首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renate Grill 《Planta》1969,89(1):9-22
Summary As measured by in vivo spectrophotometry the phytochrome content in etiolated turnip seedlings was higher in cotyledons than in hypocotyls; in the latter, it is confined to the apical part. During early growth in darkness the amount increased in both tissues to a maximum, reached about 40 hours after sowing; the levels then gradually declined. Separation of seedlings into hypocotyl and cotyledons increased the rate of phytochrome loss in the former, but not in the latter.Following 5 minutes of red light P frdecayed very rapidly in darkness; after 1.5 hours all of the phytochrome was present as P r, which was presumably not converted initially. In continuous red light the total phytochrome was reduced to below the detection level within 3 hours. Seedling age markedly affected the loss of phytochrome following red light; more was destroyed in older than in younger hypocotyls and apparent new synthesis occurred only in young seedlings. The capacity to synthesise phytochrome differed in cotyledons and hypocotyl. In cotyledons, synthesis occurred following shots of red light varying from 10 seconds, to 6×I minute, but the amount of newly formed phytochrome was not related to the amount destroyed: after 5 hours of continuous red light no new synthesis occurred. In hypocotyls, the amount of phytochrome synthesised was related to the amount previously destroyed, and the phytochrome content after 24 hours of darkness was similar following all red light treatments of 1 minute or longer: new synthesis occurred following 5 hours of continuous red light.In far-red light phytochrome decayed very slowly, approaching the limit of detection after 48 hours. In cotyledons some loss was already observed after 5 hours of far-red and, in hypocotyls, after about 10 hours.These results are discussed in relation to the possible role of phytochrome as the pigment mediating anthocyanin synthesis in prolonged far-red light.  相似文献   

2.
Four Nicotiana plumbaginifolia mutants exhibiting long hypocotyls and chlorotic cotyledons under white light, have been isolated from M2 seeds following mutagenesis with ethyl methane sulphonate. In each of these mutants, this partly etiolated in white light (pew) phenotype is due to a recessive nuclear mutation at a single locus. Complementation analysis indicates that three mutants, dap5, ems28 and ems3-6-34, belong to a single complementation group called pew1, while dap1 defines the pew2 locus. The mutants at pew1 contain normal levels of immunochemically detectable apoprotein of the phytochrome that is relatively abundant in etiolated seedlings, but are deficient in spectrophotometrically detectable phytochrome, whether seedlings are grown in darkness or light. Moreover, biliverdin, a precursor of the phytochrome chromophore, restores light-regulated responses in pew1 mutants and increases their level of photoreversible phytochrome when grown in darkness. These results indicate that the pew1 locus may be involved in chromophore biosynthesis. The mutant at the pew2 locus displays no photoreversible phytochrome in etiolated seedlings, but does contain normal levels of photoreversible phytochrome when grown in the light. Biliverdin had little effect on light-regulated responses in this mutant. In addition, biliverdin did not alter the level of phytochrome in etiolated seedlings. These observations lead us to propose that this mutant could be affected in the phyA gene itself. We have also obtained the homozygous double mutant at the pew1 and pew2 loci. This double mutant is lethal at an early stage of development, consistent with a critical role for phytochrome in early development of higher plants.  相似文献   

3.
Four Nicotiana plumbaginifolia mutants exhibiting long hypocotyls and chlorotic cotyledons under white light, have been isolated from M2 seeds following mutagenesis with ethyl methane sulphonate. In each of these mutants, this partly etiolated in white light (pew) phenotype is due to a recessive nuclear mutation at a single locus. Complementation analysis indicates that three mutants, dap5, ems28 and ems3-6-34, belong to a single complementation group called pew1, while dap1 defines the pew2 locus. The mutants at pew1 contain normal levels of immunochemically detectable apoprotein of the phytochrome that is relatively abundant in etiolated seedlings, but are deficient in spectrophotometrically detectable phytochrome, whether seedlings are grown in darkness or light. Moreover, biliverdin, a precursor of the phytochrome chromophore, restores light-regulated responses in pew1 mutants and increases their level of photoreversible phytochrome when grown in darkness. These results indicate that the pew1 locus may be involved in chromophore biosynthesis. The mutant at the pew2 locus displays no photoreversible phytochrome in etiolated seedlings, but does contain normal levels of photoreversible phytochrome when grown in the light. Biliverdin had little effect on light-regulated responses in this mutant. In addition, biliverdin did not alter the level of phytochrome in etiolated seedlings. These observations lead us to propose that this mutant could be affected in the phyA gene itself. We have also obtained the homozygous double mutant at the pew1 and pew2 loci. This double mutant is lethal at an early stage of development, consistent with a critical role for phytochrome in early development of higher plants.  相似文献   

