首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
We have examined, by analyzing thin (15-20 nm) serial sections, whether coated pits involved in adsorptive pinocytosis in cultured fibroblasts give rise to free coated vesicles or represent permanently surface-associated structures from the neck of which uncoated receptosomes pinch off and carry ligand into the cell. Human skin fibroblasts and mouse L-929 fibroblasts were incubated with cationized ferritin (CF), a ligand known to bind to coated pit regions, at 37 degrees C before fixation. In thin sections, CF was found in coated vesicular profiles within the cytoplasm. Serial sections revealed that whereas many of these coated profiles communicated with the cell surface, thus representing pits, about 10% in L-cells and 36% in skin fibroblasts were actually free coated vesicles. Moreover, evidence for uncoated vesicular structures (receptosomes) budding off from the coated pits was not obtained. We therefore conclude that coated pits do pinch off from the plasma membrane to form free, coated vesicles (pinosomes).  相似文献   

2.
Summary Rat dorsal spinal nerve roots were cut; 20 h later the axons in the vicinity of the cut were examined by light and electron microscopy. The changes in the cut tip distant from the ganglion were largely degenerative. On the ganglionic side of the cut a cap of free unmyelinated sprouts was formed. These sprouts contained clear and dense-core vesicles 40–150 nm in diameter, smooth endoplasmic reticulum and mitochondria. Some of the unmyelinated sprouts were extensions of myelinated axons, others arose from myelinated axons by lateral budding. In both myelinated and non-myelinated axons there was an accumulation of mitochondria, tubulo-vesicular smooth endoplasmic reticulum and large and small dense-core vesicles for a distance of approximately 500 m behind the tip. Dense-core vesicles were more common in nonmyelinated axons than in their myelinated counterparts. In areas of intense accumulation the non-myelinated fibres were grossly swollen and distorted. The myelinated axons and some of the sprouts contained an unusual type of mitochondrion. The similarity between these sprouts and pre-synaptic terminals is discussed.I.R.D. is supported by the Medical Research Council; P.K. thanks the Mental Health Trust for a project grant  相似文献   

3.
Summary Horseradish peroxidase (HRP) was introduced directly into the cerebral cortex of adult rats, which were allowed to survive for 60 min before perfusion fixation. After the tissue had been incubated to demonstrate HRP at the LM and EM levels, blocks of cortical tissue were taken at varying distances from the injection site. These eight blocks of tissue constituted a time sequence for HRP diffusion.Qualitative examination of the presynaptic terminals showed that the most commonly encountered profiles are the plain synaptic vesicles, many of which accumulate tracer. In some terminals labelled vesicles are lined-up in tubular fashion. Other profiles commonly labelled are coated vesicles, tubular and vacuolar cisternae, and plain and coated pinocytotic vesicles.Quantitative analyses based on the number of terminals containing labelled profiles demonstrate an early rise in the rate of labelling of both plain synaptic vesicles and coated vesicles, after which synaptic vesicle labelling rises slowly towards a plateau. By contrast, there is a late parallel increase in the rate of labelling of coated vesicles and cisternae. A more detailed analysis, based on the actual numbers of labelled and total profiles within each presynaptic terminal, highlight early and late periods of rapid labelling for plain synaptic vesicles, coated vesicles and cisternae. A further aspect of HRP incorporation studied, concerns its uptake into four delineated regions of the presynaptic terminal.Our data indicate that membrane uptake into the presynaptic terminal is accomplished mainly via coated vesicles, although plain synaptic vesicles may also be involved. Coated vesicles, in turn, appear to give rise directly to plain synaptic vesicles, with some coalescing to produce vacuolar cisternae. The latter are involved in a two-way interchange of membrane with tubular cisternae, plain synaptic vesicles and coated vesicles. An additional source of plain synaptic vesicles are the tubular cisternae. Exocytosis of plain synaptic vesicles constitutes the mechanism by which transmitter is released from the presynaptic terminal.Supported by the Nuffield Foundation. We are grateful to Mr. M. Austin for help with the photography  相似文献   

