首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate cancer (PCa) is one of the most common malignancies in men. Ribosomal protein L22-like1 (RPL22L1), a component of the ribosomal 60 S subunit, is associated with cancer progression, but the role and potential mechanism of RPL22L1 in PCa remain unclear. The aim of this study was to investigate the role of RPL22L1 in PCa progression and the mechanisms involved. Bioinformatics and immunohistochemistry analysis showed that the expression of RPL22L1 was significantly higher in PCa tissues than in normal prostate tissues. The cell function analysis revealed that RPL22L1 significantly promoted the proliferation, migration and invasion of PCa cells. The data of xenograft tumour assay suggested that the low expression of RPL22L1 inhibited the growth and invasion of PCa cells in vivo. Mechanistically, the results of Western blot proved that RPL22L1 activated PI3K/Akt/mTOR pathway in PCa cells. Additionally, LY294002, an inhibitor of PI3K/Akt pathway, was used to block this pathway. The results showed that LY294002 remarkably abrogated the oncogenic effect of RPL22L1 on PCa cell proliferation and invasion. Taken together, our study demonstrated that RPL22L1 is a key gene in PCa progression and promotes PCa cell proliferation and invasion via PI3K/Akt/mTOR pathway, thus potentially providing a new target for PCa therapy.  相似文献   

2.
目的探讨肿瘤转移相关因子RhoGDI2与PI3K/Akt/mTOR信号通路在肺癌侵袭转移过程中的作用及相关机制。方法利用PI3K/Akt/mTOR信号通路上特异性的抑制剂,采用MTT法,伤口愈合实验及侵袭实验观察不同浓度药物对肺癌95D细胞生长侵袭转移能力的影响,通过Western Blot方法观察RhoGDI2蛋白水平的变化。结果PI3K抑制剂LY294002及mTOR抑制剂Rapamycin都能抑制肺癌细胞95D的侵袭转移能力,联合应用抑制作用更强。PI3K抑制剂LY294002处理组RhoGDI2蛋白的表达量增加,且随浓度增加RhoGDI2蛋白表达也增加。mTOR抑制剂Rapamycin组,在低浓度时增加RhoGDI2蛋白的表达,但增大Rapamycin的浓度,RhoGDI2蛋白的表达反而降低。低浓度LY294002组和Rapa-mycin组联合应用可以明显增加RhoGDI2蛋白的表达。结论PI3K/Akt/mTOR信号通路中Akt的活化与RhoGDI2密切相关,RhoGDI2可能直接或间接通过与Akt的相互作用参与调节肺癌的侵袭转移的过程。  相似文献   

3.
FST (follistatin) is essential for skeletal muscle development, but the intracellular signalling networks that regulate FST-induced effects are not well defined. We sought to investigate whether FST promotes the proliferation of myoblasts through the PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) signalling. In the present study, we transfected the pEGFP-duFST plasmid and added PI3K and mTOR inhibitors to the medium of duck primary myoblasts. Then, we analysed the cellular phenotypic changes that occurred and analysed the expression of target genes. The results showed that FST promoted myoblast proliferation, induced the mRNA expression of PI3K, Akt, mTOR, 70-kDa ribosomal protein S6K (S6 kinase) and the protein expression of phospho-Akt (Thr308), mTOR, phospho-mTOR (serine 2448), phospho-S6K (Ser417), inhibited the mRNA expression of FoxO1, MuRF1 (muscle RING finger-1) and the protein expression of phospho-FoxO1 (Ser256). Moreover, we found that the overexpression of FST could alleviate the inhibitory effect of myoblast proliferation caused by the addition of LY294002, a PI3K inhibitor. Additionally, the overexpression of duck FST also relieved the inhibition of myoblast proliferation caused by the addition of rapamycin (an mTOR inhibitor) through PI3K/Akt/mTOR signalling. In light of the present results, we hypothesize that duck FST could promote myoblast proliferation, which is dependent on PI3K/Akt/mTOR signalling.  相似文献   

