首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homologous chromosomes in the diploid genome are thought to contain equivalent genetic information, but this common concept has not been fully verified in animal genomes with high heterozygosity. Here we report a near-complete, haplotype-phased, genome assembly of the pearl oyster, Pinctada fucata, using hi-fidelity (HiFi) long reads and chromosome conformation capture data. This assembly includes 14 pairs of long scaffolds (>38 Mb) corresponding to chromosomes (2n = 28). The accuracy of the assembly, as measured by an analysis of k-mers, is estimated to be 99.99997%. Moreover, the haplotypes contain 95.2% and 95.9%, respectively, complete and single-copy BUSCO genes, demonstrating the high quality of the assembly. Transposons comprise 53.3% of the assembly and are a major contributor to structural variations. Despite overall collinearity between haplotypes, one of the chromosomal scaffolds contains megabase-scale non-syntenic regions, which necessarily have never been detected and resolved in conventional haplotype-merged assemblies. These regions encode expanded gene families of NACHT, DZIP3/hRUL138-like HEPN, and immunoglobulin domains, multiplying the immunity gene repertoire, which we hypothesize is important for the innate immune capability of pearl oysters. The pearl oyster genome provides insight into remarkable haplotype diversity in animals.  相似文献   

2.
While recently developed short-read sequencing technologies may dramatically reduce the sequencing cost and eventually achieve the $1000 goal for re-sequencing, their limitations prevent the de novo sequencing of eukaryotic genomes with the standard shotgun sequencing protocol. We present SHRAP (SHort Read Assembly Protocol), a sequencing protocol and assembly methodology that utilizes high-throughput short-read technologies. We describe a variation on hierarchical sequencing with two crucial differences: (1) we select a clone library from the genome randomly rather than as a tiling path and (2) we sample clones from the genome at high coverage and reads from the clones at low coverage. We assume that 200 bp read lengths with a 1% error rate and inexpensive random fragment cloning on whole mammalian genomes is feasible. Our assembly methodology is based on first ordering the clones and subsequently performing read assembly in three stages: (1) local assemblies of regions significantly smaller than a clone size, (2) clone-sized assemblies of the results of stage 1, and (3) chromosome-sized assemblies. By aggressively localizing the assembly problem during the first stage, our method succeeds in assembling short, unpaired reads sampled from repetitive genomes. We tested our assembler using simulated reads from D. melanogaster and human chromosomes 1, 11, and 21, and produced assemblies with large sets of contiguous sequence and a misassembly rate comparable to other draft assemblies. Tested on D. melanogaster and the entire human genome, our clone-ordering method produces accurate maps, thereby localizing fragment assembly and enabling the parallelization of the subsequent steps of our pipeline. Thus, we have demonstrated that truly inexpensive de novo sequencing of mammalian genomes will soon be possible with high-throughput, short-read technologies using our methodology.  相似文献   

3.
采用二代和三代测序技术分别对金针菇单核体菌株“6-3”进行测序,应用4种组装策略进行基因组的de novo组装,对比组装效果。基因组组装的参数方面,仅使用二代测序组装的效果最差,长度大于10kb的Contig全长只有24.6Mb,Contig N50只有23kb,组装率只有59.27%。采用三代组装二代校正的组装策略效果最好,长度大于10kb的Contig全长为38.3Mb,Contig N50为2.8Mb,组装率高达92.16%。保守单拷贝基因拼接效果方面,4种组装策略获得基因组序列与BUSCO数据库里的担子菌的保守单拷贝基因比对,基因完整性均大于94%。在组装准确性方面,经过PCR扩增、Sanger测序验证,三代组装二代校正的基因组序列完整并且连续,同时序列上碱基的SNP、InDel数量最少。综上所述,三代组装二代校正得到的基因组序列具有Contig N50值大、组装率高、碱基准确性高的特点,是食用菌基因组测序较为理想的方案。  相似文献   

