首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Asian citrus psyllid, Diaphorina citri, is the insect vector of the causal agent of huanglongbing (HLB), a devastating bacterial disease of commercial citrus. Presently, few genomic resources exist for D. citri. In this study, we utilized PacBio HiFi and chromatin confirmation contact (Hi-C) sequencing to sequence, assemble, and compare three high-quality, chromosome-scale genome assemblies of D. citri collected from California, Taiwan, and Uruguay. Our assemblies had final sizes of 282.67 Mb (California), 282.89 Mb (Taiwan), and 266.67 Mb (Uruguay) assembled into 13 pseudomolecules—a reduction in assembly size of 41–45% compared with previous assemblies which we validated using flow cytometry. We identified the X chromosome in D. citri and annotated each assembly for repetitive elements, protein-coding genes, transfer RNAs, ribosomal RNAs, piwi-interacting RNA clusters, and endogenous viral elements. Between 19,083 and 20,357 protein-coding genes were predicted. Repetitive DNA accounts for 36.87–38.26% of each assembly. Comparative analyses and mitochondrial haplotype networks suggest that Taiwan and Uruguay D. citri are more closely related, while California D. citri are closely related to Florida D. citri. These high-quality, chromosome-scale assemblies provide new genomic resources to researchers to further D. citri and HLB research.  相似文献   

2.
Summary The yolk proteins stored in Drosophila, oocytes for utilisation during embryogenesis are an ideal system for studying the regulation of gene expression during development. The 3 major polypeptides found in yolk in D. melanogaster are synthesised in the fat body and ovarian follicle cells and selectively accumulated by the oocyte during vitellogenesis. In order to understand more about their regulation and the mechanism of uptake, studies on other species are necessary.Three yolk polypeptides have previously been identified in the D. melanogaster sibling species (D. melanogaster, D. simulans, D. mauritiana, D. erecta, D. teissieri, D. orena and D. yakuba). In D. melanogaster three genes located on the X chromosome are known to code for these yolk polypeptides. in this study genomic Southern transfers and in situ hybridisation experiments were carried out on the sibling species. Using the three cloned yolk protein genes from D. melanogaster, homologous sequences could be detected in the sibling species. It is suggested that three yolk protein genes occur in each of these species, all being located on the X chromosome, and that two of the genes are very closely linked in these same species. Yolk protein gene-homologous DNA sequences have also been identified in two more distantly related species D. funebris and D. virilis.  相似文献   

3.
Location of the LSP-1 Genes in Drosophila Species by IN SITU Hybridization   总被引:5,自引:3,他引:5  
Brock HW  Roberts DB 《Genetics》1983,103(1):75-92
The locations of the larval serum protein one (LSP-1) α, β and γ genes were determined in Drosophila melanogaster and in 14 other species of Drosophila by in situ hybridization to polytene chromosomes. The LSP-1 α gene mapped to bands 11B on the X chromosome, the LSP-1 β gene mapped to bands 21D-E on chromosome 2L, and the LSP-1 γ gene mapped to band 61A in all the melanogaster subgroup species. In eight other species, both the LSP-1 α and β genes mapped to one site on Muller's element E which corresponds to chromosome 3R of D. melanogaster. No hybridization of LSP-1 γ was detected in these eight species. Restriction enzyme digestion and analysis of genomic DNA by filter transfer hybridization confirmed the presence of LSP-1 α-like and β-like genes in seven of these species. These results are discussed with respect to conservation of the chromosomal elements in the genus Drosophila.  相似文献   

4.

Background

Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago.

Results

Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %).

Conclusion

Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.  相似文献   

5.
C Kemkemer  A Catalán  J Parsch 《Heredity》2014,112(2):149-155
Genomic analyses of Drosophila species suggest that the X chromosome presents an unfavourable environment for the expression of genes in the male germline. A previous study in D. melanogaster used a reporter gene driven by a testis-specific promoter to show that expression was greatly reduced when the gene was inserted onto the X chromosome as compared with the autosomes. However, a limitation of this study was that only the expression regulated by a single, autosomal-derived promoter was investigated. To test for an increase in expression associated with ‘escaping'' the X chromosome, we analysed reporter gene expression driven by the promoters of three X-linked, testis-expressed genes (CG10920, CG12681 and CG1314) that were inserted randomly throughout the D. melanogaster genome. In all cases, insertions on the autosomes showed significantly higher expression than those on the X chromosome. Thus, even genes whose regulation has adapted to the X-chromosomal environment show increased male germline expression when relocated to an autosome. Our results provide direct experimental evidence for the suppression of X-linked gene expression in the Drosophila male germline that is independent of gene dose.  相似文献   