4.
Summary The autonomic nerves of the myometrium of the rabbit were studied in order to demonstrate simultaneously the adrenergic nature of an axon and the localization of acetylcholinesterase (AChE) in the same axons. The synaptic vesicles of the adrenergic axons and nerve terminals remained partially filled with the electron dense material typical for them after formaldehyde fixation and short incubation time for AChE. AChE stain was localized regularly on the axons which contained agranular synaptic vesicles and also on axons which contained dense cored synaptic vesicles beeing probably adrenergic. The role of AChE on the adrenergic axons is discussed.  相似文献   

5.
The fate of tetanus toxin bound to neuronal cells at 0 degree C was followed using an anti-toxin 125I-protein A assay. About 50% of surface-bound toxin disappeared within 5 min of warming cells to 37 degrees C. Experiments with 125I-toxin showed that much of this loss was due to dissociation of bound toxin into the medium. Some toxin was however rapidly internalised, and could be detected only by permeabilizing cells with Triton X-100 prior to assay. To investigate the mechanism of internalisation, tetanus toxin was adsorbed to colloidal gold. Toxin-gold was shown to be stable, and to recognise the same receptor(s) as free toxin. Quantitation of the distribution of toxin-gold particles bound to the cell body at 4 degrees C showed that it was concentrated in coated pits. After 5 min at 37 degrees C, toxin-gold appeared in coated vesicles, endosomes, and tubules. After 15 min, it was found largely in endosomes, and at 30 min in multivesicular bodies. The involvement of coated pits in internalisation of tetanus toxin, but not cholera toxin, was confirmed using the free toxins, anti-toxins, and protein A-gold. Toxin-gold also entered nerve terminals and axons via coated pits, accumulating in synaptic vesicles and intraaxonal uncoated vesicles, respectively.  相似文献   

6.
Summary The fine structure of the preterminal nerve fibers of the rabbit myometrial smooth muscle was studied using potassium permanganate fixation or glutaraldehyde fixation with postosmification. The preterminal fibers were mostly formed by 2–10 axons enveloped by Schwann cells. Two kinds of axons and axon terminals were found. (1) Adrenergic axons, which contained many small, granular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å) which represented ca. 2% of the total count of the vesicles. (2) Nonadrenergic axons, which contained small agranular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å). Both types of axons formed preterminal varicosities along their course. The real terminal varicosities, representing the anatomical end of the axons, were usually larger than the preterminal ones and showed close contact to the plasma membranes of the smooth muscle cells. Both adrenergic and nonadrenergic terminals were found close to the smooth muscle cells, but a gap of at least 2000 Å was always present between the two cell membranes. The axons and preterminal varicosities of both types of nerves were in intimate contact with each other within the preterminal nerve fiber. Axo-axonal interactions between the two types of axons are possible in the rabbit myometrium. The relative proportion of the nonadrenergic axons from the total was about one fourth.  相似文献   

7.
We have developed small-scale methods for the isolation and biochemical characterization of subcellular fractions from single guinea-pig posterior-pituitary glands. Secretory vesicles and coated microvesicles produced in this way were of similar purity to those isolated from large amounts of tissue by conventional ultracentrifugation. [35S]Cysteine injected into the hypothalamus was found in the soluble contents of secretory vesicles isolated from the neural lobes 24 h later. High-pressure liquid-chromatographic analysis revealed that the radiolabel was incorporated into the expected neurosecretory products (oxytocin, vasopressin and neurophysin) and also into a biosynthetic intermediate in the vasopressin system. The membranes of secretory vesicles were labelled with [3H]choline 24 h after its hypothalamic injection. Little or no [3H]choline could be demonstrated in coated microvesicles at this time, although these structures were labelled 5 days after injection. Stimulating hormone secretion by chronic dehydration produced a significant fall in [3H]choline content of the secretory-vesicle membranes without any transfer of label into coated microvesicles, suggesting that coated microvesicles are not involved in membrane retrieval in the neurohypophysis.  相似文献   

