首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Insertion sequences (ISs) are approximately 1 kbp long “jumping” genes found in prokaryotes. ISs encode the protein Transposase, which facilitates the excision and reinsertion of ISs in genomes, making these sequences a type of class I (“cut-and-paste”) Mobile Genetic Elements. ISs are proposed to be involved in the reductive evolution of symbiotic prokaryotes. Our previous sequencing of the genome of the cyanobacterium ‘Nostoc azollae’ 0708, living in a tight perpetual symbiotic association with a plant (the water fern Azolla), revealed the presence of an eroding genome, with a high number of insertion sequences (ISs) together with an unprecedented large proportion of pseudogenes. To investigate the role of ISs in the reductive evolution of ‘Nostoc azollae’ 0708, and potentially in the formation of pseudogenes, a bioinformatic investigation of the IS identities and positions in 47 cyanobacterial genomes was conducted. To widen the scope, the IS contents were analysed qualitatively and quantitatively in 20 other genomes representing both free-living and symbiotic bacteria.

Results

Insertion Sequences were not randomly distributed in the bacterial genomes and were found to transpose short distances from their original location (“local hopping”) and pseudogenes were enriched in the vicinity of IS elements. In general, symbiotic organisms showed higher densities of IS elements and pseudogenes than non-symbiotic bacteria. A total of 1108 distinct repeated sequences over 500 bp were identified in the 67 genomes investigated. In the genome of ‘Nostoc azollae’ 0708, IS elements were apparent at 970 locations (14.3%), with 428 being full-length. Morphologically complex cyanobacteria with large genomes showed higher frequencies of IS elements, irrespective of life style.

Conclusions

The apparent co-location of IS elements and pseudogenes found in prokaryotic genomes implies earlier IS transpositions into genes. As transpositions tend to be local rather than genome wide this likely explains the proximity between IS elements and pseudogenes. These findings suggest that ISs facilitate the reductive evolution in for instance in the symbiotic cyanobacterium ‘Nostoc azollae’ 0708 and in other obligate prokaryotic symbionts.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1386-7) contains supplementary material, which is available to authorized users.  相似文献   

2.
Symbiosis between organisms influences their evolution via adaptive changes in genome architectures. Immunity of soybean carrying the Rj2 allele is triggered by NopP (type III secretion system [T3SS]-dependent effector), encoded by symbiosis island A (SymA) in B. diazoefficiens USDA122. This immunity was overcome by many mutants with large SymA deletions that encompassed T3SS (rhc) and N2 fixation (nif) genes and were bounded by insertion sequence (IS) copies in direct orientation, indicating homologous recombination between ISs. Similar deletion events were observed in B. diazoefficiens USDA110 and B. japonicum J5. When we cultured a USDA122 strain with a marker gene sacB inserted into the rhc gene cluster, most sucrose-resistant mutants had deletions in nif/rhc gene clusters, similar to the mutants above. Some deletion mutants were unique to the sacB system and showed lower competitive nodulation capability, indicating that IS-mediated deletions occurred during free-living growth and the host plants selected the mutants. Among 63 natural bradyrhizobial isolates, 2 possessed long duplications (261–357 kb) harboring nif/rhc gene clusters between IS copies in direct orientation via homologous recombination. Therefore, the structures of symbiosis islands are in a state of flux via IS-mediated duplications and deletions during rhizobial saprophytic growth, and host plants select mutualistic variants from the resultant pools of rhizobial populations. Our results demonstrate that homologous recombination between direct IS copies provides a natural mechanism generating deletions and duplications on symbiosis islands.Subject terms: Soil microbiology, Molecular evolution  相似文献   

