 using this assay are in agreement with the previously published values, and this fluorescence-based assay is validated using the standard gel-based methods. This sensitive assay is ideal for kinetic analysis of Tdp1 function and for high-throughput screening of Tdp1 inhibitory molecules.  相似文献   

19.
The first step of homology-dependent repair of DNA double-strand breaks (DSBs) is the resection of the 5′ strand to generate 3′ ss-DNA. Of the two major nucleases responsible for resection, EXO1 has intrinsic 5′->3′ directionality, but DNA2 does not. DNA2 acts with RecQ helicases such as the Werner syndrome protein (WRN) and the heterotrimeric eukaryotic ss-DNA binding protein RPA. We have found that the N-terminus of the RPA large subunit (RPA1N) interacts with both WRN and DNA2 and is essential for stimulating WRN''s 3′->5′ helicase activity and DNA2''s 5′->3′ ss-DNA exonuclease activity. A mutant RPA complex that lacks RPA1N is unable to support resection in Xenopus egg extracts and human cells. Furthermore, relocating RPA1N to the middle subunit but not to the small subunit causes severe defects in stimulating DNA2 and WRN and in supporting resection. Together, these findings suggest that RPA1N and its spatial position are critical for restricting the directionality of the WRN-DNA2 resection pathway.  相似文献   

20.
DNA ligases, found in both prokaryotes and eukaryotes, covalently link the 3′-hydroxyl and 5′-phosphate ends of duplex DNA segments. This reaction represents a completion step for DNA replication, repair and recombination. It is well established that ligases are sensitive to mispairs present on the 3′ side of the ligase junction, but tolerant of mispairs on the 5′ side. While such discrimination would increase the overall accuracy of DNA replication and repair, the mechanisms by which this fidelity is accomplished are as yet unknown. In this paper, we present the results of experiments with Tth ligase from Thermus thermophilus HB8 and a series of nucleoside analogs in which the mechanism of discrimination has been probed. Using a series of purine analogs substituted in the 2 and 6 positions, we establish that the apparent base pair geometry is much more important than relative base pair stability and that major groove contacts are of little importance. This result is further confirmed using 5-fluorouracil (FU) mispaired with guanine. At neutral pH, the FU:G mispair on the 3′ side of a ligase junction is predominantly in a neutral wobble configuration and is poorly ligated. Increasing the solution pH increases the proportion of an ionized base pair approximating Watson–Crick geometry, substantially increasing the relative ligation efficiency. These results suggest that the ligase could distinguish Watson–Crick from mispaired geometry by probing the hydrogen bond acceptors present in the minor groove as has been proposed for DNA polymerases. The significance of minor groove hydrogen bonding interactions is confirmed with both Tth and T4 DNA ligases upon examination of base pairs containing the pyrimidine shape analog, difluorotoluene (DFT). Although DFT paired with adenine approximates Watson–Crick geometry, a minor groove hydrogen bond acceptor is lost. Consistent with this hypothesis, we observe that DFT-containing base pairs inhibit ligation when on the 3′ side of the ligase junction. The NAD+-dependent ligase, Tth, is more sensitive to the DFT analog on the unligated strand whereas the ATP-dependent T4 ligase is more sensitive to substitutions in the template strand. Electrophoretic gel mobility-shift assays demonstrate that the Tth ligase binds poorly to oligonucleotide substrates containing analogs with altered minor groove contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号