4.
The PI3K/Akt/mTOR signal transduction pathway plays a central role in multiple myeloma (MM) disease progression and development of therapeutic resistance. mTORC1 inhibitors have shown limited efficacy in the clinic, largely attributed to the reactivation of Akt due to rapamycin induced mTORC2 activity. Here, we present promising anti-myeloma activity of MK-2206, a novel allosteric pan-Akt inhibitor, in MM cell lines and patient cells. MK-2206 was able to induce cytotoxicity and inhibit proliferation in all MM cell lines tested, albeit with significant heterogeneity that was highly dependent on basal pAkt levels. MK-2206 was able to inhibit proliferation of MM cells even when cultured with marrow stromal cells or tumor promoting cytokines. The induction of cytotoxicity was due to apoptosis, which at least partially was mediated by caspases. MK-2206 inhibited pAkt and its down-stream targets and up-regulated pErk in MM cells. Using MK-2206 in combination with rapamycin (mTORC1 inhibitor), LY294002 (PI3K inhibitor), or U0126 (MEK1/2 inhibitor), we show that Erk- mediated downstream activation of PI3K/Akt pathway results in resistance to Akt inhibition. These provide the basis for clinical evaluation of MK-2206 alone or in combination in MM and potential use of baseline pAkt and pErk as biomarkers for patient selection.  相似文献   

5.
目的:用低血清培养液来模拟肾脏供血不足的营养不良状态,研究低浓度哇巴因对低血清培养下OK细胞(负鼠肾小管上皮细胞)增殖的影响。方法:用低浓度哇巴因(1-30n M)处理0.2%血清培养下OK细胞,MTT实验和Brdu掺入法检测哇巴因对OK细胞增殖的影响;Western blot检测Akt和ERK1/2的磷酸化水平;用LY294002和PD98059分别抑制PI3K/Akt和ERK1/2蛋白激酶活性,观察抑制PI3K/Akt和ERK1/2对哇巴因促进OK细胞增殖的影响。结果:低浓度哇巴因(1-30n M)促进OK细胞的增值,上调OK细胞中Akt和ERK1/2磷酸化水平。用LY294002和PD98059特异抑制Akt和ERK1/2的活化能够抑制哇巴因的促增殖作用。结论:低浓度哇巴因(1-10n M)能够促进OK细胞的增值,PI3K/Akt和ERK1/2信号通路参与哇巴因对OK细胞促增殖作用的调节。  相似文献   

6.
PI3K/Akt is an important pathway implicated in the proliferation and survival of cells in the CNS. Here we investigated the participation of the PI3K/Akt signal pathway in cell cycle of developing retinal progenitors. Immunofluorescence assays performed in cultures of chick embryo retinal cells and intact tissues revealed the presence of phosphorylated Akt and 4E-BP1 in cells with typical mitotic profiles. Blockade of PI3K activity with the chemical inhibitor LY 294002 (LY) in retinal explants blocked the progression of proliferating cells through G2/M transition, indicated by an expressive increase in the number of cells labeled for phosphorylated histone H3 in the ventricular margin of the retina. No significant level of cell death could be detected at this region. Retinal explants treated with LY for 24 h also showed a significant decrease in the expression of phospho-Akt, phospho-GSK-3 and the hyperphosphorylated form of 4E-BP1. Although no change in the expression of cyclin B1 was detected, a significant decrease in CDK1 expression was noticed after 24 h of LY treatment both in retinal explants and monolayer cultures. Our results suggest that PI3K/Akt is an active pathway during proliferation of retinal progenitors and its activity appears to be required for proper CDK1 expression levels and mitosis progression of these cells.  相似文献   