3.
The discovery of ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota and the high abundance of archaeal ammonia monooxygenase subunit A encoding gene sequences in many environments have extended our perception of nitrifying microbial communities. Moreover, AOA are the only aerobic ammonia oxidizers known to be active in geothermal environments. Molecular data indicate that in many globally distributed terrestrial high-temperature habits a thaumarchaeotal lineage within the Nitrosopumilus cluster (also called “marine” group I.1a) thrives, but these microbes have neither been isolated from these systems nor functionally characterized in situ yet. In this study, we report on the enrichment and genomic characterization of a representative of this lineage from a thermal spring in Kamchatka. This thaumarchaeote, provisionally classified as “Candidatus Nitrosotenuis uzonensis”, is a moderately thermophilic, non-halophilic, chemolithoautotrophic ammonia oxidizer. The nearly complete genome sequence (assembled into a single scaffold) of this AOA confirmed the presence of the typical thaumarchaeotal pathways for ammonia oxidation and carbon fixation, and indicated its ability to produce coenzyme F420 and to chemotactically react to its environment. Interestingly, like members of the genus Nitrosoarchaeum, “Candidatus N. uzonensis” also possesses a putative artubulin-encoding gene. Genome comparisons to related AOA with available genome sequences confirmed that the newly cultured AOA has an average nucleotide identity far below the species threshold and revealed a substantial degree of genomic plasticity with unique genomic regions in “Ca. N. uzonensis”, which potentially include genetic determinants of ecological niche differentiation.  相似文献   

4.
Transposable elements, as the most active genetic factors, have driven genome evolution in maize and reshaped certain key loci responsible for maize domestication, exemplified by an inserted transposon in teosinte branched1 (tb1), which controls plant architecture. In this study, we detected an insertion of a transposable element in the second exon of the coding sequence of the maize starch synthase gene SSIIb, leading to a splicing modification and gene frameshift. This insertion provided a means of determining the function of SSIIb for starch synthesis during maize domestication. Association and quantitative trait locus (QTL) mappings showed that SSIIb was not associated with starch eating quality and total starch content of kernel, and two maize near-isogenic-line-like lines with and without the insertion of the transposable element further exhibited the same starch content of kernel and leaf; in addition, nucleotide diversity analysis revealed that maize SSIIb was not under selection during domestication. All these results demonstrated that maize SSIIb might serve as a very minor genetic factor or a functional redundancy gene in starch synthesis. Global BLAST showed that the maize genome harbored 1,387 copies of this transposable element, of which 135 copies were located in genic regions. At least three genes beside maize SSIIb were disturbed by this transposable element. Five patterns of transposition, according to the insertion sites close to or within genes such as maize SSIIb in this study, are under discussion and a large quantity of present/absent variations due to the insertion of varieties of transposable elements, discovered by revolutionary next-generation sequencing, would rapidly accelerate QTL and association mappings for maize domestication through candidate gene tactics in the near future.  相似文献   

5.
Cultured cells are widely used in molecular biology despite poor understanding of how cell line genomes change in vitro over time. Previous work has shown that Drosophila cultured cells have a higher transposable element content than whole flies, but whether this increase in transposable element content resulted from an initial burst of transposition during cell line establishment or ongoing transposition in cell culture remains unclear. Here, we sequenced the genomes of 25 sublines of Drosophila S2 cells and show that transposable element insertions provide abundant markers for the phylogenetic reconstruction of diverse sublines in a model animal cell culture system. DNA copy number evolution across S2 sublines revealed dramatically different patterns of genome organization that support the overall evolutionary history reconstructed using transposable element insertions. Analysis of transposable element insertion site occupancy and ancestral states support a model of ongoing transposition dominated by episodic activity of a small number of retrotransposon families. Our work demonstrates that substantial genome evolution occurs during long-term Drosophila cell culture, which may impact the reproducibility of experiments that do not control for subline identity.  相似文献   

6.
Insertion element ISD1, discovered when its transposition caused the insertional inactivation of an introduced sacB gene, is present in two copies in the genome of Desulfovibrio vulgaris Hildenborough. Southern blot analysis indicated at least two insertion sites in the sacB gene. Cloning and sequencing of a transposed copy of ISD1 indicated a length of 1,200 bp with a pair of 44-bp imperfect inverted repeats at the ends, flanked by a direct repeat of the 4-bp target sequence. AAGG and AATT were found to function as target sequences. ISD1 encodes a transposase from two overlapping open reading frames by programmed translational frameshifting at an A6G shifty codon motif. Sequence comparison showed that ISD1 belongs to the IS3 family. Isolation and analysis of the chromosomal copies, ISD1-A and ISD1-B, by PCR and sequencing indicated that these are not flanked by direct repeats. ISD1-A is inserted in a region of the chromosome containing the gapdh-pgk genes (encoding glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase). Active transposition to other loci in the genome was demonstrated, offering the potential of a new tool for gene cloning and mutagenesis. ISD1 is the first transposable element described for the sulfate reducers, a large and environmentally important group of bacteria. The distribution of ISD1 in genomes of sulfate-reducing bacteria is limited. A single copy is present in the genome of D. desulfuricans Norway.  相似文献   

