首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
探讨叉头框蛋白Q1(forkhead box Q1, FOXQ1)基因在肝癌中的临床意义及对肝癌细胞体外血管生成作用.利用 qRT-PCR法及Western印迹法,检测24例肝癌、癌旁组织、正常肝细胞L02及肝癌细胞SMMC-7721中FOXQ1的mRNA和蛋白质的表达;利用免疫组织化学法检测68例肝癌及癌旁组织中FOXQ1的蛋白质表达.合成shRNA-FOXQ1及shRNA-NC慢病毒,转染到SMMC-7721细胞.用体外血管生成实验检测转染shRNA-FOXQ1的肝癌细胞血管生成能力. 用qRT-PCR和Western印迹法检测细胞间FOXQ1、VEGF基因和蛋白质的表达.结果显示,癌组织和SMMC-7721细胞中FOXQ1 mRNA和蛋白质的表达均高于癌旁组织和正常肝细胞(P<0.05),FOXQ1蛋白的表达与TNM分期、肿瘤分化程度、肿瘤数目、肿瘤大小等参数差异显著(P<0.05).shRNA-FOXQ1组血管生成能力明显低于shRNA-NC组和空白组(P<0.05),FOXQ1、VEGF基因和蛋白质的表达也明显低于shRNA-NC组和空白组(P<0.05).研究结果证实,FOXQ1在肝癌中高表达,如果沉默FOXQ1的表达可抑制肝癌细胞血管生成,与肝癌的临床病理特征密切相关.  相似文献   

2.
3.
Inhibition of the functions of L1 cell adhesion molecule (L1) by ethanol has been implicated in the pathogenesis of the neurodevelopmental aspects of the fetal alcohol syndrome (FAS). Ethanol at pharmacological concentrations has been shown to inhibit L1-mediated neurite outgrowth of rat post-natal day 6 cerebellar granule cells (CGN). Extracellular signal-related kinases (ERK) 1/2 activation occurs following L1 clustering. Reduction in phosphoERK1/2 by inhibition of mitogen-activated protein kinase kinase (MEK) reduces neurite outgrowth of cerebellar neurons. Here, we examine the effects of ethanol on L1 activation of ERK1/2, and whether this activation occurs via activation of fibroblast growth factor receptor 1 (FGFR1). Ethanol at 25 mm markedly inhibited ERK1/2 activation by both clustering L1 with cross-linked monoclonal antibodies, or by L1-Fc chimeric proteins. Clustering L1 with subsequent ERK1/2 activation did not result in tyrosine phosphorylation of the FGFR1. In addition, inhibition of FGFR1 tyrosine kinase blocked basic fibroblast growth factor (bFGF) activation of ERK1/2, but did not affect activation of ERK1/2 by clustered L1. We conclude that ethanol disrupts the signaling pathway between L1 clustering and ERK1/2 activation, and that this occurs independently of the FGFR1 pathway in cerebellar granule cells.  相似文献   

4.
5.
FOXQ1是FOX家族的的重要成员之一,其参与了多种人类肿瘤的上皮间质转化(epithelial- mesenchymal transition,EMT).本研究设计合成了FOXQ1基因的shRNA(short hairpin RNA),用此转染SW480细胞,通过显微镜观察细胞形态,Transwell小室、细胞黏附试验检测转移能力及黏附能力,以探索FOXQ1与结直肠癌细胞EMT的关系.结果显示,沉默FOXQ1后,SW480细胞顶底极性及细胞间紧密连接增加,侵袭、迁移的细胞数目减少,同种黏附能力增加,异种黏附能力降低.进一步的机制研究表明,沉默FOXQ1基因可以导致SW480细胞的上皮标志因子E-cadherin表达显著增高,而间质细胞标志因子N-cadherin、Vimentin及MMP2表达均降低.以上结果表明,沉默FOXQ1基因可以逆转SW480细胞EMT,其机制可能与E-cadherin的上调和N cadherin、Vimentin、MMP2的下调有关,这为进一步研究FOXQ1在结直肠癌发生发展中的作用提供实验基础.  相似文献   

6.
We previously reported that serotonin (5-HT) increased glial cell line-derived neurotrophic factor (GDNF) release in a 5-HT2 receptor (5-HT2R) and mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK)-dependent manner in rat C6 glioma cells (C6 cells), a model of astrocytes. We herein found that 5-HT-induced rapid ERK phosphorylation was blocked by 5-HT2R antagonists in C6 cells. We therefore examined 5-HT-induced ERK phosphorylation to reveal the mechanism of 5-HT-induced GDNF mRNA expression. As 5-HT-induced ERK phosphorylation was blocked by inhibitors for Gαq/11 and fibroblast growth factor receptor (FGFR), but not for second messengers downstream of Gαq/11, 5-HT2R-mediated FGFR transactivation was suggested to be involved in the ERK phosphorylation. Although FGFR1 and 2 were functionally expressed in C6 cells, 5-HT selectively phosphorylated FGFR2. Indeed, small interfering RNA for FGFR2, but not for FGFR1, blocked 5-HT-induced ERK phosphorylation. As Src family tyrosine kinase inhibitors and microtubule depolymerizing agents blocked 5-HT-induced FGFR2 phosphorylation, Src family tyrosine kinase and stabilized microtubules were suggested to act upstream of FGFR2. Finally, 5-HT-induced GDNF mRNA expression was also inhibited by the blockade of 5-HT2R, FGFR, and Src family tyrosine kinase. In conclusion, our findings suggest that 5-HT induces GDNF mRNA expression via 5-HT2R-mediated FGFR2 transactivation in C6 cells.  相似文献   