4.
Apical applications of 0.2 μg N6-benzyladenine (BA), a synthetic cytokinin, or 5 μg of gibberellic acid (GA3) significantly enhanced hypocotyl elongation in intact dwarf watermelon seedlings over a 48-h period. Accompanying the increase in hypocotyl length was marked expansion of cotyledons in BA-treated seedlings and inhibition of root growth by both compounds. A study on dry matter partitioning indicated that both growth regulators caused a preferential accumulation of dry matter in hypocotyls at the expense of the roots; however, GA3 elicited a more rapid and greater change than did BA. In comparison to untreated seedlings, BA decreased total translocation of metabolites out of the cotyledons. Water potentials of cotyledons and hypocotyls were determined by allowing organs to equilibrate for 2 h in serial concentrations of polyethylene glycol 4000. Osmotic potentials were determined by thermocouple psychrometry. During periods of rapid growth in cotyledons and hypocotyls of BA-treated seedlings and in hypocotyls of GA-treated seedlings, the osmotic potential increased and the turgor pressure decreased in relation to untreated seedlings, indicating that cell wall extensibility was being increased. Osmotic potentials were lower in hypocotyls of GA-treated than in those of BA-treated seedlings, even though growth rates were higher in GA-treated seedlings, indicating that the latter treatment was generating more osmotically active solutes in hypocotyls.  相似文献   

5.
Northern blot analysis revealed that a single 4.2 kb phytochrome mRNA species was detectable in cotyledons excised from five-day-old etiolated cucumber seedlings. Intact etiolated five-day-old cucumber seedlings were given a red light or benzyladenine treatment, and cotyledons were harvested at various times following treatment. The abundance of phytochrome mRNA in the cotyledons was quantitated using 32P-labeled RNA probes and slot blot analysis. By 2 h after irradiation the phytochrome mRNA level was reduced to 40% of the initial abundance and reaccumulation began by 3 h after irradiation. Reaccumulation of phytochrome mRNA to the time-zero dark control level was achieved by 10 h after treatment. A decrease in phytochrome mRNA abundance was evident by 2 h after benzyladenine treatment, and a maximal reduction to 45% of the time-zero dark control was attained by 4 h after treatment. No recovery of the phytochrome mRNA level was evident by 8 h after benzyladenine treatment. The abundance of actin mRNA was unaffected by benzyladenine treatment.  相似文献   

6.
Both hypocotyl and root growth of sunflower (Helianthus annuus) were examined in response to a range of narrow-band width light treatments. Changes in two growth-regulating hormones, ethylene and gibberellins (GAs) were followed in an attempt to better understand the interaction of light and hormonal signaling in the growth of these two important plant organs. Hydroponically-grown 6-day-old sunflower seedlings had significantly elongated hypocotyls and primary roots when grown under far-red (FR) light produced by light emitting diodes (LEDs), compared to narrow-band red (R) and blue (B) light. However, hypocotyl and primary root lengths of seedlings given FR light were still shorter than was seen for dark-grown seedlings. Light treatment in general (compared to dark) increased lateral root formation and FR light induced massive lateral root formation, relative to treatment with R or B light. Levels of ethylene evolution (roots and hypocotyls) and concentrations of endogenous GAs (hypocotyls) were assessed from both 6-day-old sunflower plants either grown in the dark, or treated with FR, R or B light. Both R and B light had similar effects on hypocotyl and root growth as well as on ethylene and on hypocotyl GA levels. Dark treatment resulted in the highest ethylene levels, whereas FR treatment significantly reduced ethylene evolution for both hypocotyls and roots. R- and B-light treatments elevated ethylene evolution relative to FR light. Endogenous GA53 and GA19 levels in hypocotyls were significantly higher and GA44, GA20 and GA1 levels significantly lower, for dark and FR light treatments compared to R and B light-treatments. The patterns seen for changes in GA concentrations indicate FR-, R- and B-light-mediated effects [differences] in the metabolism of the early C20 GAs, GA53 → GA44 → GA19. Surprisingly, GA20, GA1 and GA8 levels in hypocotyls were very much reduced by treatment of the plants with FR light, relative to B and R-light treatments, e.g. the increased hypocotyl elongation induced by FR light was correlated with reduced levels of all three of the downstream C19 GAs. The best explanation, albeit speculative, is that a more rapid metabolism, i.e. GA20 → GA1 → GA8 → GA8 conjugates occurs under FR light. Although this study provided no evidence that elevated ethylene evolution by roots or hypocotyls of sunflower is controlling growth via endogenous GA biosynthesis, there are differences between soil-grown and hydroponically-grown sunflower seedlings with regard to trends seen for hypocotyl GA concentrations and both root and hypocotyl ethylene evolution in response to narrow band width R and FR light signaling.  相似文献   