7.
Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging.  相似文献   

8.
Evolutionary radiations are one plausible explanation for the rich biodiversity on Earth. Adaptive radiations are the most studied form of evolutionary radiations, and ecological opportunity has been identified as one factor permitting them. Competition among individuals is supposedly highest in populations of conspecifics. Divergent modes of resource use might minimize trophic overlap, and thus intersexual competition, resulting in ecological character displacement between sexes. However, the role of intersexual differentiation in speciation processes is insufficiently studied. The few studies available suggest that intersexual niche differentiation exists in adaptive radiations, but their role within the radiation, and the extent of differentiation within the organism itself, remains largely unexplored. Here, we test the hypothesis that multiple morphological structures are affected by intersexual niche differentiation in “roundfin” Telmatherina, the first case where intersexual niche differentiation was demonstrated in an adaptive fish radiation. We show that sexes of two of the three morphospecies differ in several structural components of the head, all of these are likely adaptive. Sexual dimorphism is linked to the respective morphospecies‐specific ecology and affects several axes of variation. Trait variation translates into different feeding modes, processing types, and habitat usages that add to interspecific variation in all three morphospecies. Intrasexual selection, that is, male–male competition, may contribute to variation in some of the traits, but appears unlikely in internal structures, which are invisible to other individuals. We conclude that intersexual variation adds to the adaptive diversity of roundfins and might play a key role in minimizing intersexual competition in emerging radiations.  相似文献   

9.
Anabaena sp. strain PCC 7120, widely studied, has 145 annotated transposase genes that are part of transposable elements called insertion sequences (ISs). To determine the entirety of the ISs, we aligned transposase genes and their flanking regions; identified the ISs'' possible terminal inverted repeats, usually flanked by direct repeats; and compared IS-interrupted sequences with homologous sequences. We thereby determined both ends of 87 ISs bearing 110 transposase genes in eight IS families (http://www-is.biotoul.fr/) and in a cluster of unclassified ISs, and of hitherto unknown miniature inverted-repeat transposable elements. Open reading frames were then identified to which ISs contributed and others—some encoding proteins of predictable function, including protein kinases, and restriction endonucleases—that were interrupted by ISs. Anabaena sp. ISs were often more closely related to exogenous than to other endogenous ISs, suggesting that numerous variant ISs were not degraded within PCC 7120 but transferred from without. This observation leads to the expectation that further sequencing projects will extend this and similar analyses. We also propose an adaptive role for poly(A) sequences in ISs.Insertion sequences (ISs) are transposable elements found in prokaryotic and eukaryotic genomes (17). A fully functional bacterial IS comprises one or more transposase genes, ends that are often inverted repeats (IRs), and, between the transposase genes and the ends, sequences termed linkers (32). Diverse bacterial ISs have been classified, and a searchable database of ISs has been constructed (ISfinder [http://www-is.biotoul.fr/]) (28). Miniature inverted-repeat transposable elements (MITEs) and even smaller mobile elements lack their own transposases and are also found in Anabaena spp. (11, 12, 33).Anabaena sp. strain PCC 7120 (also known as Nostoc sp. [25], here denoted Anabaena sp.) is widely used to study the patterned differentiation of dinitrogen-fixing cells called heterocysts. Transposition of ISs in Anabaena sp. has been documented (1, 7-9). We earlier reported, with few details, three genes that are intercepted by ISs in Anabaena sp. (23). We here describe the approach more extensively, organize the ISs of Anabaena sp., and present our efforts to identify Anabaena sp. open reading frames (ORFs) interrupted or contributed to by ISs.  相似文献   