7.
8.
The KG-1a cell line is developed from a human stem cell myeloproliferative neoplasm as the result of intragenic disruption and a chromosomal translocation of the FGFR1 gene and the FGFR1OP2 gene encoding a protein of unknown function called FOP2 (FGFR1 Oncogene Partner 2). The resulting fusion protein FOP2-FGFR1 is soluble and has constitutive tyrosine kinase activity. Since the heat shock protein HSP90 and its co-chaperone CDC37 have been shown to stabilize many oncogenic proteins, we investigated the requirement for HSP90 or HSP90-CDC37 assistance to maintain the stability or activity of FOP2-FGFR1 expressed in KG-1a cells. We found that HSP90-CDC37 forms a permanent complex with FOP2-FGFR1. This results in protection against degradation of FOP2-FGFR1 and holds the oncoprotein in a permanently active conformation. Inhibition of HSP90 or depletion of CDC37 or heat shock factor 1 (HSF1) reduced the expression level of FOP2-FGFR1 and was sufficient to block the oncoprotein induced proliferation of KG-1a cells. We conclude that the driver of malignancy in KG-1a leukemic cells, FOP2-FGFR1, is an HSP90 addicted oncoprotein. This provides a rationale for the therapeutic use of HSP90 inhibitors in myeloid leukemias that contain FGFR fusion proteins.  相似文献   

9.
10.
11.
12.
《Translational oncology》2021,14(11):101208
Fibroblast growth factors 9 (FGF9) modulates cell proliferation, differentiation and motility for development and repair in normal cells. Abnormal activation of FGF9 signaling is associated with tumor progression in many cancers. Also, FGF9 may be an unfavorable prognostic indicator for non-small cell lung cancer patients. However, the effects and mechanisms of FGF9 in lung cancer remain elusive. In this study, we investigated the FGF9-induced effects and signal activation profiles in mouse Lewis lung carcinoma (LLC) in vitro and in vivo. Our results demonstrated that FGF9 significantly induced cell proliferation and epithelial-to-mesenchymal transition (EMT) phenomena (migration and invasion) in LLC cells. Mechanism-wise, FGF9 interacted with FGFR1 and activated FAK, AKT, and ERK/MAPK signal pathways, induced the expression of EMT key proteins (N-cadherin, vimentin, snail, MMP2, MMP3 and MMP13), and reduced the expression of E-cadherin. Moreover, in the allograft mouse model, intratumor injection of FGF9 to LLC-tumor bearing C57BL/6 mice enhanced LLC tumor growth which were the results of increased Ki67 expression and decreased cleaved caspase-3 expression compared to control groups. Furthermore, we have a novel finding that FGF9 promoted liver metastasis of subcutaneous inoculated LLC tumor with angiogenesis, EMT and M2-macrophage infiltration in the tumor microenvironment. In conclusion, FGF9 activated FAK, AKT, and ERK signaling through FGFR1 with induction of EMT to stimulate LLC tumorigenesis and hepatic metastasis. This novel FGF9/LLC allograft animal model may therefore be useful to study the mechanism of liver metastasis which is the worst prognostic factor for lung cancer patients with distant organ metastasis.  相似文献   

13.
14.
Forkhead Box Q1 (FOXQ1)是FOX家族的重要成员之一,在许多肿瘤中异常高表达,而FOXQ1在肝癌中的研究甚少。本研究通过重组慢病毒载体介导的FOXQ1 shRNA感染肝癌SMMC-7721细胞,敲减FOXQ1的表达,研究FOXQ1对SMMC-7721细胞增殖的影响。CCK8法、倍增时间及集落形成实验显示,敲减FOXQ1导致细胞生长减慢,倍增时间延长,细胞集落形成能力减弱。流式细胞技术检测证明,与对照比较,敲减FOXQ1的表达可显著增加G1期细胞、减少S期细胞,提示G1期阻滞。qRT-PCR和Western印迹法显示,cyclinD1和c-Myc表达下调,其可能与G1阻滞有关。上述结果提示,沉默FOXQ1的表达能够抑制SMMC-7721细胞增殖,其机制可能与cyclinD1和c-Myc的下调有关。  相似文献   