7.
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.  相似文献   

8.
hnRNP A1 acts as a critical splicing factor in regulating many alternative splicing events in various physiological and pathophysiological progressions. hnRNP A1 is capable of regulating UVB-induced hdm2 gene alternative splicing according to our previous study. However, the biological function and underlying molecular mechanism of hnRNP A1 in cell survival and cell cycle in response to UVB irradiation are still unclear. In this study, silencing hnRNP A1 expression by siRNA transfection led to decreased cell survival after UVB treatment, while promoting hnRNP A1 by lentiviruse vector resulted in increased cell survival. hnRNP A1 remarkably enhanced PI3K/Akt/mTOR signaling pathway by increasing phosphorylation of Akt, mTOR and P70S6 protein. Inhibition of PI3K/Akt signaling by LY294002 suppressed the expression of hnRNP A1. While mTOR signaling inhibitors, rapamycin and AZD8055, did not influence hnRNP A1 expression in HaCaT cells, suggesting that hnRNP A1 may be an upstream mediator of mTOR signaling. Furthermore, hnRNP A1 could alleviate UVB-provoked cell cycle arrest at G0/G1 phase and promoted cell cycle progression at G2/M phase. Our results indicate that hnRNP A1 promotes cell survival and cell cycle progression following UVB radiation.  相似文献   

9.
This study aimed to investigate the role of miR‐138 in human coronary artery endothelial cell (HCAEC) injury and inflammatory response and the involvement of the PI3K/Akt/eNOS signalling pathway. Oxidized low‐density lipoprotein (OX‐LDL)‐induced HCAEC injury models were established and assigned to blank, miR‐138 mimic, miR‐138 inhibitor, LY294002 (an inhibitor of the PI3K/Akt/eNOS pathway), miR‐138 inhibitor + LY294002 and negative control (NC) groups. qRT‐PCR and Western blotting were performed to detect the miR‐138, PI3K, Akt and eNOS levels and the protein expressions of PI3K, Akt, eNOS, p‐Akt, p‐eNOS, Bcl‐2, Bax and caspase‐3. ELISAs were employed to measure the expressions of TNF‐α, IL‐4, IL‐6, IL‐8, IL‐10 and nitric oxide (NO) and the activities of lactate dehydrogenase (LDH) and eNOS. MTT and flow cytometry were performed to assess the proliferation and apoptosis of HCAECs. Compared to the blank group, PI3K, Akt and eNOS were down‐regulated in the miR‐138 mimic and LY294002 groups but were up‐regulated in the miR‐138 inhibitor group. The miR‐138 mimic and LY294002 groups showed decreased concentrations of TNF‐α, IL‐6, IL‐8 and NO and reduced activities of LDH and eNOS, while opposite trends were observed in the miR‐138 inhibitor group. The concentrations of IL‐4 and IL‐10 increased in the miR‐138 mimic and LY294002 groups but decreased in the miR‐138 inhibitor group. The miR‐138 mimic and LY294002 groups had significantly decreased cell proliferation and increased cell apoptosis compared to the blank group. These findings indicate that up‐regulation of miR‐138 alleviates HCAEC injury and inflammatory response by inhibiting the PI3K/Akt/eNOS signalling pathway.  相似文献   

10.
Bacterial flagellin triggers inflammatory responses. Phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) regulate the production of pro- and anti-inflammatory cytokines that are induced by extrinsic antigens, but the function of mTORC1 in flagellin-induced inflammatory response is unknown. The purpose of this study was to examine the role and the mechanism of PI3K/Akt/mTOR pathway in flagellin-induced cytokine expression in mouse macrophages. We observed that flagellin upregulated TNF-α time- and dose-dependently. Flagellin stimulated rapid (<15 min) PI3K/Akt/mTOR phosphorylation that was mediated by TLR5. Inhibition of PI3K with LY294002 and wortmannin, and of mTORC1 with rapamycin decreased flagellin-induced TNF-α and IL-6 expression and cell proliferation. The activation of NF-κB p65 and STAT3 was regulated by mTORC1 via degradation of IκBα and phosphorylation of STAT3 in response to flagellin, respectively. Thus, the PI3K/Akt/mTORC1 pathway regulates the innate immune response to bacterial flagellin. Rapamycin is potential therapy that can regulate host defense against pathogenic infections.  相似文献   

