共查询到20条相似文献,搜索用时 15 毫秒
1.
Chaperones, also called heat shock proteins (HSPs), transiently interact with proteins to aid their folding, trafficking, and degradation, thereby directly influencing the transport of newly synthesized molecules. Induction of chaperones provides a potential therapeutic approach for protein misfolding disorders, such as peripheral myelin protein 22 (PMP22)-associated peripheral neuropathies. Cytosolic aggregates of PMP22, linked with a demyelinating Schwann cell phenotype, result in suppression of proteasome activity and activation of proteostatic mechanisms, including the heat shock pathway. Although the beneficial effects of chaperones in preventing the aggregation and improving the trafficking of PMP22 have been repeatedly observed, the requirement for HSP70 in events remains elusive. In this study, we show that activation of the chaperone pathway in fibroblasts from PMP22 duplication-associated Charcot–Marie–Tooth disease type 1A patient with an FDA-approved small molecule increases HSP70 expression and attenuates proteasome dysfunction. Using cells from an HSP70.1/3−/− (inducible HSP70) mouse model, we demonstrate that under proteotoxic stress, this chaperone is critical in preventing the aggregation of PMP22, and this effect is aided by macroautophagy. When examined at steady-state, HSP70 appears to play a minor role in the trafficking of wild-type-PMP22, while it is crucial for preventing the buildup of the aggregation-prone Trembler-J-PMP22. HSP70 aids the processing of Trembler-J-PMP22 through the Golgi and its delivery to lysosomes via Rab7-positive vesicles. Together, these results demonstrate a key role for inducible HSP70 in aiding the processing and hindering the accumulation of misfolded PMP22, which in turn alleviates proteotoxicity within the cells. 相似文献
2.
Nicolò Musner Mariapaola Sidoli Desireè Zambroni Ubaldo Del Carro Daniela Ungaro Maurizio D’Antonio Maria L. Feltri Lawrence Wrabetz 《ASN neuro》2016,8(2)
In peripheral nerves, P0 glycoprotein accounts for more than 20% of myelin protein content. P0 is synthesized by Schwann cells, processed in the endoplasmic reticulum (ER) and enters the secretory pathway. However, the mutant P0 with S63 deleted (P0S63del) accumulates in the ER lumen and induces a demyelinating neuropathy in Charcot–Marie–Tooth disease type 1B (CMT1B)–S63del mice. Accumulation of P0S63del in the ER triggers a persistent unfolded protein response. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER stress sensor that phosphorylates eukaryotic initiation factor 2 alpha (eIF2alpha) in order to attenuate protein synthesis. We have shown that increasing phosphophorylated-eIF2alpha (P-eIF2alpha) is a potent therapeutic strategy, improving myelination and motor function in S63del mice. Here, we explore the converse experiment: Perk haploinsufficiency reduces P-eIF2alpha in S63del nerves as expected, but surprisingly, ameliorates, rather than worsens S63del neuropathy. Motor performance and myelin abnormalities improved in S63del//Perk+/− compared with S63del mice. These data suggest that mechanisms other than protein translation might be involved in CMT1B/S63del neuropathy. In addition, Perk deficiency in other cells may contribute to demyelination in a non–Schwann-cell autonomous manner. 相似文献
3.
This study is aimed to conduct a systematic literature review regarding the associations between psychiatric symptoms, functional impairments, and quality of life in patients with CMT (Charcot–Marie–Tooth). The PUBMED, PsycInfo, SCIELO, and LILACS electronic databases were used, and the following search terms were employed: CMT, HMSN (hereditary motor and sensory neuropathy), mental disorder, quality of life, psychiatry, psychiatric, and psychological without the use of time-limit filters. According to the adopted inclusion criteria, 20 studies were included and appraised. These studies indicated that patients with CMT exhibited an increased trend toward depressive symptoms compared with the general population. In addition, CMT patients were exposed to a higher risk of reduced quality of life and significant sleep impairment. Considering the comorbidity of CMT with other psychiatric disorders, the heterogeneity of the instruments used to evaluate the psychiatric symptoms compromised the ability to compare the studies examined. Our results indicate a need for a systematic evaluation of these conditions to minimize the impairments and decreased quality of life caused by CMT. 相似文献
4.