4.
A physical mapping strategy has been developed to verify and accelerate the assembly and gap closure phase of a microbial genome shotgun-sequencing project. The protocol was worked out during the ongoing Pseudomonas putida KT2440 genome project. A macro-restriction map was constructed by linking probe hybridisation of SwaI- or I-CeuI-restricted chromosomes to serve as a backbone for the quick quality control of sequence and contig assemblies. The library of PCR-generated SwaI linking probes was derived from the sequence assembly after 3- and 6-fold genome coverage. In order to support gap closure in regions with ambiguous assemblies such as the repetitive sequence of the seven ribosomal operons, high-resolution Smith/Birnstiel maps were generated by Southern hybridisation of pulsed-field gel electrophoresis-separated rare-cutter complete/frequent-cutter partial digestions with rare-cutter fragment end probes. Overall 1.5 Mb of the 6.1 Mb P.putida KT2440 genome has been subjected to high-resolution physical mapping in order to align assemblies generated from shotgun sequencing.  相似文献   

5.
Onychostoma macrolepis is an emerging commercial cyprinid fish species. It is a model system for studies of sexual dimorphism and genome evolution. Here, we report the chromosome‐level assembly of the O.macrolepis genome obtained from the integration of nanopore long‐read sequencing with physical maps produced using Bionano and Hi‐C technology. A total of 87.9 Gb of nanopore sequence provided approximately 100‐fold coverage of the genome. The preliminary genome assembly was 883.2 Mb in size with a contig N50 size of 11.2 Mb. The 969 corrected contigs obtained from Bionano optical mapping were assembled into 853 scaffolds and produced an assembly of 886.5 Mb with a scaffold N50 of 16.5 Mb. Finally, using the Hi‐C data, 881.3 Mb (99.4% of genome) in 526 scaffolds were anchored and oriented in 25 chromosomes ranging in size from 25.27 to 56.49 Mb. In total, 24,770 protein‐coding genes were predicted in the genome, and ~96.85% of the genes were functionally annotated. The annotated assembly contains 93.3% complete genes from the BUSCO reference set. In addition, we identified 409 Mb (46.23% of the genome) of repetitive sequence, and 11,213 non‐coding RNAs, in the genome. Evolutionary analysis revealed that O. macrolepis diverged from common carp approximately 24.25 million years ago. The chromosomes of O. macrolepis showed an unambiguous correspondence to the chromosomes of zebrafish. The high‐quality genome assembled in this work provides a valuable genomic resource for further biological and evolutionary studies of O. macrolepis.  相似文献   

6.
《Genomics》2021,113(4):2695-2701
Angiostrongylus vasorum is an emerging parasitic nematode of canids and causes respiratory distress, bleeding, and other signs in dogs. Despite its clinical importance, the molecular toolbox allowing the study of the parasite is incomplete. To address this gap, we have sequenced its nuclear genome using Oxford nanopore sequencing, polished with Illumina reads. The size of the final genome is 280 Mb comprising 468 contigs, with an N50 value of 1.68 Mb and a BUSCO score of 93.5%. Ninety-three percent of 13,766 predicted genes were assigned to putative functions. Three folate carriers were found exclusively in A. vasorum, with potential involvement in host coagulopathy. A screen for previously identified vaccine candidates, the aminopeptidase H11 and the somatic protein rHc23, revealed homologs in A. vasorum. The genome sequence will provide a foundation for the development of new tools against canine angiostrongylosis, supporting the identification of potential drug and vaccine targets.  相似文献   

7.
We have established a high-quality, chromosome-level genome assembly for the hexaploid common wheat cultivar ‘Fielder’, an American, soft, white, pastry-type wheat released in 1974 and known for its amenability to Agrobacterium tumefaciens-mediated transformation and genome editing. Accurate, long-read sequences were obtained using PacBio circular consensus sequencing with the HiFi approach. Sequence reads from 16 SMRT cells assembled using the hifiasm assembler produced assemblies with N50 greater than 20 Mb. We used the Omni-C chromosome conformation capture technique to order contigs into chromosome-level assemblies, resulting in 21 pseudomolecules with a cumulative size of 14.7 and 0.3 Gb of unanchored contigs. Mapping of published short reads from a transgenic wheat plant with an edited seed-dormancy gene, TaQsd1, identified four positions of transgene insertion into wheat chromosomes. Detection of guide RNA sequences in pseudomolecules provided candidates for off-target mutation induction. These results demonstrate the efficiency of chromosome-scale assembly using PacBio HiFi reads and their application in wheat genome-editing studies.  相似文献   

8.