11.
ObjectiveTo investigate the effect of ursolic acid on autophagy mediated through the miRNA-21-targeted phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in rat mesangial cells cultured under high glucose (HG) conditions.MethodsRat glomerular mesangial cells were cultured under normal glucose, HG, HG with the PI3K inhibitor LY294002 or HG with ursolic acid conditions. Cell proliferation and hypertrophy were assayed using an MTT assay and the ratio of total protein to cell number, respectively. The miRNA-21 expression was detected using RT-qPCR. The expression of phosphatase and tensin homolog (PTEN)/AKT/mTOR signaling signatures, autophagy-associated protein and collagen I was detected by western blotting and RT-qPCR. Autophagosomes were observed using electron microscopy.ResultsCompared with mesangial cells cultured under normal glucose conditions, the cells exposed to HG showed up-regulated miRNA-21 expression, down-regulated PTEN protein and mRNA expression, up-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and down-regulated LC3II expression. Ursolic acid and LY294002 inhibited HG-induced mesangial cell hypertrophy and proliferation, down-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and up-regulated LC3II expression. However, LY294002 did not affect the expression of miRNA-21 and PTEN. Ursolic acid down-regulated miRNA-21 expression and up-regulated PTEN protein and mRNA expression.ConclusionsUrsolic acid inhibits the glucose-induced up-regulation of mesangial cell miRNA-21 expression, up-regulates PTEN expression, inhibits the activation of PI3K/Akt/mTOR signaling pathway, and enhances autophagy to reduce the accumulation of the extracellular matrix and ameliorate cell hypertrophy and proliferation.  相似文献   

12.
Cervical cancer is common cancer among women with high morbidity. MicroRNAs (miRs) are involved in the progression and development of cervical cancer. This study aimed to explore the effect of miR-99b-5p (miR-99b) on invasion and migration in cervical cancer through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. The microarray-based analysis was used to screen out differentially expressed miRNAs. Expression of miR-99b, PI3K, AKT, mTOR, and ribosomal protein S6 kinase (p70S6K) was determined in both cervical cancer tissues and paracancerous tissues. Next, alteration of miR-99b expression in cervical cancer was conducted to evaluate levels of PI3K, AKT, mTOR, p70S6K matrix metallopeptidase 2, epithelial cell adhesion molecule, and intercellular adhesion molecule 1, as well as the effect of miR-99b on cell proliferation, invasion, migration, cell cycle distribution, and apoptosis. The results demonstrated that miR-99b expression was decreased and levels of PI3K, AKT, mTOR, and p70S6K were elevated in cervical cancer tissues. More important, overexpressed miR-99b repressed the PI3K/AKT/mTOR signaling pathway, inhibited cell proliferation, invasion, and migration, blocked cell cycle entry, and promoted apoptosis in cervical cancer. These results indicate that miR-99b attenuates the migration and invasion of human cervical cancer cells through downregulation of the PI3K/AKT/mTOR signaling pathway, which provides a therapeutic approach for cervical cancer treatment.  相似文献   

