共查询到20条相似文献,搜索用时 15 毫秒
1.
Jyoti Rana Sreejith Rajasekharan Sahil Gulati Namrata Dudha Amita Gupta Vijay Kumar Chaudhary Sanjay Gupta 《Proteins》2014,82(10):2403-2411
2.
MacKenzie F. Patton Aurélie Bak Jordan M. Sayre Michelle L. Heck Clare L. Casteel 《Plant, cell & environment》2020,43(2):387-399
Potato leafroll virus (PLRV), genus Polerovirus, family Luteoviridae, is a major pathogen of potato worldwide. PLRV is transmitted among host plants by aphids in a circulative–nonpropagative manner. Previous studies have demonstrated that PLRV infection increases aphid fecundity on, and attraction to, infected plants as compared to controls. However, the molecular mechanisms mediating this relationship are still poorly understood. In this study, we measured the impact of PLRV infection on plant–aphid interactions and plant chemistry in two hosts: Solanum tuberosum and Nicotiana benthamiana. Our study demonstrates that PLRV infection attenuates the induction of aphid-induced jasmonic acid and ethylene in S. tuberosum and N. benthamiana. Using transient expression experiments, insect bioassays and chemical analysis, we show that expression of three PLRV proteins (P0, P1, and P7) mediate changes in plant–aphid interactions and inhibition of aphid-induced jasmonic acid and ethylene in N. benthamiana. This study enhances our understanding of the plant-vector-pathogen interface by elucidating new mechanisms by which plant viruses transmitted in a circulative manner can manipulate plant hosts. 相似文献
3.
The entire cloned human adenovirus type 5 (Ad5) genome is known to be able to generate infectious virus after transfection into 293 cells when the both ends of the genome are exposed by digestion with appropriate restriction enzymes. However, when one or both ends of the genome are tagged with nucleotides and are not intact, whether the tagged end of the viral genome was remained tagged or corrected to be intact during the generation of viral clones has been unclear and, if such oligonucleotide removal occurs, how does the virus remove these tagged sequences and thereby restore its proper structure? Here, we show in our semi‐quantitative study that the generation efficiency of virus clones decreases depending on the length of nucleotide tags at the both ends and that both the oligonucleotide tags were precisely removed during virus generation with restoration of the proper terminal sequences. Interestingly the viral genome of which one end was tagged, while the other was attached about 12‐kb sequences, did generate intact viral clones at a reduced but significant efficiency. From these results, we here propose a possible mechanism whereby the terminal‐protein‐deoxycytidine complex enters from the enzyme‐cleaved end and reaches deoxyguanine at the initiating position of DNA synthesis in vivo. A replication origin at one end, embedded deeply in double‐stranded DNA, can be activated by two cycles of one‐directional full‐length DNA synthesis initiated by the other exposed replication origin about 30 kilobases away. We also describe new cassette cosmids which can use not only PacI but also BstBI for construction of an adenovirus vector, without reducing construction efficiency. 相似文献
4.
Intercellular protein trafficking through plasmodesmata 总被引:11,自引:0,他引:11
5.
Tina Meischel Fernando Villalon‐Letelier Philippa M. Saunders Patrick C. Reading Sarah L. Londrigan 《Cellular microbiology》2020,22(5)
Influenza viruses are an important cause of respiratory infection worldwide. In humans, infection with seasonal influenza A virus (IAV) is generally restricted to the respiratory tract where productive infection of airway epithelial cells promotes viral amplification, dissemination, and disease. Alveolar macrophages (MΦ) are also among the first cells to detect and respond to IAV, where they play a pivotal role in mounting effective innate immune responses. In contrast to epithelial cells, IAV infection of MΦ is a “dead end” for most seasonal strains, where replication is abortive and newly synthesised virions are not released. Although the key replicative stages leading to productive IAV infection in epithelial cells are defined, there is limited knowledge about the abortive IAV life cycle in MΦ. In this review, we will explore host factors and viral elements that support the early stages (entry) through to the late stages (viral egress) of IAV replication in epithelial cells. Similarities, differences, and unknowns for each key stage of the IAV replicative cycle in MΦ will then be highlighted. Herein, we provide mechanistic insights into MΦ‐specific control of seasonal IAV replication through abortive infection, which may in turn, contribute to effective host defence. 相似文献
6.
7.
8.
