首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human uridine 5′-monophosphate synthase (HsUMPS) is a bifunctional enzyme that catalyzes the final two steps in de novo pyrimidine biosynthesis. The individual orotate phosphoribosyl transferase and orotidine monophosphate domains have been well characterized, but little is known about the overall structure of the protein and how the organization of domains impacts function. Using a combination of chromatography, electron microscopy, and complementary biophysical methods, we report herein that HsUMPS can be observed in two structurally distinct states, an enzymatically active dimeric form and a nonactive multimeric form. These two states readily interconvert to reach an equilibrium that is sensitive to perturbations of the active site and the presence of substrate. We determined that the smaller molecular weight form of HsUMPS is an S-shaped dimer that can self-assemble into relatively well-ordered globular condensates. Our analysis suggests that the transition between dimer and multimer is driven primarily by oligomerization of the orotate phosphoribosyl transferase domain. While the cellular distribution of HsUMPS is unaffected, quantification by mass spectrometry revealed that de novo pyrimidine biosynthesis is dysregulated when this protein is unable to assemble into inactive condensates. Taken together, our data suggest that HsUMPS self-assembles into biomolecular condensates as a means to store metabolic potential for the regulation of metabolic rates.  相似文献   

2.
3.
A dinucleoside monophosphate was isolated from 5-bromouracil-induced filaments of a thymine auxotroph of Escherichia coli K-12. The dinucleoside monophosphate was fractioned from a [(14)C]5-bromouracil-labeled perchloric acid extract using Dowex-1-formate ion-exchange chromatography. Sephadex chromatography revealed its molecular weight to be 710. Snake venom phosphodiesterase digest of the dinucleoside monophosphate yielded [(14)C]5-bromouridine and adenosine 5'-monophosphate. The presence of [(14)C]5-bromouracil in bacterial ribonucleic acid indicates that ribonucleic acid, which had incorporated 5-bromouracil, was the probable source of this dinucleoside monophosphate, 5-bromouridylyl-(3' --> 5')-adenosine.  相似文献   

4.
5.
Previous publications showed that a covalently closed circular (CCC) Rts1 plasmid deoxyribonucleic acid (DNA) that confers kanamycin resistance upon the host bacteria inhibits host growth at 42 degrees C but not at 32 degrees C. At 42 degrees C, the CCC Rts1 DNA is not formed, and cells without plasmids emerge. To investigate the possible role of cyclic adenosine 3',5'-monophosphate (cAMP) in the action of Rts1 on host bacteria, Rts1 was placed in an Escherichia coli mutant (CA7902) that lacks adenylate cyclase or in E. coli PP47 (a mutant lacking cAMP receptor protein). Rts1 did not exert the thermosensitive effect on these cells, and CCC Rts1 DNA was formed even at 42 degrees C. Upon addition of cAMP to E. coli CA7902(Rts1), cell growth and formation of CCC Rts1 DNA were inhibited at 42 degrees C. The addition of cAMP to E. coli PP47(Rts1) did not cause inhibitory effects on either cell growth or CCC Rts1 DNA formation at 42 degrees C. The inhibitory effect of cAMP on E. coli CA7902(Rts1) is specific to this cyclic nucleotide, and other cyclic nucleotides such as cyclic guanosine 3',5'-monophosphate did not have the effect. For this inhibitory effect, cells have to be preincubated with cAMP; the presence of cAMP at the time of CCC Rts1 DNA formation is not enough for the inhibitory effect. If the cells are preincubated with cAMP, one can remove cAMP during the [(3)H]thymidine pulse and still observe its inhibitory effect on the formation of CCC Rts1 DNA. The presence of chloramphenicol during this preincubation period abolished the inhibitory effect of cAMP. These observations suggest that cAMP is necessary to induce synthesis of a protein that inhibits CCC Rts1 DNA formation and cell growth at 42 degrees C.  相似文献   

6.
Light-directed synthesis of high-density microarrays is currently performed in the 3′→5′ direction due to constraints in existing synthesis chemistry. This results in the probes being unavailable for many common types of enzymatic modification. Arrays that are synthesized in the 5′→3′ direction could be utilized to perform parallel genotyping and resequencing directly on the array surface, dramatically increasing the throughput and reducing the cost relative to existing techniques. In this report we demonstrate the use of photoprotected phosphoramidite monomers for light-directed array synthesis in the 5′→3′ direction, using maskless array synthesis technology. These arrays have a dynamic range of >2.5 orders of magnitude, sensitivity below 1 pM and a coefficient of variance of <10% across the array surface. Arrays containing >150 000 probe sequences were hybridized to labeled mouse cRNA producing highly concordant data (average R2 = 0.998). We have also shown that the 3′ ends of array probes are available for sequence-specific primer extension and ligation reactions.  相似文献   