8.
The incidence of coated vesicles under sarcolemmal surfaces of equatorial, juxta-equatorial and polar regions in developing and adult spindles of the rat soleus muscle was examined by quantitative morphometry of transverse ultrathin sections. Coated vesicles were more numerous: 1) under primary sensory endings than under other types of neuromuscular contacts; 2) under the appositional sarcolemma between neighbouring intrafusal fibres than under free surfaces of the sarcolemma; and 3) in developing than in mature spindles. Factors such as location and age of the animal often interacted to produce an additive effect on the incidence of coated vesicles. Although there was a high incidence of coated vesicles at the postsynaptic surface under sensory terminals of bag2 fibres in 18 and 19 day gestational embryonic rats, it peaked in 4 day postnatal animals. The high incidence of coated vesicles at sensory endings supports the view that coated vesicles mediate neurotrophic interactions between afferents and intrafusal fibres during the critical late gestation and early postnatal time period, as sensory axons first contact their target fibres and exert a maximal directing influence on the differentiation of intrafusal fibre types. In addition, the preferential localization of coated vesicles under appositional rather than free surfaces of developing intrafusal fibres in 0-4 day rats suggests that they play a role in the transport of active substances among intrafusal fibres exhibiting different stages of maturity.  相似文献   

9.
S S Tay  T H Williams  J Y Jew 《Peptides》1989,10(1):113-120
Neurotensin (NT) was demonstrated in the central nucleus of the rat amygdala (CNA) using a modification of the avidin-biotin complex immunohistochemical technique. Electron-dense reaction product (particles were 15-25 nm in diameter) was localized in perikarya, dendrites, axons, and axon terminals. It was found also associated with profiles of rough endoplasmic reticulum, mitochondria, microtubules, and small agranular as well as large granular vesicles. In distal dendrites, the reaction product was associated with microtubules, vesicles, and postsynaptic densities. Axon terminals of three types formed synaptic contracts with NT-immunoreactive neurons in the CNA: one was characterized by numerous round or oval agranular vesicles, the second by numerous pleomorphic vesicles, and the third by agranular vesicles that were loosely distributed and pleomorphic. All three types formed symmetric axosomatic and asymmetric axodendritic contacts. NT-immunoreactive axon terminals containing small round agranular vesicles stood out clearly from the intermingling profiles of immunonegative structures. We found numerous glomeruli, each consisting of a central NT-immunoreactive dendrite surrounded by all three types of axon terminals. We observed that some NT-immunoreactive terminals formed symmetric axoaxonal contacts with each other, providing evidence for the presence of local NT-to-NT circuits, whereas many others synapsed with axon terminals devoid of NT immunoreactivity.  相似文献   

10.
Three types of neuronal perikaryal profiles were identified in the dorsal column nucleus and the nucleus of Bischoff of the python (Python reticulatus). Type I neuronal profiles are large (diameters 12–20 μm) with a deeply indented uncleus. The cisterns of rough endoplasmic reticulum (rER) are mostly randomly dispersed. Axosomatic synapses are few. Type II neuronal profiles (9–11 μm) have a smooth, round, or slightly oval nucleus. Several small stacks of rER are present. Type III neuronal profiles (8–10 μm) have little cytoplasm. The nuclear margin is irregular but not deeply infolded. The rER usually consists of a single long perinuclear ribosome-studded cistern. Two types of astrocytic profiles have been identified. Both types contain abundant filaments. Type I astrocytes are large cells, and the nucleus is very irregular in shape. Type II astrocytes are smaller and are found among the myelinated axons in the dorsal funiculus. Two classes of axon terminals have been identified. One class contains round synaptic vesicles (R profiles) and the other flattened vesicles (F profiles). Some R profiles are small (SR profiles), others are large (LR profiles). Some R profiles also contain a few large, dense-cored vesicles. The R and F profiles establish axodendritic and axoaxonal synapses, some of which are located in the synaptic glomeruli and others in the extraglomerular neuropil. In most of the axoaxonal synapses, the presynaptic element is an F profile and the post synaptic element an LR profile. Occasionally, LR profiles are presynaptic to F profiles. The findings in the python are compared with those of the dorsal column nuclei of the rat, cat, and monkey.  相似文献   