由基因突变引起的外周神经病统称为Charcot-Marie-Tooth(CMT)病,它是最常见的遗传性神经系统疾病之一,发病率为1/2500。目前已知有超过53个染色体位点和35个特定基因与CMT有关,但是大部分CMT都是由周围髓鞘蛋白22(PMP22)基因变异所引起的。该文重点对PMP22的生物学及相关疾病的病理生理学进行综述。 相似文献
5.
6.
William H. Aisenberg Brett A. McCray Jeremy M. Sullivan Erika Diehl Lauren R. DeVine Jonathan Alevy Anna M. Bagnell Patrice Carr Jack K. Donohue Benedikt Goretzki Robert N. Cole Ute A. Hellmich Charlotte J. Sumner 《The Journal of biological chemistry》2022,298(4)
Ubiquitin (Ub)-mediated regulation of plasmalemmal ion channel activity canonically occurs via stimulation of endocytosis. Whether ubiquitination can modulate channel activity by alternative mechanisms remains unknown. Here, we show that the transient receptor potential vanilloid 4 (TRPV4) cation channel is multiubiquitinated within its cytosolic N-terminal and C-terminal intrinsically disordered regions (IDRs). Mutagenizing select lysine residues to block ubiquitination of the N-terminal but not C-terminal IDR resulted in a marked elevation of TRPV4-mediated intracellular calcium influx, without increasing cell surface expression levels. Conversely, enhancing TRPV4 ubiquitination via expression of an E3 Ub ligase reduced TRPV4 channel activity but did not decrease plasma membrane abundance. These results demonstrate Ub-dependent regulation of TRPV4 channel function independent of effects on plasma membrane localization. Consistent with ubiquitination playing a key negative modulatory role of the channel, gain-of-function neuropathy-causing mutations in the TRPV4 gene led to reduced channel ubiquitination in both cellular and Drosophila models of TRPV4 neuropathy, whereas increasing mutant TRPV4 ubiquitination partially suppressed channel overactivity. Together, these data reveal a novel mechanism via which ubiquitination of an intracellular flexible IDR domain modulates ion channel function independently of endocytic trafficking and identify a contributory role for this pathway in the dysregulation of TRPV4 channel activity by neuropathy-causing mutations. 相似文献
7.
E. Villalón M. R. Jones C. Sibigtroth S. J. Zino J. M. Dale D. S. Landayan H. Shen D. D. W. Cornelison M. L. Garcia 《Genes, Brain & Behavior》2017,16(2):260-270
Charcot–Marie–Tooth (CMT) is the most common inherited peripheral neuropathy, affecting approximately 2.8 million people. The CMT leads to distal neuropathy that is characterized by reduced motor nerve conduction velocity, ataxia, muscle atrophy and sensory loss. We generated a mouse model of CMT type 2E (CMT2E) expressing human neurofilament light E396K (hNF‐LE396K), which develops decreased motor nerve conduction velocity, ataxia and muscle atrophy by 4 months of age. Symptomatic hNF‐LE396K mice developed phenotypes that were consistent with proprioceptive sensory defects as well as reduced sensitivity to mechanical stimulation, while thermal sensitivity and auditory brainstem responses were unaltered. Progression from presymptomatic to symptomatic included a 50% loss of large diameter sensory axons within the fifth lumbar dorsal root of hNF‐LE396K mice. Owing to proprioceptive deficits and loss of large diameter sensory axons, we analyzed muscle spindle morphology in presymptomatic and symptomatic hNF‐LE396K and hNF‐L control mice. Muscle spindle cross‐sectional area and volume were reduced in all hNF‐LE396K mice analyzed, suggesting that alterations in muscle spindle morphology occurred prior to the onset of typical CMT pathology. These data suggested that CMT2E pathology initiated in the muscle spindles altering the proprioceptive sensory system. Early sensory pathology in CMT2E could provide a unifying hypothesis for the convergence of pathology observed in CMT. 相似文献
8.