10.
1.?A major goal in community ecology is to identify mechanisms that govern the assembly and maintenance of ecological communities. Current models of metacommunity dynamics differ chiefly in the relative emphasis placed on dispersal limitation and niche differentiation as causal mechanisms structuring ecological communities. Herein we investigate the relative roles of these two mechanisms in structuring primate communities in Africa, South America, Madagascar and Borneo. 2.?We hypothesized that if dispersal limitation is important in structuring communities, then community similarity should depend on geographical proximity even after controlling for ecological similarity. Conversely, if communities are assembled primarily through niche processes, then community similarity should be determined by ecological similarity regardless of geographical proximity. 3.?We performed Mantel and partial Mantel tests to investigate correlations among primate community similarity, ecological distance and geographical distance. Results showed significant and strongly negative relationships between diurnal primate community similarity and both ecological similarity and geographical distance in Madagascar, but significant and stronger negative relationships between community similarity and geographical distance in African, South American and Bornean metacommunities. 4.?We conclude that dispersal limitation is an important determinant of primate community structure and may play a stronger role in shaping the structure of some terrestrial vertebrate communities than niche differentiation. These patterns are consistent with neutral theory. We recommend tests of functional equivalence to determine the extent to which neutral theory may explain primate community composition.  相似文献   

11.
The amphibian fungal disease chytridiomycosis, which affects species across all continents, recently emerged as one of the greatest threats to biodiversity. Yet, many aspects of the basic biology and epidemiology of the pathogen, Batrachochytrium dendrobatidis (Bd), are still unknown, such as when and from where did Bd emerge and what is its true ecological niche? Here, we review the ecology and evolution of Bd in the Americas and highlight controversies that make this disease so enigmatic. We explore factors associated with variance in severity of epizootics focusing on the disease triangle of host susceptibility, pathogen virulence, and environment. Reevaluating the causes of the panzootic is timely given the wealth of data on Bd prevalence across hosts and communities and the recent discoveries suggesting co‐evolutionary potential of hosts and Bd. We generate a new species distribution model for Bd in the Americas based on over 30,000 records and suggest a novel future research agenda. Instead of focusing on pathogen “hot spots,” we need to identify pathogen “cold spots” so that we can better understand what limits the pathogen''s distribution. Finally, we introduce the concept of “the Ghost of Epizootics Past” to discuss expected patterns in postepizootic host communities.  相似文献   

12.
《Genomics》2021,113(6):4163-4172
This analysis presents five genome assemblies of four Notostraca taxa. Notostraca origin dates to the Permian/Upper Devonian and the extant forms show a striking morphological similarity to fossil taxa. The comparison of sequenced genomes with other Branchiopoda genomes shows that, despite the morphological stasis, Notostraca share a dynamic genome evolution with high turnover for gene families' expansion/contraction and a transposable elements content comparable to other branchiopods. While Notostraca substitutions rate appears similar or lower in comparison to other branchiopods, a subset of genes shows a faster evolutionary pace, highlighting the difficulty of generalizing about genomic stasis versus dynamism. Moreover, we found that the variation of Triops cancriformis transposable elements content appeared linked to reproductive strategies, in line with theoretical expectations. Overall, besides providing new genomic resources for the study of these organisms, which appear relevant for their ecology and evolution, we also confirmed the decoupling of morphological and molecular evolution.  相似文献   

13.
A survey of bacterial insertion sequences using IScan   总被引:4,自引:0,他引:4  
Bacterial insertion sequences (ISs) are the simplest kinds of bacterial mobile DNA. Evolutionary studies need consistent IS annotation across many different genomes. We have developed an open-source software package, IScan, to identify bacterial ISs and their sequence elements—inverted and target direct repeats—in multiple genomes using multiple flexible search parameters. We applied IScan to 438 completely sequenced bacterial genomes and 20 IS families. The resulting data show that ISs within a genome are extremely similar, with a mean synonymous divergence of Ks = 0.033. Our analysis substantially extends previously available information, and suggests that most ISs have entered bacterial genomes recently. By implication, their population persistence may depend on horizontal transfer. We also used IScan's ability to analyze the statistical significance of sequence similarity among many IS inverted repeats. Although the inverted repeats of insertion sequences are evolutionarily highly flexible parts of ISs, we show that this ability can be used to enrich a dataset for ISs that are likely to be functional. Applied to the thousands of genomes that will soon be available, IScan could be used for many purposes, such as mapping the evolutionary history and horizontal transfer patterns of different ISs.  相似文献   