7.
Alternative 3′ and 5′ splice site (ss) events constitute a significant part of all alternative splicing events. These events were also found to be related to several aberrant splicing diseases. However, only few of the characteristics that distinguish these events from alternative cassette exons are known currently. In this study, we compared the characteristics of constitutive exons, alternative cassette exons, and alternative 3′ss and 5′ss exons. The results revealed that alternative 3′ss and 5′ss exons are an intermediate state between constitutive and alternative cassette exons, where the constitutive side resembles constitutive exons, and the alternative side resembles alternative cassette exons. The results also show that alternative 3′ss and 5′ss exons exhibit low levels of symmetry (frame-preserving), similar to constitutive exons, whereas the sequence between the two alternative splice sites shows high symmetry levels, similar to alternative cassette exons. In addition, flanking intronic conservation analysis revealed that exons whose alternative splice sites are at least nine nucleotides apart show a high conservation level, indicating intronic participation in the regulation of their splicing, whereas exons whose alternative splice sites are fewer than nine nucleotides apart show a low conservation level. Further examination of these exons, spanning seven vertebrate species, suggests an evolutionary model in which the alternative state is a derivative of an ancestral constitutive exon, where a mutation inside the exon or along the flanking intron resulted in the creation of a new splice site that competes with the original one, leading to alternative splice site selection. This model was validated experimentally on four exons, showing that they indeed originated from constitutive exons that acquired a new competing splice site during evolution.  相似文献   

8.
The addition of 5',5',5'-trifluoroleucine (fluoroleucine) to leucine auxotrophs of Salmonella typhimurium permitted protein but not ribonucleic acid (RNA) synthesis to continue after leucine depletion. The uncoupling of the formation of these macromolecules by fluoroleucine was apparent if RNA and protein synthesis was measured either by the uptake of radioactive precursors or by direct chemical determinations. The analogue did not appear to be an inhibitor of RNA formation, since it was as effective as leucine in permitting RNA synthesis in a leucine auxotroph upon the addition of small amounts of chloramphenicol. In contrast to these data, fluoroleucine allowed continued protein and RNA formation in a leucine auxotroph of Escherichia coli strain W. In addition, contrary to the results obtained with S. typhimurium, the analogue replaced leucine for repression of the leucine bio-synthetic enzymes as well as the isoleucine-valine enzymes. We propose that these ambivalent effects of fluoroleucine on repression and RNA and protein synthesis in the two strains are due to differences in the ability of the analogue to attach to the various species of leucine transfer RNA.  相似文献   

9.
A new procedure has been developed for the synthesis of 3′-amino-3′-deoxyribonucleosides of adenine, cytosine and uracil by condensing the trimethylsilylated bases with peracylated 3-azido-3-deoxyribose derivative. The azido group could subsequently be reduced to amino. The 5′-phosphates of these nucleosides have been prepared and the analogues have been tested for their ability to stimulate the ribosome-catalyzed reaction of 3′(2′)-O-(N-formylmethionyl)adenosine 5′-phosphate with phenylalanyl-tRNA.  相似文献   

10.
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3′-to-5′ proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3′-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3′-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.  相似文献   

11.
Adenosine-3',5'-cyclic monophosphate was shown to be the compound found in Escherichia coli responsible for the attraction of the amoebae of the cellular slime mold Dictyostelium discoideum. A number of other nucleotides were tested and the following were active: tubercidin-3',5'-cyclic monophosphate, N(6)-2'-O-dibutyryl-adenosine-3',5'-cyclic monophosphate, 5'-methylene adenosine-3',5'-cyclic monophosphonate, guanosine-3',5'-cyclic monophosphate, uridine-3',5'-cyclic monophosphate, cytidine-3',5'-cyclic monophosphate, inosine-3',5'-cyclic monophosphate, and thymidine-3',5'-cyclic monophosphate. They were less active than adenosine-3',5'-cyclic monophosphate. It is suggested that cyclic adenosine monophosphate secreted by the bacteria is used by the amoebae as a means of sensing and orienting towards food.  相似文献   

12.
Whole-cell suspensions of Cylindrocarpon didymum were observed to transform 2,2′-bimorphine to the compounds 10-α-S-monohydroxy-2,2′-bimorphine and 10,10′-α,α′-S,S′-dihydroxy-2,2′-bimorphine. Mass spectrometry and 1H nuclear magnetic resonance spectroscopy confirmed the identities of these new morphine alkaloids.  相似文献   