Protein composition of 6K2‐induced membrane structures formed during Potato virus A infection
下载免费PDF全文

The definition of the precise molecular composition of membranous replication compartments is a key to understanding the mechanisms of virus multiplication. Here, we set out to investigate the protein composition of the potyviral replication complexes. We purified the potyviral 6K2 protein‐induced membranous structures from Potato virus A (PVA)‐infected Nicotiana benthamiana plants. For this purpose, the 6K2 protein, which is the main inducer of potyviral membrane rearrangements, was expressed in fusion with an N‐terminal Twin‐Strep‐tag and Cerulean fluorescent protein (SC6K) from the infectious PVA cDNA. A non‐tagged Cerulean‐6K2 (C6K) virus and the SC6K protein alone in the absence of infection were used as controls. A purification scheme exploiting discontinuous sucrose gradient centrifugation followed by Strep‐tag‐based affinity chromatography was developed. Both (+)‐ and (–)‐strand PVA RNA and viral protein VPg were co‐purified specifically with the affinity tagged PVA‐SC6K. The purified samples, which contained individual vesicles and membrane clusters, were subjected to mass spectrometry analysis. Data analysis revealed that many of the detected viral and host proteins were either significantly enriched or fully specifically present in PVA‐SC6K samples when compared with the controls. Eight of eleven potyviral proteins were identified with high confidence from the purified membrane structures formed during PVA infection. Ribosomal proteins were identified from the 6K2‐induced membranes only in the presence of a replicating virus, reinforcing the tight coupling between replication and translation. A substantial number of proteins associating with chloroplasts and several host proteins previously linked with potyvirus replication complexes were co‐purified with PVA‐derived SC6K, supporting the conclusion that the host proteins identified in this study may have relevance in PVA replication. 相似文献
9.
Summary The RNA structures synthesized in vitro by a crude enzyme complex from tobacco mosaic virus (TMV)-infected leaves have been analyzed; the major viral-specific products were similar to TMV-replicative form (RF) and-replicative intermediate (RI) in electrophoretic behavior and ribonuclease sensitivity. Synthesis of these RF-like and RI-like structures neither required nor responded to added viral RNA, but did require all four ribonucleotide triphosphates. Enriched radiolabeled RF-like and RI-like RNA fractions were isolated from non-denaturing agarose gels by electroelution and hybridized to a collection of TMV sequences cloned into bacteriophage M13. Enriched RF-RNA hybridized to sequences of both plus and minus polarity, while enriched RI-RNA hybridized only to inserts of minus polarity, indicating only plus strand synthesis in this fraction. Most of the label incorporated into the plus strand of the enriched RF-RNA was found near the 3-end of this strand, while most of the label incorporated into enriched RI-RNA was found several hundred bases from the 5-end of the plus strand.Paper presented at the first International Congress of Plant Molecular Biology (Savannah, GA, 1985). 相似文献
10.
Teruo Yamauchi Mariko Nakamura Hitoshi Honma Motoaki Ikeda Kazunari Kawashima Tsuneya Ohno 《Molecular and cellular biochemistry》1993,119(1-2):35-41
Kijimicin represents an important type of ionophore compound. In veterinary medicine, it is becoming important as anticoccidiostatic agent and feed supplement. We examined Kijimicin for its HIV inhibitory activity. The compound exhibited concentration-dependent inhibition of HIV replication in primary infected cultures of human T-lymphoblastoid H9 cells. Substantial inhibition of viral replication was observed at concentrations of Kijimicin that showed little cytotoxicity. The ratio of IC50 values for the MTT to RT assays was 40. Anti HIV activity was also observed in cultures of monocytic lineage U937 cells chronically infected with HIV. Moreover, in attempting to define the inhibitory mechanism of Kijimicin, we investigated its effect on each step of HIV replication. The infectivity of progeny viral particles was reduced by Kijimicin treatment. This decrease may be due to incompletely glycosylated forms of gp120. 相似文献
11.
Prabu Gnanasekaran Kalaiarasan Ponnusamy Supriya Chakraborty 《Molecular Plant Pathology》2019,20(7):943-960
Geminivirus disease complexes potentially interfere with plants physiology and cause disastrous effects on a wide range of economically important crops throughout the world. Diverse geminivirus betasatellite associations exacerbate the epidemic threat for global food security. Our previous study showed that βC1, the pathogenicity determinant of geminivirus betasatellites induce symptom development by disrupting the ultrastructure and function of chloroplasts. Here we explored the betasatellite-virus-chloroplast interaction in the scope of viral pathogenesis as well as plant defence responses, using Nicotiana benthamiana—Radish leaf curl betasatellite (RaLCB) as the model system. We have shown an interaction between RaLCB-encoded βC1 and one of the extrinsic subunit proteins of oxygen-evolving complex of photosystem II both in vitro and in vivo. Further, we demonstrate a novel function of the Nicotiana benthamiana oxygen-evolving enhancer protein 2 (PsbP), in that it binds DNA, including geminivirus DNA. Transient silencing of PsbP in N. benthamiana plants enhances pathogenicity and viral DNA accumulation. Overexpression of PsbP impedes disease development during the early phase of infection, suggesting that PsbP is involved in generation of defence response during geminivirus infection. In addition, βC1-PsbP interaction hampers non-specific binding of PsbP to the geminivirus DNA. Our findings suggest that betasatellite-encoded βC1 protein accomplishes counter-defence by physical interaction with PsbP reducing the ability of PsbP to bind geminivirus DNA to establish infection. 相似文献
12.