15.
16.
Fibroblast growth factor receptors (FGFRs) are activated by mutation and overexpressed in bladder cancers (BCs), and FGFR inhibitors are currently being evaluated in clinical trials in BC patients. However, BC cells display marked heterogeneity in their responses to FGFR inhibitors, and the biological mechanisms underlying this heterogeneity are not well defined. Here we used a novel inhibitor of FGFRs 1–3 and RNAi to determine the effects of inhibiting FGFR1 or FGFR3 in a panel of human BC cell lines. We observed that FGFR1 was expressed in BC cells that also expressed the “mesenchymal” markers ZEB1 and vimentin, whereas FGFR3 expression was restricted to the E-cadherin- and p63-positive “epithelial” subset. Sensitivity to the growth-inhibitory effects of BGJ-398 was also restricted to the “epithelial” BC cells and it correlated directly with FGFR3 mRNA levels but not with the presence of activating FGFR3 mutations. In contrast, BGJ-398 did not strongly inhibit proliferation but did block invasion in the “mesenchymal” BC cells in vitro. Similarly, BGJ-398 did not inhibit primary tumor growth but blocked the production of circulating tumor cells (CTCs) and the formation of lymph node and distant metastases in mice bearing orthotopically implanted “mesenchymal” UM-UC3 cells. Together, our data demonstrate that FGFR1 and FGFR3 have largely non-overlapping roles in regulating invasion/metastasis and proliferation in distinct “mesenchymal” and “epithelial” subsets of human BC cells. The results suggest that the tumor EMT phenotype will be an important determinant of the biological effects of FGFR inhibitors in patients.  相似文献   

17.
Fibroblast growth factors (FGFs) regulate the growth and progression of breast cancer. FGF signaling is transduced through FGF receptors 1–4, which have oncogenic or anti-oncogenic roles depending on the ligand and the cellular context. Our aim was to clarify the roles of FGFR1–3 in breast cancer cell growth in vitro and in vivo. Pools of S115 mouse breast cancer cells expressing shRNA against FGFR1, 2 and 3 were created by lentiviral gene transfer, resulting in cells with downregulated expression of FGFR1, FGFR2 or FGFR3 (shR1, shR2 and shR3 cells, respectively) and shLacZ controls. FGFR1-silenced shR1 cells formed small, poorly vascularized tumors in nude mice. Silencing of FGFR2 in shR2 cells was associated with strong upregulation of FGFR1 expression and the formation of large, highly vascularized tumors compared to the control tumors. Silencing FGFR3 did not affect cell survival or tumor growth. Overexpressing FGFR2 in control cells did not affect FGFR1 expression, suggesting that high FGFR1 expression in shR2 cells and tumors was associated with FGFR2 silencing by indirect mechanisms. The expression of FGFR1 was, however, increased by the addition of FGF-8 to starved shLacZ or MCF-7 cells and decreased by the FGFR inhibitor PD173074 in shR2 cells with an elevated FGFR1 level. In conclusion, our results demonstrate that FGFR1 is crucial for S115 breast cancer cell proliferation and tumor growth and angiogenesis, whereas FGFR2 and FGFR3 are less critical for the growth of these cells. The results also suggest that the expression of FGFR1 itself is regulated by FGF-8 and FGF signaling, which may be of importance in breast tumors expressing FGFs at a high level.  相似文献   

18.
Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling.  相似文献   

19.
20.
Epidermal growth factor (EGF) and transforming growth factor-beta1 (TGF-beta1), upregulated in renal diseases, have a combinational effect on epithelial-mesenchymal transformation (EMT) of renal proximal tubular cells. The aim of this study was to examine the mechanism regarding the combinational effect of EGF and TGF-beta1 on cell migration following EMT. The results demonstrated that EGF (10 ng/ml) and TGF-beta1 (3 ng/ml) synergistically increased cell migration, accompanied by an increase in matrix metalloproteinase-9 (MMP-9) gene expression, production and activity. Inhibition of MMP-9 production and activity by an MMP-2/MMP-9-specific inhibitor blocked the synergistic effect of EGF and TGF-beta1 on cell migration. The kinetic profile of extracellular signal-regulated kinase (ERK) signals demonstrated that ERK1/2 activation was rapidly and strongly induced by EGF but delayed and less marked by TGF-beta1 stimulation. In contrast, co-administration of EGF and TGF-beta1 caused an early pronounced and persistent ERK1/2 activation. Inhibition of the ERK1/2 activity by PD98059 abrogated the synergistic effect of EGF and TGF-beta1 on cell migration, MMP-9 production and activity, indicating that EGF and TGF-beta1 converged at the ERK signaling pathway to mediate cell migration. This study demonstrates that EGF and TGF-beta1 synergistically stimulate proximal tubular cell migration through the increased MMP-9 function and enhanced ERK1/2 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号