14.
Insertion sequences (ISs) are the smallest and most frequent transposable elements in prokaryotes where they play an important evolutionary role by promoting gene inactivation and genome plasticity. Their genomic abundance varies by several orders of magnitude for reasons largely unknown and widely speculated. The current availability of hundreds of genomes renders testable many of these hypotheses, notably that IS abundance correlates positively with the frequency of horizontal gene transfer (HGT), genome size, pathogenicity, nonobligatory ecological associations, and human association. We thus reannotated ISs in 262 prokaryotic genomes and tested these hypotheses showing that when using appropriate controls, there is no empirical basis for IS family specificity, pathogenicity, or human association to influence IS abundance or density. HGT seems necessary for the presence of ISs, but cannot alone explain the absence of ISs in more than 20% of the organisms, some of which showing high rates of HGT. Gene transfer is also not a significant determinant of the abundance of IS elements in genomes, suggesting that IS abundance is controlled at the level of transposition and ensuing natural selection and not at the level of infection. Prokaryotes engaging in obligatory associations have fewer ISs when controlled for genome size, but this may be caused by some being sexually isolated. Surprisingly, genome size is the only significant predictor of IS numbers and density. Alone, it explains over 40% of the variance of IS abundance. Because we find that genome size and IS abundance correlate negatively with minimal doubling times, we conclude that selection for rapid replication cannot account for the few ISs found in small genomes. Instead, we show evidence that IS numbers are controlled by the frequency of highly deleterious insertion targets. Indeed, IS abundance increases quickly with genome size, which is the exact inverse trend found for the density of genes under strong selection such as essential genes. Hence, for ISs, the bigger the genome the better.  相似文献   

15.
16.
Genome comparisons of species with distinctive ecological traits can elucidate genetic divergence that influenced their differentiation. The interaction of a microorganism with its biotic environment is largely regulated by secreted compounds, and these can be predicted from genome sequences. In this study, we considered Knoxdaviesia capensis and Knoxdaviesia proteae, two closely related saprotrophic fungi found exclusively in Protea plants. We investigated their genome structure to compare their potential inter-specific interactions based on gene content. Their genomes displayed macrosynteny and were approximately 10 % repetitive. Both species had fewer secreted proteins than pathogens and other saprotrophs, reflecting their specialized habitat. The bulk of the predicted species-specific and secreted proteins coded for carbohydrate metabolism, with a slightly higher number of unique carbohydrate-degrading proteins in the broad host-range K. capensis. These fungi have few secondary metabolite gene clusters, suggesting minimal competition with other microbes and symbiosis with antibiotic-producing bacteria common in this niche. Secreted proteins associated with detoxification and iron sequestration likely enable these Knoxdaviesia species to tolerate antifungal compounds and compete for resources, facilitating their unusual dominance. This study confirms the genetic cohesion between Protea-associated Knoxdaviesia species and reveals aspects of their ecology that have likely evolved in response to their specialist niche.  相似文献   

17.
A transposable element from a coryneform bacterium, Corynebacterium glutamicum ATCC 31831 was isolated and characterized. The element IS 31831 is a 1453 bp insertion sequence with 24 bp imperfect terminal inverted repeats. It contains one open reading frame highly homologous at the amino acid level to the transposase of IS 1096 from Mycobacterium smeg-matis. Both IS 31831 and IS 1096 exhibit several common characteristics suggesting that they constitute a new family of insertion sequences. IS 31831 was isolated by taking advantage of the sucrose sensitivity of coryneform bacteria conferred by expression of the Bacillus subtilis sacB gene. An Escherichia coli/ Corynebacterium shuttle vector useful for the isolation of transposable elements from the coryneform group of bacteria was constructed.  相似文献   