13.
Data are presented demonstrating that the presence in vivo of adenosine 3',5'-monophosphate (3',5'-AMP) causes a rapid depletion of glycogen storage material in the cellular slime mold. The effect of adenosine 5'-monophosphate (5'-AMP) is twofold, stimulating both glycogen degradation and synthesis. In pseudoplasmodia, cell-free extracts appear to contain at least two species of glycogen phosphorylase, one of which is severely inhibited by glucose-1-phosphate and another which is only partially inhibited by this hexose-phosphate. In some cases, 5'-AMP partially overcomes the inhibition by glucose-1-phosphate. Data presented here also indicate the existence of two forms of glycogen synthetase, the total activity of which does not change during 10 hr of differentiation from aggregation to culmination. During this period there is a quantitative conversion of glucose-6-phosphate-independent enzyme activity to glucose-6-phosphate-dependent activity. It is suggested that one effect of 3',5'-AMP is closely related to enzymatic processes involved in the rapid conversion of glycogen to cell wall material and other end products accumulating during sorocarp construction.  相似文献   

14.
15.
16.
Two adenosine 3',5'-cyclic monophosphate (AMP)-deficient mutants of Vibrio cholerae (biotype El Tor) were successfully isolated by nitrosoguanidine treatment followed by pencillin screening for pleiotropic sugar-negative clones. Exogenous cyclic AMP is required for the fermentation of sucrose, trehalose, fructose, maltose, and mannose but not of glucose, as well as for the formation of normal flagella and specific somatic antigens. A striking characteristic of the mutants is their growth behavior at higher temperatures. They cannot grow on TCBS selective plates at 37 C or higher unless they are provided with a supply of exogenous cyclic AMP, although they are capable of producing colonies on the same medium, even without cyclic AMP, at temperatures lower than 30 C. Since the mutants are converted to spheroplasts, spindle forms, and spiral filaments in cyclic AMP-free media at 37 C, and this phenomenon is stopped by the addition of cyclic AMP or a combination of 20% sucrose and 0.2% magnesium chloride, it is assumed that cyclic AMP is essential for the synthesis of the cell wall of V. cholerae at higher temperatures.  相似文献   

17.
The plant aluminum (Al)-activated malate transporter ALMT1 mediates the efflux of malate to chelate the Al in acidic soils and underlies the plant Al resistance...  相似文献   

18.
The cyclic 3',5'-adenosine monophosphate (c-AMP) phosphodiesterase from Escherichia coli has been partially purified. The enzyme has an apparent molecular weight of 30,000, a Michaelis constant of 0.5 mM c-AMP, and a pH optimum of 7. The partially purified enzyme requires for activity the presence of a reducing compound and of either iron or a protein which seemingly acts as iron carrier.  相似文献   

19.
Mutants that require exogenous 3',5'-cyclic adenosine monophosphate (cAMP) for exponential growth were isolated from strains deficient in adenyl cyclase. Studies of one strain showed that cAMP is not incorporated into macromolecules; instead, it seems to have a regulatory function, i.e., in media lacking cAMP, cells form ribonucleic acid (RNA) and protein at linear rather than exponential rates. The exact lesion is not known; ribosomes, messenger RNA, and the beta and beta' subunits of RNA polymerase continue to be made in absence of added cAMP.  相似文献   

20.
OTUB (otubain) 1 is a human deubiquitinating enzyme that is implicated in mediating lymphocyte antigen responsiveness, but whose molecular function is generally not well defined. A structural analysis of OTUB1 shows differences in accessibility to the active site and in surface properties of the substrate-binding regions when compared with its close homologue, OTUB2, suggesting variations in regulatory mechanisms and substrate specificity. Biochemical analysis reveals that OTUB1 has a preference for cleaving Lys(48)-linked polyubiquitin chains over Lys(63)-linked polyubiquitin chains, and it is capable of cleaving NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8), but not SUMO (small ubiquitin-related modifier) 1/2/3 and ISG15 (interferon-stimulated gene 15) conjugates. A functional comparison of OTUB1 and OTUB2 indicated a differential reactivity towards ubiquitin-based active-site probes carrying a vinyl methyl ester, a 2-chloroethyl or a 2-bromoethyl group at the C-terminus. Mutational analysis suggested that a narrow P1' site, as observed in OTUB1, correlates with its ability to preferentially cleave Lys(48)-linked ubiquitin chains. Analysis of cellular interaction partners of OTUB1 by co-immunoprecipitation and MS/MS (tandem mass spectrometry) experiments demonstrated that FUS [fusion involved in t(12;6) in malignant liposarcoma; also known as TLS (translocation in liposarcoma) or CHOP (CCAAT/enhancer-binding protein homologous protein)] and RACK1 [receptor for activated kinase 1; also known as GNB2L1 (guanine-nucleotide-binding protein beta polypeptide 2-like 1)] are part of OTUB1-containing complexes, pointing towards a molecular function of this deubiquitinating enzyme in RNA processing and cell adhesion/morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号