Christina DiVincenzo Christopher D. Elzinga Adam C. Medeiros Izabela Karbassi Jeremiah R. Jones Matthew C. Evans Corey D. Braastad Crystal M. Bishop Malgorzata Jaremko Zhenyuan Wang Khalida Liaquat Carol A. Hoffman Michelle D. York Sat D. Batish James R. Lupski Joseph J. Higgins 《Molecular Genetics & Genomic Medicine》2014,2(6):522-529
We report the frequency, positive rate, and type of mutations in 14 genes (PMP22, GJB1, MPZ, MFN2, SH3TC2, GDAP1, NEFL, LITAF, GARS, HSPB1, FIG4, EGR2, PRX, and RAB7A) associated with Charcot–Marie–Tooth disease (CMT) in a cohort of 17,880 individuals referred to a commercial genetic testing laboratory. Deidentified results from sequencing assays and multiplex ligation‐dependent probe amplification (MLPA) were analyzed including 100,102 Sanger sequencing, 2338 next‐generation sequencing (NGS), and 21,990 MLPA assays. Genetic abnormalities were identified in 18.5% (n = 3312) of all individuals. Testing by Sanger and MLPA (n = 3216) showed that duplications (dup) (56.7%) or deletions (del) (21.9%) in the PMP22 gene accounted for the majority of positive findings followed by mutations in the GJB1 (6.7%), MPZ (5.3%), and MFN2 (4.3%) genes. GJB1 del and mutations in the remaining genes explained 5.3% of the abnormalities. Pathogenic mutations were distributed as follows: missense (70.6%), nonsense (14.3%), frameshift (8.7%), splicing (3.3%), in‐frame deletions/insertions (1.8%), initiator methionine mutations (0.8%), and nonstop changes (0.5%). Mutation frequencies, positive rates, and the types of mutations were similar between tests performed by either Sanger (n = 17,377) or NGS (n = 503). Among patients with a positive genetic finding in a CMT‐related gene, 94.9% were positive in one of four genes (PMP22, GJB1, MPZ, or MFN2). 相似文献
9.
Wei Xie Paul Schimmel Xiang‐Lei Yang 《Acta Crystallographica. Section F, Structural Biology Communications》2006,62(12):1243-1246
Glycyl‐tRNA synthetase (GlyRS) is one of a group of enzymes that catalyze the synthesis of aminoacyl‐tRNAs for translation. Mutations of human and mouse GlyRSs are causally associated with Charcot–Marie–Tooth disease, the most common genetic disorder of the peripheral nervous system. As the first step towards a structure–function analysis of this disease, native human GlyRS was expressed, purified and crystallized. The crystal belonged to space group P43212 or its enantiomorphic space group P41212, with unit‐cell parameters a = b = 91.74, c = 247.18 Å, and diffracted X‐rays to 3.0 Å resolution. The asymmetric unit contained one GlyRS molecule and had a solvent content of 69%. 相似文献
10.
Victoria Defilippi;Juli Petereit;Valerie J. L. Handlos;Lucia Notterpek; 《Journal of neurochemistry》2024,168(9):3154-3170
Charcot–Marie–Tooth disease type 1E (CMT1E) is an inherited autosomal dominant peripheral neuropathy caused by mutations in the peripheral myelin protein 22 (PMP22) gene. The identical leucine-to-proline (L16P) amino acid substitution in PMP22 is carried by the Trembler J (TrJ) mouse and is found in CMT1E patients presenting with early-onset disease. Peripheral nerves of patients diagnosed with CMT1E display a complex and varied histopathology, including Schwann cell hyperproliferation, abnormally thin myelin, axonal degeneration, and subaxonal morphological changes. Here, we have taken an unbiased data-independent analysis (DIA) mass spectrometry (MS) approach to quantify proteins from nerves of 3-week-old, age and genetic strain-matched wild-type (Wt) and heterozygous TrJ mice. Nerve proteins were dissolved in lysis buffer and digested into peptide fragments, and protein groups were quantified by liquid chromatography-mass spectrometry (LC–MS). A linear model determined statistically significant differences between the study groups, and proteins with an adjusted p-value of less than 0.05 were deemed significant. This untargeted proteomics approach identified 3759 quality-controlled protein groups, of which 884 demonstrated differential expression between the two genotypes. Gene ontology (GO) terms related to myelin and myelin maintenance confirm published data while revealing a previously undetected prominent decrease in peripheral myelin protein 2. The dataset corroborates the described pathophysiology of TrJ nerves, including elevated activity in the proteasome-lysosomal pathways, alterations in protein trafficking, and an increase in three macrophage-associated proteins. Previously unrecognized perturbations in RNA processing pathways and GO terms were also discovered. Proteomic abnormalities that overlap with other human neurological disorders besides CMT include Lafora Disease and Amyotrophic Lateral Sclerosis. Overall, this study confirms and extends current knowledge on the cellular pathophysiology in TrJ neuropathic nerves and provides novel insights for future examinations. Recognition of shared pathomechanisms across discrete neurological disorders offers opportunities for innovative disease-modifying therapeutics that could be effective for distinct neuropathies. 相似文献
11.