11.
Central nerve terminals have been examined for ultrastructural signs of release of neurochemical mediators in the annelids Nereis diversicolor, Harmothoe imbricata and Lumbricus terrestris. Two categories of presumptive secretory inclusions are readily distinguished. Exocytosis of ‘storage granules’ is widespread in the neuropile, and involves probable peptidergic terminals as well as more conventional terminals. Plasma membranes at such sites of release are apparently unmodified. In contrast, ‘synaptic vesicles’ are aggregated adjacent to membrane thickenings and specialized clefts, and signs of their fusion with the presynaptic membranes have been observed rarely. The presence of coated pits surmounting omega profiles involving storage granules may indicate that membrane is retrieved in the form of microvesicles from the site of exocytosis. Coated pits associated with synapses have only been observed in areas of membrane adjacent to presumed sites of vesicle exocytosis. The incidence of dual sites of release, often relating to individual terminals, may be indicative of the segregated storage and independent secretion of distinct active principles. Materials released by granule exocytosis may have the role of neuromodulators.  相似文献   

12.
J L Guan  Q P Wang  Y Nakai 《Peptides》1999,20(7):873-880
A simple preembedding avidin-biotin-peroxidase complex technique was used to study the ultrastructural localization of mu-opioid receptor in the rat area postrema. By using low concentrations of the first antiserum for incubation with a short reaction time to 3,3'-diaminobenzidine, the immunostaining was faint at the light microscopic level. However, at the electron microscopic level, strong immunoreaction was observed. Mu-Opioid receptors were found to be localized on the postsynaptic membrane of dendrites, extrasynaptic plasma membrane, and the surface of the small, clear vesicles in axon terminals. Of the total 283 immunopositive profiles observed, 68.2% (193 of 283) were dendrites, 29.3% (83 of 283) were axon terminals, and 2.5% (7 of 283) were myelinated axons. No immunostained neuron bodies were found in the present study; 109 mu-opioid receptor immunoreactive dendrites received synapses (56.5%, 109 of 193) from nonimmunoreactive (84.4%, 92 of 109) or immunoreactive (15.6%, 17 of 109) axon terminals, whereas 84 dendrites (43.5%, 84 of 193) were found without receiving synapses. The present study shows that the mu-opioid receptor in the area postrema plays a role mainly at the synapses.  相似文献   

13.
S S Tay  W C Wong 《Acta anatomica》1992,144(1):51-58
The present paper describes the long-term ultrastructural changes in the nucleus ventralis posterolateralis of the thalamus of male Wistar rats after alloxan-induced diabetes. Degenerating dendrites were characterized by an electron-dense cytoplasm with scattered endoplasmic reticulum and ribosomes. Degenerating axon terminals were characterized by an electron-dense cytoplasm and clustering of small spherical agranular vesicles. Degenerating axon terminals formed axosomatic synapses with seemingly normal cell bodies and axodendritic synapses with normal as well as degenerating dendrites. Degenerating axons (both myelinated and unmyelinated) were readily encountered in the neuropil. Activated microglial and astrocytic cells in the neuropil were in the process of phagocytosis or had residua in their cytoplasm.  相似文献   

14.
We have used the newly introduced method of De Lorenzo & Freedman (1978) for isolating synaptic vesicles to determine if such vesicles contain both serotonin (5-HT) and serotonin binding protein (SBP). Two fractions were obtained. A 55, 000 g fraction was morphologically heterogeneous and contained coated vesicles. A 135, 0000 vesicle (dia. 51.3 nm) fraction was homogeneous in ultra-structure and contained no coated vesicles. The specific activity of SBP in this fraction was much higher than that in the supernatant. Unlike SBP, very little lactic dehydrogenase activity appeared in the 135, 000 g fraction. Qualitative and quantitative differences were observed between the polypeptide profiles of soluble proteins extracted from the vesicles and supernatant proteins on SDS gels. Therefore, entrapment of cytosol in the vesicles of the 135, 000 g fraction was minimal. The 5-HT concentration of the 135, 000 g vesicles was 5.5 ng/mg protein and in the supernatant, 11.3 ng/mg protein. The ATP concentration in the 135, 000 g vesicle fraction was only 0.8 ng/mg Pr. Rabbit spinal cords were transected in order to determine if SBP is moved proximo-distally in axons by rapid axonal transport as would be predicted for a constituent of synaptic vesicles. SBP accumulated above the cut at a rate consistent with fast transport (78 mm/day). SBP activity fell caudal to the point of transection and there was no evidence, such as an accumulation below the lesion, that might indicate retrograde transport of SBP. These experiments indicate that SBP is probably synthesized in the cell bodies of serotonergic neurons and some is rapidly transported down axons to be stored in terminals in vesicles.  相似文献   