Background

The short reads output by first- and second-generation DNA sequencing instruments cannot completely reconstruct microbial chromosomes. Therefore, most genomes have been left unfinished due to the significant resources required to manually close gaps in draft assemblies. Third-generation, single-molecule sequencing addresses this problem by greatly increasing sequencing read length, which simplifies the assembly problem.

Results

To measure the benefit of single-molecule sequencing on microbial genome assembly, we sequenced and assembled the genomes of six bacteria and analyzed the repeat complexity of 2,267 complete bacteria and archaea. Our results indicate that the majority of known bacterial and archaeal genomes can be assembled without gaps, at finished-grade quality, using a single PacBio RS sequencing library. These single-library assemblies are also more accurate than typical short-read assemblies and hybrid assemblies of short and long reads.

Conclusions

Automated assembly of long, single-molecule sequencing data reduces the cost of microbial finishing to $1,000 for most genomes, and future advances in this technology are expected to drive the cost lower. This is expected to increase the number of completed genomes, improve the quality of microbial genome databases, and enable high-fidelity, population-scale studies of pan-genomes and chromosomal organization.  相似文献   

9.

Background

Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them.

Methodology/Principal Findings

For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website.

Conclusions/Significance

Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly further.  相似文献   

10.

Background

Third generation sequencing methods, like SMRT (Single Molecule, Real-Time) sequencing developed by Pacific Biosciences, offer much longer read length in comparison to Next Generation Sequencing (NGS) methods. Hence, they are well suited for de novo- or re-sequencing projects. Sequences generated for these purposes will not only contain reads originating from the nuclear genome, but also a significant amount of reads originating from the organelles of the target organism. These reads are usually discarded but they can also be used for an assembly of organellar replicons. The long read length supports resolution of repetitive regions and repeats within the organelles genome which might be problematic when just using short read data. Additionally, SMRT sequencing is less influenced by GC rich areas and by long stretches of the same base.

Results

We describe a workflow for a de novo assembly of the sugar beet (Beta vulgaris ssp. vulgaris) chloroplast genome sequence only based on data originating from a SMRT sequencing dataset targeted on its nuclear genome. We show that the data obtained from such an experiment are sufficient to create a high quality assembly with a higher reliability than assemblies derived from e.g. Illumina reads only. The chloroplast genome is especially challenging for de novo assembling as it contains two large inverted repeat (IR) regions. We also describe some limitations that still apply even though long reads are used for the assembly.

Conclusions

SMRT sequencing reads extracted from a dataset created for nuclear genome (re)sequencing can be used to obtain a high quality de novo assembly of the chloroplast of the sequenced organism. Even with a relatively small overall coverage for the nuclear genome it is possible to collect more than enough reads to generate a high quality assembly that outperforms short read based assemblies. However, even with long reads it is not always possible to clarify the order of elements of a chloroplast genome sequence reliantly which we could demonstrate with Fosmid End Sequences (FES) generated with Sanger technology. Nevertheless, this limitation also applies to short read sequencing data but is reached in this case at a much earlier stage during finishing.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0726-6) contains supplementary material, which is available to authorized users.  相似文献   

11.
To gain genetic insights into the early-flowering phenotype of ornamental cherry, also known as sakura, we determined the genome sequences of two early-flowering cherry (Cerasus × kanzakura) varieties, ‘Kawazu-zakura’ and ‘Atami-zakura’. Because the two varieties are interspecific hybrids, likely derived from crosses between Cerasus campanulata (early-flowering species) and Cerasus speciosa, we employed the haplotype-resolved sequence assembly strategy. Genome sequence reads obtained from each variety by single-molecule real-time sequencing (SMRT) were split into two subsets, based on the genome sequence information of the two probable ancestors, and assembled to obtain haplotype-phased genome sequences. The resultant genome assembly of ‘Kawazu-zakura’ spanned 519.8 Mb with 1,544 contigs and an N50 value of 1,220.5 kb, while that of ‘Atami-zakura’ totalled 509.6 Mb with 2,180 contigs and an N50 value of 709.1 kb. A total of 72,702 and 69,528 potential protein-coding genes were predicted in the genome assemblies of ‘Kawazu-zakura’ and ‘Atami-zakura’, respectively. Gene clustering analysis identified 2,634 clusters uniquely presented in the C. campanulata haplotype sequences, which might contribute to its early-flowering phenotype. Genome sequences determined in this study provide fundamental information for elucidating the molecular and genetic mechanisms underlying the early-flowering phenotype of ornamental cherry tree varieties and their relatives.  相似文献   