12.
Carrie L Tatar Sunita Appikatla Denise A Bessert Ajaib S Paintlia Inderjit Singh Robert P Skoff 《ASN neuro》2010,2(4)
PMD (Pelizaeus–Merzbacher disease) is a rare neurodegenerative disorder that impairs motor and cognitive functions and is associated with a shortened lifespan. The cause of PMD is mutations of the PLP1 [proteolipid protein 1 gene (human)] gene. Transgenic mice with increased Plp1 [proteolipid protein 1 gene (non-human)] copy number model most aspects of PMD patients with duplications. Hypomyelination and demyelination are believed to cause the neurological abnormalities in mammals with PLP1 duplications. We show, for the first time, intense microglial reactivity throughout the grey and white matter of a transgenic mouse line with increased copy number of the native Plp1 gene. Activated microglia in the white and grey matter of transgenic mice are found as early as postnatal day 7, before myelin commences in normal cerebra. This finding indicates that degeneration of myelin does not cause the microglial response. Microglial numbers are doubled due to in situ proliferation. Compared with the jp (jimpy) mouse, which has much more oligodendrocyte death and hardly any myelin, microglia in the overexpressors show a more dramatic microglial reactivity than jp, especially in the grey matter. Predictably, many classical markers of an inflammatory response, including TNF-α (tumour necrosis factor-α) and IL-6, are significantly up-regulated manyfold. Because inflammation is believed to contribute to axonal degeneration in multiple sclerosis and other neurodegenerative diseases, inflammation in mammals with increased Plp1 gene dosage may also contribute to axonal degeneration described in patients and rodents with PLP1 increased gene dosage. 相似文献
13.
14.
《Biological reviews of the Cambridge Philosophical Society》2018,93(2):933-949
Mitochondria are highly dynamic organelles that constantly migrate, fuse, and divide to regulate their shape, size, number, and bioenergetic function. Mitofusins (Mfn1/2), optic atrophy 1 (OPA1), and dynamin‐related protein 1 (Drp1), are key regulators of mitochondrial fusion and fission. Mutations in these molecules are associated with severe neurodegenerative and non‐neurological diseases pointing to the importance of functional mitochondrial dynamics in normal cell physiology. In recent years, significant progress has been made in our understanding of mitochondrial dynamics, which has raised interest in defining the physiological roles of key regulators of fusion and fission and led to the identification of additional functions of Mfn2 in mitochondrial metabolism, cell signalling, and apoptosis. In this review, we summarize the current knowledge of the structural and functional properties of Mfn2 as well as its regulation in different tissues, and also discuss the consequences of aberrant Mfn2 expression. 相似文献
15.