15.
The precise cellular and subcellular locations of coated vesicle protein, clathrin, in rat kidney and cerebellum have been visualized by immunocytochemical techniques. In the renal tubular epithelia, clathrin-positive products were found on both free ribosomes and on those attached to rough endoplasmic reticulum (RER) and the nuclear envelope. No clathrin was observed in the cisternae of RER or the Golgi apparatus. Clathrin-positive reaction products could also be seen on coated pits, coated vesicles, Golgi-associated vesicles, basolateral cell membrane, the ground substance, and in the autophagic vacuoles. In cerebellar Purkinje and granule cell bodies, reaction products were seen localized on coated vesicles, on the budding areas from the Golgi-associated membrane and Golgi-associated vesicles. Furthermore, the membrane of the multivesicular body, the bound-ribosomes, and the ground substance were also stained. In the myelinated axon, the clathrin appeared to be concentrated on certain segments and seemed to fill in the space between neurotubules and some vesicles. In certain synaptic terminals clathrin was often seen attached to presynaptic vesicles, presynaptic membrane, and post-synaptic membrane. However, in most mossy fibers, some synaptic vesicles were not stained. These observations suggest that clathrin is synthesized on bound and free ribosomes and discharged into the cytosol where it becomes associated with a variety of ground substances and assembles on coated pits, coated vesicles, Golgi-associated vesicles, presynaptic vesicles, and pre- and postsynaptic membranes. Clathrin may be finally degraded in autophagic vacuoles.  相似文献   

16.
Summary Mammalian pinealocytes have been shown to contain synaptic-like microvesicles with putative secretory functions. As a first step to elucidate the possibility that pinealocyte microvesicles store messenger molecules, such as neuroactive amino acids, we have studied the distributional pattern of glutamate immunoreactivity in the pineal gland of the Mongolian gerbil (Meriones unguiculatus) at both light- and electron-microscopic levels. In semithin sections of plastic-embedded pineals, strong glutamate immunoreactivity could be detected in pinealocytes throughout the pineal gland. The density of glutamate immunolabeling in pinealocytes varied among individual cells and was mostly paralled by the density of immunostaining for synaptophysin, a major integral membrane protein of synaptic and synaptic-like vesicles. Postembedding immunogold staining of ultrathin pineal sections revealed that gold particles were enriched over pinealocytes. In particular, a high degree of immunoreactivity was associated with accumulations of microvesicles that filled dilated process terminals of pinealocytes. A positive correlation between the number of gold particles and the packing density of microvesicles was found in three out of four process terminals analyzed. However, the level of glutamate immunoreactivity in pinealocyte process endings was lower than in presumed glutamatergic nerve terminals of the cerebellum and posterior pituitary. The present results provide some evidence for a microvesicular compartmentation of glutamate in pinealocytes. Our findings thus lend support to the hypothesis that glutamate serves as an intrapineal signal molecule of physiological relevance to the neuroendocrine functions of the gland.  相似文献   