13.
In the present study, we have investigated the effects of PI3K/Akt pathway on the response of human leukemia cells to fludarabine. Inhibition of PI3K/Akt pathway with a selective inhibitor (e.g., LY294002, or wortmannin) in leukemic cells markedly potentiated fludarabine-induced apoptosis. Inhibition of the PI3K/Akt downstream target mTOR by rapamycin also significantly enhanced fludarabine-induced apoptosis. The co-treatment of fludarabine/LY294002 resulted in significant attenuation in the levels of both phospho-Erk1/2 and phospho-Akt, as well as a marked increase in the level of phospho-JNK. The broad spectrum caspase inhibitor BOC-D-fmk markedly blocked fludarabine/LY-induced apoptosis, had no effect on cytochrome c release to the cytosol, and did abrogate caspase and PARP cleavage. This indicates that mitochondrial dysfunction is upstream of the caspase cascade. Moreover, constitutive activation of the MEK/Erk pathway completely blocked apoptosis induced by the combination of fludarabine/LY294002. Additionally, either constitutive activation of Akt or blockage of the JNK pathway significantly diminished apoptosis induced by the combination. Collectively, these findings demonstrate that inactivation of MAPK, Akt, and activation of the JNK pathway contributes to the induction of apoptosis induced by fludarabine/LY. Comparatively, MAPK inactivation plays a crucial role in fludarabine/LY-induced apoptosis. These results also strongly suggest that combining fludarabine with an inhibitor of the PI3K/Akt/mTOR pathway may represent a novel therapeutic strategy for hematological malignancies.  相似文献   

14.
Epidemiological studies have indicated that obesity is associated with colorectal cancer. The obesity hormone leptin is considered as a key mediator for cancer development and progression. The present study aims to investigate regulatory effects of leptin on colorectal carcinoma. The expression of leptin and its receptor Ob-R was examined by immunohistochemistry in 108 Chinese patients with colorectal carcinoma. The results showed that leptin/Ob-R expression was significantly associated with T stage, TNM stage, lymph node metastasis, distant metastasis, differentiation and expression of p-mTOR, p-70S6 kinase, and p-Akt. Furthermore, the effects of leptin on proliferation and apoptosis of HCT-116 colon carcinoma cells were determined. The results showed that leptin could stimulate the proliferation and inhibit the apoptosis of HCT-116 colon cells through the PI3K/Akt/mTOR pathway. Ly294002 (a PI3K inhibitor) and rapamycin (an mTOR inhibitor) could prevent the regulatory effects of leptin on the proliferation and apoptosis of HCT-116 cells via abrogating leptin-mediated PI3K/Akt/mTOR pathway. All these results indicated that leptin could regulate proliferation and apoptosis of colorectal carcinoma through the PI3K/Akt/mTOR signalling pathway.  相似文献   

15.
Akt is a critical regulator of cell growth, proliferation, and survival that is activated by phosphatidylinositol 3-kinase (PI3K). We investigated the effect of PI3K inhibition on activation of sterol regulatory element binding protein-2 (SREBP-2), a master regulator of cholesterol homeostasis. SREBP-2 processing increased in response to various cholesterol depletion approaches (including statin treatment) and this increase was blunted by treatment with a potent and specific inhibitor of PI3K, LY294002, or when a plasmid encoding a dominant-negative form of Akt (DN-Akt) was expressed. LY294002 also suppressed SREBP-2 processing induced by insulin-like growth factor-1. Furthermore, LY294002 treatment down-regulated SREBP-2 or -1c gene targets and decreased cholesterol and fatty acid synthesis. Fluorescence microscopy studies indicated that LY294002 disrupts transport of the SREBP escort protein, SCAP, from the endoplasmic reticulum to the Golgi. This disruption was also shown by immunofluorescence staining when DN-Akt was expressed. Taken together, our studies indicate that the PI3K/Akt pathway is involved in SREBP-2 transport to the Golgi, contributing to the control of SREBP-2 activation. Our results provide a crucial mechanistic link between the SREBP and PI3K/Akt pathways that may be reconciled teleologically because synthesis of new membrane is an absolute requirement for cell growth and proliferation.  相似文献   