12.
13.
《Genomics》2020,112(3):2379-2384
Haploid cell lines are a valuable research tool with broad applicability for genetic assays. As such the fully haploid human cell line, eHAP1, has been used in a wide array of studies. However, the absence of a corresponding reference genome sequence for this cell line has limited the potential for more widespread applications to experiments dependent on available sequence, like capture-clone methodologies. We generated ~15× coverage Nanopore long reads from ten GridION flowcells and utilized this data to assemble a de novo draft genome using minimap and miniasm and subsequently polished using Racon. This assembly was further polished using previously generated, low-coverage, Illumina short reads with Pilon and ntEdit. This resulted in a hybrid eHAP1 assembly with >90% complete BUSCO scores. We further assessed the eHAP1 long read data for structural variants using Sniffles and identify a variety of rearrangements, including a previously established Philadelphia translocation. Finally, we demonstrate how some of these variants overlap open chromatin regions, potentially impacting regulatory regions. By integrating both long and short reads, we generated a high-quality reference assembly for eHAP1 cells. The union of long and short reads demonstrates the utility in combining sequencing platforms to generate a high-quality reference genome de novo solely from low coverage data. We expect the resulting eHAP1 genome assembly to provide a useful resource to enable novel experimental applications in this important model cell line.  相似文献   

14.
15.
Accurate sex identification is crucial for elucidating the biology of a species. In the absence of directly observable sexual characteristics, sex identification of wild fauna can be challenging, if not impossible. Molecular sexing offers a powerful alternative to morphological sexing approaches. Here, we present SeXY, a novel sex‐identification pipeline, for very low‐coverage shotgun sequencing data from a single individual. SeXY was designed to utilize low‐effort screening data for sex identification and does not require a conspecific sex‐chromosome assembly as reference. We assess the accuracy of our pipeline to data quantity by downsampling sequencing data from 100,000 to 1000 mapped reads and to reference genome selection by mapping to a variety of reference genomes of various qualities and phylogenetic distance. We show that our method is 100% accurate when mapping to a high‐quality (highly contiguous N50 > 30 Mb) conspecific genome, even down to 1000 mapped reads. For lower‐quality reference assemblies (N50 < 30 Mb), our method is 100% accurate with 50,000 mapped reads, regardless of reference assembly quality or phylogenetic distance. The SeXY pipeline provides several advantages over previously implemented methods; SeXY (i) requires sequencing data from only a single individual, (ii) does not require assembled conspecific sex chromosomes, or even a conspecific reference assembly, (iii) takes into account variation in coverage across the genome, and (iv) is accurate with only 1000 mapped reads in many cases.  相似文献   

16.
Despite the ever-increasing output of next-generation sequencing data along with developing assemblers, dozens to hundreds of gaps still exist in de novo microbial assemblies due to uneven coverage and large genomic repeats. Third-generation single-molecule, real-time (SMRT) sequencing technology avoids amplification artifacts and generates kilobase-long reads with the potential to complete microbial genome assembly. However, due to the low accuracy (~85%) of third-generation sequences, a considerable amount of long reads (>50X) are required for self-correction and for subsequent de novo assembly. Recently-developed hybrid approaches, using next-generation sequencing data and as few as 5X long reads, have been proposed to improve the completeness of microbial assembly. In this study we have evaluated the contemporary hybrid approaches and demonstrated that assembling corrected long reads (by runCA) produced the best assembly compared to long-read scaffolding (e.g., AHA, Cerulean and SSPACE-LongRead) and gap-filling (SPAdes). For generating corrected long reads, we further examined long-read correction tools, such as ECTools, LSC, LoRDEC, PBcR pipeline and proovread. We have demonstrated that three microbial genomes including Escherichia coli K12 MG1655, Meiothermus ruber DSM1279 and Pdeobacter heparinus DSM2366 were successfully hybrid assembled by runCA into near-perfect assemblies using ECTools-corrected long reads. In addition, we developed a tool, Patch, which implements corrected long reads and pre-assembled contigs as inputs, to enhance microbial genome assemblies. With the additional 20X long reads, short reads of S. cerevisiae W303 were hybrid assembled into 115 contigs using the verified strategy, ECTools + runCA. Patch was subsequently applied to upgrade the assembly to a 35-contig draft genome. Our evaluation of the hybrid approaches shows that assembling the ECTools-corrected long reads via runCA generates near complete microbial genomes, suggesting that genome assembly could benefit from re-analyzing the available hybrid datasets that were not assembled in an optimal fashion.  相似文献   