7.
Apical applications of 0.2 g N6-benzyladenine (BA), a synthetic cytokinin, or 5 g of gibberellic acid (GA3) significantly enhanced hypocotyl elongation in intact dwarf watermelon seedlings over a 48-h period. Accompanying the increase in hypocotyl length was marked expansion of cotyledons in BA-treated seedlings and inhibition of root growth by both compounds. A study on dry matter partitioning indicated that both growth regulators caused a preferential accumulation of dry matter in hypocotyls at the expense of the roots; however, GA3 elicited a more rapid and greater change than did BA. In comparison to untreated seedlings, BA decreased total translocation of metabolites out of the cotyledons. Water potentials of cotyledons and hypocotyls were determined by allowing organs to equilibrate for 2 h in serial concentrations of polyethylene glycol 4000. Osmotic potentials were determined by thermocouple psychrometry. During periods of rapid growth in cotyledons and hypocotyls of BA-treated seedlings and in hypocotyls of GA-treated seedlings, the osmotic potential increased and the turgor pressure decreased in relation to untreated seedlings, indicating that cell wall extensibility was being increased. Osmotic potentials were lower in hypocotyls of GA-treated than in those of BA-treated seedlings, even though growth rates were higher in GA-treated seedlings, indicating that the latter treatment was generating more osmotically active solutes in hypocotyls.Scientific Contribution No. 1219 from the New Hampshire Agricultural Experiment Station.  相似文献   

8.
Several phytochrome-controlled processes have been examined in etiolated and light-grown seedlings of a normal genotype and the elongated internode (ein/ein) mutant of rapid-cycling Brassica rapa. Although etiolated ein seedlings displayed normal sensitivity to prolonged far-red light with respect to inhibition of hypocotyl elongation, expansion of cotyledons, and synthesis of anthocyanin, they displayed reduced sensitivity to prolonged red light for all three of these deetiolation responses. In contrast to normal seedlings, light-grown ein seedlings did not show a growth promotion in response to end-of-day far-red irradiation. Additionally, whereas the first internode of light-grown normal seedlings showed a marked increase in elongation in response to reduced ratio of red to far-red light, ein seedlings showed only a small elongation response. When blots of protein extracts from etiolated and light-treated ein and normal seedlings were probed with monoclonal antibody to phytochrome A, an immunostaining band at about 120 kD was observed for both extracts. The immunostaining intensity of this band was substantially reduced for extracts of light-treated normal and ein seedlings. A mixture of three monoclonal antibodies directed against phytochrome B from Arabidopsis thaliana immunostained a band at about 120 kD for extracts of etiolated and light-treated normal seedlings. This band was undetectable in extracts of ein seedlings. We propose that ein is a photoreceptor mutant that is deficient in a light-stable phytochrome B-like species.  相似文献   

9.
Elongation of hypocotyls of sunflower can be promoted by gibberellins (GAs) and inhibited by ethylene. The role of these hormones in regulating elongation was investigated by measuring changes in both endogenous GAs and in the metabolism of exogenous [3H]- and [2H2]GA20 in the hypocotyis of sunflower (Helianthus annuus L. cv Delgren 131) seedlings exposed to ethylene. The major biologically active GAs identified by gas chromatography-mass spectrometry were GA1, GA19, GA20, and GA44. In hypocotyls of seedlings exposed to ethylene, the concentration of GA1, known to be directly active in regulating shoot elongation in a number of species, was reduced. Ethylene treatment reduced the metabolism of [3H]GA20 and less [2H2]GA1 was found in the hypocotyls of those seedlings exposed to the higher ethylene concentrations. However, it is not known if the effect of ethylene on GA20 metabolism was direct or indirect. In seedlings treated with exogenous GA1 or GA3, the hypocotyls elongated faster than those of controls, but the GA treatment only partially overcame the inhibitory effect of ethylene on elongation. We conclude that GA content is a factor which may limit elongation in hypocotyls of sunflower, and that while exposure to ethylene results in reduced concentration of GA1 this is not sufficient per se to account for the inhibition of elongation caused by ethylene.  相似文献   