18.
The nature and timing of evolution of niche differentiation among closely related species remains an important question in ecology and evolution. The American live oak clade, Virentes, which spans the unglaciated temperate and tropical regions of North America and Mesoamerica, provides an instructive system in which to examine speciation and niche evolution. We generated a fossil‐calibrated phylogeny of Virentes using RADseq data to estimate divergence times and used nuclear microsatellites, chloroplast sequences and an intron region of nitrate reductase (NIA‐i3) to examine genetic diversity within species, rates of gene flow among species and ancestral population size of disjunct sister species. Transitions in functional and morphological traits associated with ecological and climatic niche axes were examined across the phylogeny. We found the Virentes to be monophyletic with three subclades, including a southwest clade, a southeastern US clade and a Central American/Cuban clade. Despite high leaf morphological variation within species and transpecific chloroplast haplotypes, RADseq and nuclear SSR data showed genetic coherence of species. We estimated a crown date for Virentes of 11 Ma and implicated the formation of the Sea of Cortés in a speciation event ~5 Ma. Tree height at maturity, associated with fire tolerance, differs among the sympatric species, while freezing tolerance appears to have diverged repeatedly across the tropical–temperate divide. Sympatric species thus show evidence of ecological niche differentiation but share climatic niches, while allopatric and parapatric species conserve ecological niches, but diverge in climatic niches. The mode of speciation and/or degree of co‐occurrence may thus influence which niche axis plants diverge along.  相似文献   

19.
根据2006—2007年北部湾北部海域4个航次调查资料,采用K-优势度曲线法对浮游动物种(类)群进行排序分析,运用Levins公式和Pianka指数分析了主要优势种(类)群的生态位宽度值和生态位重叠程度,并通过除趋势典范对应分析(DCCA)研究生态位分化状况。结果表明,该海区浮游动物优势种(类)群按生态位宽度值可划分为广生态位、中生态位和窄生态位三大类型。其中,广生态位的种(类)群如肥胖软箭虫、亚强次真哲水蚤、长尾类幼体等具有较强的生态适应性,生活范围较广;窄生态位的种(类)群,对环境的适应性较差,对海流和水团等环境因素的变化具有指示意义。生态位宽度能够反映种(类)群丰度季节变化,但不能反映具体丰度大小。北部湾北部全年主要优势种(类)群的生态位宽度值介于0.08—0.77之间,并且各优势种(类)群的生态位宽度差异较大,种对间生态位重叠值介于0.02—0.89之间,平均生态位重叠指数为0.45,种(类)群之间利用资源环境的互补性较强,这与海域内生境多样化并且各优势种对环境适应能力的差异存在一定联系。DCCA分析表明,影响浮游动物分布的主要因子是水深、温度和盐度,其次是叶绿素a和溶解氧。  相似文献   

20.

Background

Genes present in only certain strains of a bacterial species can strongly affect cellular phenotypes and evolutionary potentials. One segment that seemed particularly rich in strain-specific genes was found by comparing the first two sequenced Helicobacter pylori genomes (strains 26695 and J99) and was named a “plasticity zone”.

Principal Findings

We studied the nature and evolution of plasticity zones by sequencing them in five more Helicobacter strains, determining their locations in additional strains, and identifying them in recently released genome sequences. They occurred as discrete units, inserted at numerous chromosomal sites, and were usually flanked by direct repeats of 5′AAGAATG, a sequence generally also present in one copy at unoccupied sites in other strains. This showed that plasticity zones are transposable elements, to be called TnPZs. Each full length TnPZ contained a cluster of type IV protein secretion genes (tfs3), a tyrosine recombinase family gene (“xerT”), and a large (≥2800 codon) orf encoding a protein with helicase and DNA methylase domains, plus additional orfs with no homology to genes of known function. Several TnPZ types were found that differed in gene arrangement or DNA sequence. Our analysis also indicated that the first-identified plasticity zones (in strains 26695 and J99) are complex mosaics of TnPZ remnants, formed by multiple TnPZ insertions, and spontaneous and transposable element mediated deletions. Tests using laboratory-generated deletions showed that TnPZs are not essential for viability, but identified one TnPZ that contributed quantitatively to bacterial growth during mouse infection and another that affected synthesis of proinflammatory cytokines in cell culture.

Conclusions

We propose that plasticity zone genes are contained in conjugative transposons (TnPZs) or remnants of them, that TnPZ insertion is mediated by XerT recombinase, and that some TnPZ genes affect bacterial phenotypes and fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号