17.
We demonstrate that genome sequences approaching finished quality can be generated from short paired reads. Using 36 base (fragment) and 26 base (jumping) reads from five microbial genomes of varied GC composition and sizes up to 40 Mb, ALLPATHS2 generated assemblies with long, accurate contigs and scaffolds. Velvet and EULER-SR were less accurate. For example, for Escherichia coli, the fraction of 10-kb stretches that were perfect was 99.8% (ALLPATHS2), 68.7% (Velvet), and 42.1% (EULER-SR).  相似文献   

18.
The red‐spotted grouper Epinephelus akaara (E. akaara) is one of the most economically important marine fish in China, Japan and South‐East Asia and is a threatened species. The species is also considered a good model for studies of sex inversion, development, genetic diversity and immunity. Despite its importance, molecular resources for E. akaara remain limited and no reference genome has been published to date. In this study, we constructed a chromosome‐level reference genome of E. akaara by taking advantage of long‐read single‐molecule sequencing and de novo assembly by Oxford Nanopore Technology (ONT) and Hi‐C. A red‐spotted grouper genome of 1.135 Gb was assembled from a total of 106.29 Gb polished Nanopore sequence (GridION, ONT), equivalent to 96‐fold genome coverage. The assembled genome represents 96.8% completeness (BUSCO) with a contig N50 length of 5.25 Mb and a longest contig of 25.75 Mb. The contigs were clustered and ordered onto 24 pseudochromosomes covering approximately 95.55% of the genome assembly with Hi‐C data, with a scaffold N50 length of 46.03 Mb. The genome contained 43.02% repeat sequences and 5,480 noncoding RNAs. Furthermore, combined with several RNA‐seq data sets, 23,808 (99.5%) genes were functionally annotated from a total of 23,923 predicted protein‐coding sequences. The high‐quality chromosome‐level reference genome of E. akaara was assembled for the first time and will be a valuable resource for molecular breeding and functional genomics studies of red‐spotted grouper in the future.  相似文献   

19.
Yellow drum (Nibea albiflora) is an important fish species in capture fishery and aquaculture in East Asia. We herein report the first and near‐complete genome assembly of an ultra‐homologous gynogenic female yellow drum using Illumina short sequencing reads. In summary, a total of 154.2 Gb of raw reads were generated via whole‐genome sequencing and were assembled to 565.3 Mb genome with a contig N50 size of 50.3 kb and scaffold N50 size of 2.2 Mb (BUSCO completeness of 97.7%), accounting for 97.3%–98.6% of the estimated genome size of this fish. We further identified 22,448 genes using combined methods of ab initio prediction, RNAseq annotation, and protein homology searching, of which 21,614 (96.3%) were functionally annotated in NCBI nr, trEMBL, SwissProt, and KOG databases. We also investigated the nucleotide diversity (around 1/390) of aquacultured individuals and found the genetic diversity of the aquacultured population decreased due to inbreeding. Evolutionary analyses illustrated significantly expanded and extracted gene families, such as myosin and sodium: neurotransmitter symporter (SNF), could help explain swimming motility of yellow drum. The presented genome will be an important resource for future studies on population genetics, conservation, understanding of evolutionary history and genetic breeding of the yellow drum and other Nibea species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号