10.
Physiological processes controlled by phytochrome were examined in three near-isogenic genotypes of Sorghum bicolor, differing at the allele of the third maturity gene locus. Seedlings of 58M (ma3R ma3R) did not show phytochrome control of anthocyanin synthesis. In contrast, seedlings of 90M (ma3ma3) and 100M (Ma3Ma3) demonstrated reduced anthocyanin synthesis after treatment with far red and reversal of the far red effect by red. De-etiolation of 48-hour-old 90M and 100M dark-grown seedlings occurred with 48 hours of continuous red. Dark-grown 58M seedlings did not de-etiolate with continuous red treatment. Treatment of seedlings with gibberellic acid or tetcyclacis, a gibberellin synthesis inhibitor, did not alter anthocyanin synthesis. Levels of chlorophyll and anthocyanin were lower in light-grown 58M seedlings than in 90M and 100M. Etiolated seedlings of all three genotypes have similar amounts of photoreversible phytochrome. Crude protein extracts from etiolated seedlings were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose. Phytochrome was visualized with Pea-25, a monoclonal antibody directed to phytochrome from etiolated peas. The samples from all three genotypes contained approximately equivalent amounts of a prominent, immunostaining band at 126 kD. However, the sample from 58M did not show a fainter, secondary band at 123 kD that was present in 90M and 100M. The identity and importance of this secondary band at 123 kD is unknown. We propose that 58M is a phytochrome-related mutant that contains normal amounts of photoreversible phytochrome and normal phytochrome protein when grown in the dark.  相似文献   

11.
The measured rates of phytochrome photoconversion in vivo, in etiolated cabbage (Brassica oleracea L.) seedlings and cucumber (Cucumis sativus L.) cotyledons, under blue, red, and far red irradiation, are significantly different from those predicted on the basis of the spectral photon flux distributions of the light sources and optical parameters of purified phytochrome. The geometrical relationships between the light source and the irradiated sample affect the rate of phytochrome photoconversion, which is significantly faster in cabbage seedling laying flat on white, wet filter paper than in seedlings in a vertical position. Light reflected from the white filter paper on the bottom of the dish contributes significantly to phytochrome photoconversion. Substituting the white filter paper with a less reflective black one results in a significant decrease of the rate of phytochrome photoconversion in cucumber cotyledons.  相似文献   

12.
De novo synthesis of phytochrome in pumpkin hooks   总被引:6,自引:2,他引:4       下载免费PDF全文
Phytochrome becomes density labeled in the hook of pumpkin (Cucurbita pepo L.) seedlings grown in the dark on D2O, indicating that the protein moiety of the pigment is synthesized de novo during development. Red light causes a rapid decline of the total phytochrome level in the hook of etiolated seedlings but upon return to the dark, phytochrome again accumulates. These newly appearing molecules are also synthesized de novo. Newly synthesized phytochrome in both dark-grown and red-irradiated seedlings is in the red-absorbing form. Turnover of the red-absorbing form is indicated by the density labeling of phytochrome during a period when the total phytochrome level in the hook of dark-grown seedlings remains constant. However, it was not possible to determine whether this results from intracellular turnover or turnover of the whole cell population during hook growth.  相似文献   

13.
14.
Aerts RJ  De Luca V 《Plant physiology》1992,100(2):1029-1032
The enzyme acetylcoenzyme A:deacetylvindoline 4-O-acetyl-transferase (DAT) catalyzes the final step in the biosynthesis of the monoterpenoid indole alkaloid, vindoline. Previous studies have shown that the appearance of DAT activity in etiolated seedlings of Catharanthus roseus is induced by exposure of seedlings to light and that enzyme activity is restricted principally to the cotyledons. Evidence is now presented that phytochrome is involved in the light-mediated induction of DAT activity in Catharanthus cotyledons.  相似文献   