《Animal : an international journal of animal bioscience》2014,8(5):800-809
Increase of fat cells (FCs) in adipose tissue is attributed to proliferation of preadipocytes or immature adipocytes in the early stage, as well as adipogenic differentiation in the later stage of adipose development. Although both events are involved in the FC increase, they are contrary to each other, because the former requires cell cycle activity, whereas the latter requires cell cycle withdrawal. Therefore, appropriate regulation of cell cycle inhibition is critical to adipogenesis. In order to explore the important cell cycle inhibitors and study their expression in adipogenesis, we adopted a strategy combining the Gene Expression Omnibus (GEO) database available on the NCBI website and the results of quantitative real-time PCR (qPCR) data in porcine adipose tissue. Three cell cycle inhibitors – cyclin G2 (CCNG2), cyclin-dependent kinase inhibitor 2C (CDKN2C) and peripheral myelin protein (PMP22) – were selected for study because they are relatively highly expressed in adipose tissue compared with muscle, heart, lung, liver and kidney in humans and mice based on two GEO DataSets (GDS596 and GDS3142). In the latter analysis, they were found to be more highly expressed in differentiating/ed preadipocytes than in undifferentiated preadipocytes in human and mice as shown respectively by GDS2366 and GDS2743. In addition, GDS2659 also suggested increasing expression of the three cell cycle inhibitors during differentiation of 3T3-L1 cells. Further study with qPCR in Landrace pigs did not confirm the high expression of these genes in adipose tissue compared with other tissues in market-age pigs, but confirmed higher expression of these genes in FCs than in the stromal vascular fraction, as well as increasing expression of these genes during in vitro adipogenic differentiation and in vivo development of adipose tissue. Moreover, the relatively high expression of CCNG2 in adipose tissue of market-age pigs and increasing expression during development of adipose tissue was also confirmed at the protein level by western blot analysis. Based on the analysis of the GEO DataSets and results of qPCR and Western blotting we conclude that all three cell cycle inhibitors may inhibit adipocyte proliferation, but promote adipocyte differentiation and hold a differentiated state by inducing and maintaining cell cycle inhibition. Therefore, their expression in adipose tissue is positively correlated with age and mature FC number. By regulating the expression of these genes, we may be able to control FC number, and, thus, reduce excessive fat tissue in animals and humans. 相似文献
16.
Xiankui Sun Jean-Marc Fontaine Adam D. Hoppe Serena Carra Cheryl DeGuzman Jody L. Martin Stephanie Simon Patrick Vicart Michael J. Welsh Jacques Landry Rainer Benndorf 《Cell stress & chaperones》2010,15(5):567-582
A number of missense mutations in the two related small heat shock proteins HspB8 (Hsp22) and HspB1 (Hsp27) have been associated with the inherited motor neuron diseases (MND) distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. HspB8 and HspB1 interact with each other, suggesting that these two etiologic factors may act through a common biochemical mechanism. However, their role in neuron biology and in MND is not understood. In a yeast two-hybrid screen, we identified the DEAD box protein Ddx20 (gemin3, DP103) as interacting partner of HspB8. Using co-immunoprecipitation, chemical cross-linking, and in vivo quantitative fluorescence resonance energy transfer, we confirmed this interaction. We also show that the two disease-associated mutant HspB8 forms have abnormally increased binding to Ddx20. Ddx20 itself binds to the survival-of-motor-neurons protein (SMN protein), and mutations in the SMN1 gene cause spinal muscular atrophy, another MND and one of the most prevalent genetic causes of infant mortality. Thus, these protein interaction data have linked the three etiologic factors HspB8, HspB1, and SMN protein, and mutations in any of their genes cause the various forms of MND. Ddx20 and SMN protein are involved in spliceosome assembly and pre-mRNA processing. RNase treatment affected the interaction of the mutant HspB8 with Ddx20 suggesting RNA involvement in this interaction and a potential role of HspB8 in ribonucleoprotein processing. 相似文献
17.