Zhenlu Zhang Yin-Huan Xie Ping Sun Fu-Jun Zhang Peng-Fei Zheng Xiao-Fei Wang Chun-Xiang You Yu-Jin Hao 《Molecular Plant Pathology》2022,23(3):383-399
Apple necrotic mosaic virus (ApNMV) is highly associated with the occurrence of apple mosaic disease in China. However, ApNMV–host interactions and defence mechanisms of host plants against this virus are poorly studied. Here, we report that nitrate treatment restrains ApNMV genomic RNA accumulation by destabilizing viral replication protein 1a through the MdBT2-mediated ubiquitin-proteasome pathway. MdBT2, a nitrate-responsive BTB/TAZ domain-containing protein, was identified in a yeast two-hybrid screen of an apple cDNA library using viral protein 1a as bait, and 1a was further confirmed to interact with MdBT2 both in vivo and in vitro. It was further verified that MdBT2 promoted the ubiquitination and degradation of viral protein 1a through the ubiquitin-proteasome pathway in an MdCUL3A-independent manner. Viral genomic RNA accumulation was reduced in MdBT2-overexpressing transgenic apple leaves but enhanced in MdBT2-antisense leaves compared to the wild type. Moreover, MdBT2 was found to interfere with the interaction between viral replication proteins 1a and 2apol by competitively interacting with 1a. Taken together, our results demonstrate that nitrate-inducible MdBT2 functions as a limiting factor in ApNMV viral RNA accumulation by promoting the ubiquitination and degradation of viral protein 1a and interfering with interactions between viral replication proteins. 相似文献
13.
14.
Jianguo Wu Yongliang Zhang Fangfang Li Xiaoming Zhang Jian Ye Taiyun Wei Zhenghe Li Xiaorong Tao Feng Cui Xianbing Wang Lili Zhang Fei Yan Shifang Li Yule Liu Dawei Li Xueping Zhou Yi Li 《植物学报(英文版)》2024,66(3):579-622
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interac... 相似文献
15.
Shanshan Jiang Yuwen Lu Kunfeng Li Lin Lin Hongying Zheng Fei Yan Jianping Chen 《Molecular Plant Pathology》2014,15(9):907-917
Heat shock proteins 70 (HSP70s) are a highly conserved family of genes in eukaryotes, and are involved in a remarkable variety of cellular processes. In many plant positive‐stranded RNA viruses, HSP70 participates in the construction of a viral replication complex and plays various roles during viral infection. Here, we found increased expression of HSP70 following infection by Rice stripe virus (RSV), a negative‐stranded RNA virus, in both rice (the natural host) and Nicotiana benthamiana (an experimental host). Heat treatment of N. benthamiana (Nb) plants enhanced viral infection, whereas RSV infection was retarded and viral RNAs accumulated at a low level when HSP70 was silenced. In both bimolecular fluorescence complement and in vitro pull‐down assays, the N‐terminus of RSV RNA‐dependent RNA polymerase (RdRp) interacted and co‐localized with the HSP70s of both plants (OsHSP70 and NbHSP70). The localization of the N‐terminus of RdRp when expressed alone was not obviously different from when it was co‐expressed with OsHSP or NbHSP, and vice versa. RSV infection also had no effect on the localization of host HSP70. These results demonstrate that host HSP70 is necessary for RSV infection and probably plays a role in viral replication by interacting with viral RdRp, which provides the first evidence of an interacting host protein related to RSV replication, which has been little studied to date. 相似文献
16.
17.
The chloroplast is one of the most dynamic organelles of a plant cell. It carries out photosynthesis, synthesizes major phytohormones, plays an active part in the defence response and is crucial for interorganelle signalling. Viruses, on the other hand, are extremely strategic in manipulating the internal environment of the host cell. The chloroplast, a prime target for viruses, undergoes enormous structural and functional damage during viral infection. Indeed, large proportions of affected gene products in a virus‐infected plant are closely associated with the chloroplast and the process of photosynthesis. Although the chloroplast is deficient in gene silencing machinery, it elicits the effector‐triggered immune response against viral pathogens. Virus infection induces the organelle to produce an extensive network of stromules which are involved in both viral propagation and antiviral defence. From studies over the last few decades, the involvement of the chloroplast in the regulation of plant–virus interaction has become increasingly evident. This review presents an exhaustive account of these facts, with their implications for pathogenicity. We have attempted to highlight the intricacies of chloroplast–virus interactions and to explain the existing gaps in our current knowledge, which will enable virologists to utilize chloroplast genome‐based antiviral resistance in economically important crops. 相似文献
18.
19.
RNA干扰(RNAi)是由小干扰RNA(siRNA)引发的生物细胞内同源基因的转录后基因沉默(PTGS)现象,是一种古老的生物抵抗外在感染的防御机制。RNAi因其在维持基因组稳定、调控基因表达和保护基因组免受外源核酸侵入等方面发挥的重要作用,已被广泛用于探索基因功能、基因治疗和新药的研发。外源导入siRNA引发的RNAi可以特异性抑制病毒的复制与感染,为抗病毒感染治疗开辟了一条新的途径。 相似文献