15.
In gibberellic-acid(GA3)-treated epicotyls of dwarf peas (Pisum sativum L.) grown in the light, DNA (per cell and per epicotyl) is followed. Histofluorometric DNA determinations show that GA3-promoted cell elongation is not accompanied by increased endomitosis, but chemical estimations show an increased DNA content per epicotyl. This difference must therefore be the result of increased mitotic activity in the GA3-treated tissue. Epicotyls of seedlings grown with or without cotyledons under continuous light with GA3 are tetraploid, as are those of ecotylized embryos grown in darkness. These epicotyls reach no more than half the length of octaploid epicotyls of seedlings grown in darkness. This result provides evidence for a relationship between polyploidy and final possible cell length.  相似文献   

16.
Four gibberellins, GA53, GA19, GA20, and GA1, were detected by bioassay, chromatography in two HPLC systems, and combined gas chromatography-mass spectroscopy-selected ion monitoring (GC-MS-SIM) in etiolated soybean (Glycine max [L.] Merr.) hypocotyls. GC-MS-SIM employed [2H2]-labeled standards for each endogenous gibberellin detected, and quantities estimated from bioassays and GC-MS-SIM were similar. This result plus the tentative detection of GA44 and GA8 (standards not available) indicates that the early-C-13-hydroxylation pathway for gibberellin biosynthesis predominates in soybean hypocotyls. Other gibberellins were not detected. Growth rates decreased after transfer to low water potential (ψw) vermiculite and were completely arrested 24 hours after transfer. The GA1 content in the elongating region of hypocotyls had declined to 38% of the 0 time value at 24 hours after transfer to low ψw vermiculite, a level which was only 13% of the GA1 content in control seedlings at the same time (24 hours posttransfer). Rewatering seedlings following 24 hours growth in low ψw vermiculite resulted in a complete recovery in elongation rate, an increase in GA1 (20% at 2 hours, two-fold at 8 hours, eightfold at 24 hours), and a decrease in ABA levels (tenfold at 2 hours). Treatment of well-watered seedlings with the GA-synthesis inhibitor tetcyclacis (TCY) resulted in lowered GA1 levels and increased ABA levels. When seedlings grown 24 hours in low ψw vermiculite were rewatered with TCY, recovery of the elongation rate was delayed and reduced, and the decline in ABA levels was slowed. Addition of GA3 restored the elongation rate inhibited by TCY. Seedlings were growth responsive to exogenous GA3, and this GA3-promoted growth was inhibited by exogenous ABA. The data are consistent with the hypothesis that changes in GA1 and ABA levels play a role in adjusting hypocotyl elongation rates. However, the changes observed are not of sufficient magnitude nor do they occur rapidly enough to suggest they are the primary regulators of elongation rate responses to rapidly changing plant water status.  相似文献   

17.
Light significantly inhibits hypocotyl cell elongation, and dark-grown seedlings exhibit elongated, etiolated hypocotyls. Microtubule regulatory proteins function as positive or negative regulators that mediate hypocotyl cell elongation by altering microtubule organization. However, it remains unclear how plants coordinate these regulators to promote hypocotyl growth in darkness and inhibit growth in the light. Here, we demonstrate that WAVE-DAMPENED 2–LIKE3 (WDL3), a microtubule regulatory protein of the WVD2/WDL family from Arabidopsis thaliana, functions in hypocotyl cell elongation and is regulated by a ubiquitin-26S proteasome–dependent pathway in response to light. WDL3 RNA interference Arabidopsis seedlings grown in the light had much longer hypocotyls than controls. Moreover, WDL3 overexpression resulted in overall shortening of hypocotyl cells and stabilization of cortical microtubules in the light. Cortical microtubule reorganization occurred slowly in cells from WDL3 RNA interference transgenic lines but was accelerated in cells from WDL3-overexpressing seedlings subjected to light treatment. More importantly, WDL3 protein was abundant in the light but was degraded through the 26S proteasome pathway in the dark. Overexpression of WDL3 inhibited etiolated hypocotyl growth in regulatory particle non-ATPase subunit-1a mutant (rpn1a-4) plants but not in wild-type seedlings. Therefore, a ubiquitin-26S proteasome–dependent mechanism regulates the levels of WDL3 in response to light to modulate hypocotyl cell elongation.  相似文献   