16.
Varicella-zoster virus (VZV) activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and alters cell cycle progression, but the viral protein(s) responsible for these activities is unknown. We previously reported that the VZV open reading frame 12 (ORF12) protein triggers phosphorylation of ERK. Here, we demonstrate that the VZV ORF12 protein also activates the PI3K/Akt pathway to regulate cell cycle progression. Transfection of cells with a plasmid expressing the ORF12 protein induced phosphorylation of Akt, which was dependent on PI3K. Infection of cells with wild-type VZV triggered phosphorylation of Akt, while infection with an ORF12 deletion mutant induced less phosphorylated Akt. The activation of Akt by ORF12 protein was associated with its binding to the p85 subunit of PI3K. Infection of cells with wild-type VZV resulted in increased levels of cyclin B1, cyclin D3, and phosphorylated glycogen synthase kinase 3β (GSK-3β), while infection with the ORF12 deletion mutant induced lower levels of these proteins. Wild-type VZV infection reduced the G1 phase cell population and increased the M phase cell population, while infection with the ORF12 deletion mutant had a reduced effect on the G1 and M phase populations. Inhibition of Akt activity with LY294002 reduced the G1 and M phase differences observed in cells infected with wild-type and ORF12 mutant viruses. In conclusion, we have found that the VZV ORF12 protein activates the PI3K/Akt pathway to regulate cell cycle progression. Since VZV replicates in both dividing (e.g., keratinocytes) and nondividing (neurons) cells, the ability of the VZV ORF12 protein to regulate the cell cycle is likely important for VZV replication in various cell types in the body.  相似文献   

17.
Prostate cancer (PCa) is a common cancer worldwide, which mostly occurs in males over the age of 50. Accumulating evidence have determined that long non‐coding RNA/microRNA (lncRNA/miRNA) axis plays a critical role in cell progression of cancers, including PCa. However, the pathogenesis of PCa has not been fully indicated. In this study, quantitative real‐time polymerase chain reaction was used to detect the expression of HCG11 and miR‐543. Western blot was applied to measure the protein expression of proliferating cell nuclear antigen, cleavage‐caspase 3 (cle‐caspase 3), N‐cadherin, E‐cadherin, GAPDH, P‐AKT, AKT, p‐mTOR, and mTOR. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT), transwell invasion, and transwell migration assay were used to detect cell proliferation, invasion, and migration, respectively. The function and mechanism of lncRNA HCG11 were confirmed in PCa cell and xenograft mice models. Luciferase assay indicated that miR‐543 was a target miRNA of HCG11. Further investigation revealed that overexpression of HCG11 inhibited cell proliferation, invasion, and migration, whereas induced cell apoptosis by regulating miR‐543 expression in vitro and in vivo. More than that, lncRNA HCG11 inhibited phosphoinositide‐3 kinase/protein kinaseB (PI3K/AKT) signaling pathway to suppress PCa progression. Our data showed the overexpression of HGC11‐inhibited PI3K/AKT signaling pathway by downregulating miR‐543 expression, resulting in the suppression of cell growth in PCa. This finding proved a new regulatory network in PCa and provided a novel therapeutic target of PCa.  相似文献   

18.
Phosphatidylinositol-3 kinase (PI3K) proteins are important regulators of cell survival and proliferation. PI3K-dependent signalling regulates cell proliferation by promoting G1- to S-phase progression during the cell cycle. However, a definitive role for PI3K at other times during the cell cycle is less clear. In these studies, we provide evidence that PI3K activity is required during DNA synthesis (S-phase) and G2-phase of the cell cycle. Inhibition of PI3K with LY294002 at the onset of S-phase caused a 4- to 5-h delay in progression through G2/M. LY294002 treatment at the end of S-phase caused an approximate 2-h delay in progression through G2/M, indicating that PI3K activity functions for both S- and G2-phase progression. The expression of constitutively activated Akt partially reversed the inhibitory effects of LY294002 on mitotic entry, which demonstrated that Akt was one PI3K target that was required during G2/M transitions. Inhibition of PI3K resulted in enhanced susceptibility of G2/M synchronized cells to undergo apoptosis in response to DNA damage as compared to asynchronous cells. Thus, similar to its role in promoting cell survival and cell cycle transitions from G1 to S phase, PI3K activity appears to promote entry into mitosis and protect against cell death during S- and G2-phase progression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号