17.
《The Journal of cell biology》1989,109(6):3425-3433
Nerve endings of the posterior pituitary are densely populated by dense- core neurosecretory granules which are the storage sites for peptide neurohormones. In addition, they contain numerous clear microvesicles which are the same size as small synaptic vesicles of typical presynaptic nerve terminals. Several of the major proteins of small synaptic vesicles of presynaptic nerve terminals are present at high concentration in the posterior pituitary. We have now investigated the subcellular localization of such proteins. By immunogold electron microscopy carried out on bovine neurohypophysis we have found that three of these proteins, synapsin I, Protein III, and synaptophysin (protein p38) were concentrated on microvesicles but were not detectable in the membranes of neurosecretory granules. In addition, we have studied the distribution of the same proteins and of the synaptic vesicle protein p65 in subcellular fractions of bovine posterior pituitaries obtained by sucrose density centrifugation. We have found that the intrinsic membrane proteins synaptophysin and p65 had an identical distribution and were restricted to low density fractions of the gradient which contained numerous clear microvesicles with a size range the same as that of small synaptic vesicles. The peripheral membrane proteins synapsin I and Protein III exhibited a broader distribution extending into the denser part of the gradient. However, the amount of these proteins clearly declined in the fractions preceding the peak of neurosecretory granules. Our results suggest that microvesicles of the neurohypophysis are biochemically related to small synaptic vesicles of all other nerve terminals and argue against the hypothesis that such vesicles represent an endocytic byproduct of exocytosis of neurosecretory granules.  相似文献   

18.
Stereologic techniques were used to analyse the density and distribution of Concanavalin-A (Con-A) receptor sites on the surface of isolated resting human peripheral-blood T lymphocytes using Con-A/colloidal-gold-labelled horseradish peroxidase. The T-lymphocyte surface appeared to be composed of microvilli, smooth areas and uncoated pits. Coated pits and coated vesicles, identified by the preferential staining of clathrin-containing membranes (tannic-acid/saponin fixation), were scarce. Quantitative analysis of the gold labelling on T lymphocytes after glutaraldehyde fixation indicated the presence of 2.13 +/- 0.46 gold particles per micron of cell surface and that these particles were preferentially located on uncoated pits. These results suggest the existence of cell-surface domains for these receptor sites in human resting T lymphocytes.  相似文献   

19.
Summary Synaptic connections between neurons immunoreactive for arginine vasopressin (AVP) and axon terminals immunoreactive for neuropeptide Y (NPY) were found in the magnocellular part of the paraventricular nucleus (PVN) in the rat hypothalamus. In pre-embedding double immunolabeling, NPY axon terminals labeled with diamin-obenzidine (DAB) reaction product established synaptic junctions on the perikarya and neuronal processes of AVP neurons labeled with silver-gold particles. Ultrastructural morphology of the neurons was more suitably preserved by a combination of pre- and post-embedding procedures. The presynaptic NPY terminals contained many small clear vesicles and a few cored vesicles, and DAB chromogen (immunoreaction product) was located on the surface of the vesicular profiles and on the core. The postsynaptic AVP neurons possessed many large secretory granules labeled with gold particles. At the synaptic junctions, small clear vesicles were accumulated at the presynaptic membrane, and the postsynaptic membrane was coated with a dense accumulation of fine electron dense particles. The perikarya also received synapses made by immuno-negative axon terminals containing many small clear vesicles and a few cored vesicles. These terminals were found more frequently than those containing NPY.  相似文献   

20.
Synaptic connections between neurons immunoreactive for arginine vasopressin (AVP) and axon terminals immunoreactive for neuropeptide Y (NPY) were found in the magnocellular part of the paraventricular nucleus (PVN) in the rat hypothalamus. In pre-embedding double immunolabeling, NPY axon terminals labeled with diaminobenzidine (DAB) reaction product established synaptic junctions on the perikarya and neuronal processes of AVP neurons labeled with silver-gold particles. Ultrastructural morphology of the neurons was more suitably preserved by a combination of pre- and post-embedding procedures. The presynaptic NPY terminals contained many small clear vesicles and a few cored vesicles, and DAB chromogen (immunoreaction product) was located on the surface of the vesicular profiles and on the core. The postsynaptic AVP neurons possessed many large secretory granules labeled with gold particles. At the synaptic junctions, small clear vesicles were accumulated at the presynaptic membrane, and the postsynaptic membrane was coated with a dense accumulation of fine electron dense particles. The perikarya also received synapses made by immuno-negative axon terminals containing many small clear vesicles and a few cored vesicles. These terminals were found more frequently than those containing NPY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号