18.
Photomorphogenetic responses have been studied in a cucumber (Cucumis sativus L.) mutant (lh), which has long hypocotyls in white light (WL). While etiolated seedlings of this mutant have a similar phytochrome content and control of hypocotyl elongation as wild type, deetiolation is retarded and WL-grown seedlings show reduced phytochrome control. Spectrophotometric measurements exhibit that WL-grown tissues of the lh mutant (flower petals and Norflurazon-bleached leaves) contain 35 to 50% of the phytochrome level in the wild type. We propose that this is a consequence of a lack of light-stable phytochrome, in agreement with our hypothesis proposed on the basis of physiological experiments. The lh mutant lacks an end-of-day far-red light response of hypocotyl elongation. This enables the end-of-day far-red light response, clearly shown by the wild type, to be ascribed to the phytochrome, deficient in the lh mutant. Growth experiments in continuous blue light (BL) and continuous BL + red light (RL) show that when RL is added to BL, hypocotyl growth remains inhibited in the wild type, whereas the lh mutant exhibits significant growth promotion compared to BL alone. It is proposed that the hypocotyls fail to grow long in low fluence rate BL because photosynthesis is insufficient to sustain growth.  相似文献   

19.
The first positive phototropic curvature induced by a pulse of unilateral white irradiation (0.1 watt per square meter, 30 seconds) of etiolated and de-etiolated Sakurajima radish (Raphanus sativus var hortensis f. gigantissimus Makino) hypocotyls was analyzed in terms of differential growth and growth inhibitor contents of the hypocotyls. In both etiolated and de-etiolated hypocotyls, the growth rates at the lighted sides were suppressed whereas those at the shaded ones showed no change. De-etiolation treatment induced a larger difference between the growth rates at the lighted and shaded sides of the hypocotyls, resulting in a larger curvature of de-etiolated seedlings than of etiolated ones. The contents of growth inhibitors, cis- and trans-raphanusanins, increased in the lighted but not in the shaded halves of the hypocotyls of etiolated seedlings. In de-etiolated seedlings, the two inhibitors increased due to the de-etiolation treatment. When de-etiolated seedlings were exposed to a pulse of unilateral irradiation the level of the two inhibitors remained high along the lighted side for 1 h following the light pulse, whereas at the shaded side the contents of the inhibitors abruptly decreased upon transfer to the dark, the difference between their amounts in the lighted and shaded sides being larger than in etiolated seedlings. Another growth inhibitor, raphanusamide, did not respond to the phototropic stimulus, although its amounts increased by the de-etiolation treatment. These data suggest that cis- and trans-raphanusanins are involved in the first positive phototropic response of radish hypocotyls, and that de-etiolation magnifies the phototropic response through induction of a larger lateral gradient of the raphanusanins in the hypocotyls by the phototropic stimulus.  相似文献   

20.
Phytochrome content of three near-isogenic genotypes of Sorghum bicolor was analyzed using immunological and spectrophotometric means. Seedlings of the photoperiodically sensitive genotypes 90M (Ma1Ma1, Ma2Ma2, ma3ma3) and 100M (Ma1Ma1, Ma2Ma2, Ma3Ma3) contain 126- and 123-kilodalton phytochromes. The 126-kilodalton protein is immunostained by antibodies Oat-16 and Pea-25. The 123-kilodalton phytochrome is immunostained by antibodies Pea-25 and Green-Oat-7. Seedlings of the photoperiodically insensitive genotype 58M (Ma1Ma1, Ma2Ma2, ma3rma3r) contain only the 126-kilodalton phytochrome. In 58M seedlings, 123-kilodalton phytochrome is not detected by either Pea-25 or Green-Oat-7. Deetiolation by white light causes the 126-kilodalton phytochrome to disappear but does not greatly affect the abundance of the 123-kilodalton phytochrome. In 58M, 90M, and 100M seedlings, the 126-kilodalton phytochrome is the most abundant in etiolated tissue, whereas the 123-kilodalton phytochrome of 90M and 100M seedlings predominates in green tissue. Spectrophotometric assays show that the bulk phytochrome of etiolated tissues of all three genotypes degrades similarly upon exposure to light. At least two phytochromes are detected in sorghum: a light-labile 126-kilodalton phytochrome that predominates in etiolated tissue and a 123-kilodalton phytochrome that predominates in green tissue. Photoperiodic control of flowering in sorghum is correlated with the presence of the 123-kilodalton phytochrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号