A short-term exposure to moderately intense physical exercise affords a novel measure of protection against autoimmune-mediated peripheral nerve injury. Here, we investigated the mechanism by which forced exercise attenuates the development and progression of experimental autoimmune neuritis (EAN), an established animal model of Guillain–Barré syndrome. Adult male Lewis rats remained sedentary (control) or were preconditioned with forced exercise (1.2 km/day × 3 weeks) prior to P2-antigen induction of EAN. Sedentary rats developed a monophasic course of EAN beginning on postimmunization day 12.3 ± 0.2 and reaching peak severity on day 17.0 ± 0.3 (N = 12). By comparison, forced-exercise preconditioned rats exhibited a similar monophasic course but with significant (p < .05) reduction of disease severity. Analysis of popliteal lymph nodes revealed a protective effect of exercise preconditioning on leukocyte composition and egress. Compared with sedentary controls, forced exercise preconditioning promoted a sustained twofold retention of P2-antigen responsive leukocytes. The percentage distribution of pro-inflammatory (Th1) lymphocytes retained in the nodes from sedentary EAN rats (5.1 ± 0.9%) was significantly greater than that present in nodes from forced-exercise preconditioned EAN rats (2.9 ± 0.6%) or from adjuvant controls (2.0 ± 0.3%). In contrast, the percentage of anti-inflammatory (Th2) lymphocytes (7–10%) and that of cytotoxic T lymphocytes (∼20%) remained unaltered by forced exercise preconditioning. These data do not support an exercise-inducible shift in Th1:Th2 cell bias. Rather, preconditioning with forced exercise elicits a sustained attenuation of EAN severity, in part, by altering the composition and egress of autoreactive proinflammatory (Th1) lymphocytes from draining lymph nodes. 相似文献
18.
Suresh Kumar Mathivanan Chinnaraj William Planer Xiaobing Zuo Paolo Macor Francesco Tedesco Nicola Pozzi 《The Journal of biological chemistry》2021,297(2)
β2-glycoprotein I (β2GPI) is an abundant multidomain plasma protein that plays various roles in the clotting and complement cascades. It is also the main target of antiphospholipid antibodies (aPL) in the acquired coagulopathy known as antiphospholipid syndrome (APS). Previous studies have shown that β2GPI adopts two interconvertible biochemical conformations, oxidized and reduced, depending on the integrity of the disulfide bonds. However, the precise contribution of the disulfide bonds to β2GPI structure and function is unknown. Here, we substituted cysteine residues with serine to investigate how the disulfide bonds C32-C60 in domain I (DI) and C288-C326 in domain V (DV) regulate β2GPI''s structure and function. Results of our biophysical and biochemical studies support the hypothesis that the C32-C60 disulfide bond plays a structural role, whereas the disulfide bond C288-C326 is allosteric. We demonstrate that absence of the C288-C326 bond, unlike absence of the C32-C60 bond, diminishes membrane binding without affecting the thermodynamic stability and overall structure of the protein, which remains elongated in solution. We also document that, while absence of the C32-C60 bond directly impairs recognition of β2GPI by pathogenic anti-DI antibodies, absence of the C288-C326 disulfide bond is sufficient to abolish complex formation in the presence of anionic phospholipids. We conclude that the disulfide bond C288-C326 operates as a molecular switch capable of regulating β2GPI''s physiological functions in a redox-dependent manner. We propose that in APS patients with anti-DI antibodies, selective rupture of the C288-C326 disulfide bond may be a valid strategy to lower the pathogenic potential of aPL. 相似文献
19.
Shobha Dagamajalu D. A. B. Rex Pushparani Devi Philem Jan K. Rainey T. S. Keshava Prasad 《Journal of cell communication and signaling》2022,16(1):137
The apelin receptor (APLNR) is a class A (rhodopsin-like) G-protein coupled receptor with a wide distribution throughout the human body. Activation of the apelin/APLNR system regulates AMPK/PI3K/AKT/mTOR and RAF/ERK1/2 mediated signaling pathways. APLNR activation orchestrates several downstream signaling cascades, which play diverse roles in physiological effects, including effects upon vasoconstriction, heart muscle contractility, energy metabolism regulation, and fluid homeostasis angiogenesis. We consolidated a network map of the APLNR signaling map owing to its biomedical importance. The curation of literature data pertaining to the APLNR system was performed manually by the NetPath criteria. The described apelin receptor signaling map comprises 35 activation/inhibition events, 38 catalysis events, 4 molecular associations, 62 gene regulation events, 113 protein expression types, and 4 protein translocation events. The APLNR signaling pathway map data is made freely accessible through the WikiPathways Database (https://www.wikipathways.org/index.php/Pathway:WP5067).Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00614-6. 相似文献
20.
Liu Z Wang Y Yedidi RS Brunzelle JS Kovari IA Sohi J Kamholz J Kovari LC 《Proteins》2012,80(1):307-313