6.
7.
Genetic analysis was performed to identify chromosomal regions carrying genes affecting the “fickle” behaviour observed during a study on locomotor activity inD. melanogaster (Costaet al. 1989). The experiments were carried out using a wild-type strain and 13 morphological markers on chromosomes X and 3. The results suggest the presence of some major genes influencing fickle locomotion in both sexes on chromosome 3. Sex-controlled genes affecting this behavioural trait also appear to be present on the X chromosome.  相似文献   

8.
9.
Pinsker W  Sperlich D 《Genetics》1984,108(4):913-926
Enzyme loci located on chromosome J and U were mapped cytologically by means of a Y translocation technique. A linkage map of the two chromosomes was established in a parallel experiment and the recombination frequency in different regions of the chromosomes determined. A comparison of the cytogenetic localization of the enzyme genes in D. subobscura and D. melanogaster indicates that many paracentric inversions must have taken place in the course of divergent evolution. However, no displacements of genes from one element to another due to pericentric inversions, reciprocal translocations or transposing elements can be observed. In spite of the large number of structural rearrangements that have occurred in the phylogeny of the genus Drosophila, gross similarities of banding pattern in homologous regions of the chromosomes of the two species become apparent.  相似文献   

10.
Classical models suggest that recombination rates on sex chromosomes evolve in a stepwise manner to localize sexually antagonistic variants in the sex in which they are beneficial, thereby lowering rates of recombination between X and Y chromosomes. However, it is also possible that sex chromosome formation occurs in regions with preexisting recombination suppression. To evaluate these possibilities, we constructed linkage maps and a chromosome-scale genome assembly for the dioecious plant Rumex hastatulus. This species has a polymorphic karyotype with a young neo-sex chromosome, resulting from a Robertsonian fusion between the X chromosome and an autosome, in part of its geographic range. We identified the shared and neo-sex chromosomes using comparative genetic maps of the two cytotypes. We found that sex-linked regions of both the ancestral and the neo-sex chromosomes are embedded in large regions of low recombination. Furthermore, our comparison of the recombination landscape of the neo-sex chromosome to its autosomal homolog indicates that low recombination rates mainly preceded sex linkage. These patterns are not unique to the sex chromosomes; all chromosomes were characterized by massive regions of suppressed recombination spanning most of each chromosome. This represents an extreme case of the periphery-biased recombination seen in other systems with large chromosomes. Across all chromosomes, gene and repetitive sequence density correlated with recombination rate, with patterns of variation differing by repetitive element type. Our findings suggest that ancestrally low rates of recombination may facilitate the formation and subsequent evolution of heteromorphic sex chromosomes.  相似文献   

11.
We report on the analyses of genes encoding immunoglobulin heavy and light chains in the rabbit 6.51× whole genome assembly. This OryCun2.0 assembly confirms previous mapping of the duplicated IGK1 and IGK2 loci to chromosome 2 and the IGL lambda light chain locus to chromosome 21. The most frequently rearranged and expressed IGHV1 that is closest to IG DH and IGHJ genes encodes rabbit VHa allotypes. The partially inbred Thorbecke strain rabbit used for whole-genome sequencing was homozygous at the IGK but heterozygous with the IGHV1a1 allele in one of 79 IGHV-containing unplaced scaffolds and IGHV1a2, IGHM, IGHG, and IGHE sequences in another. Some IGKV, IGLV, and IGHA genes are also in other unplaced scaffolds. By fluorescence in situ hybridization, we assigned the previously unmapped IGH locus to the q-telomeric region of rabbit chromosome 20. An approximately 3-Mb segment of human chromosome 14 including IGH genes predicted to map to this telomeric region based on synteny analysis could not be located on assembled chromosome 20. Unplaced scaffold chrUn0053 contains some of the genes that comparative mapping predicts to be missing. We identified discrepancies between previous targeted studies and the OryCun2.0 assembly and some new BAC clones with IGH sequences that can guide other studies to further sequence and improve the OryCun2.0 assembly. Complete knowledge of gene sequences encoding variable regions of rabbit heavy, kappa, and lambda chains will lead to better understanding of how and why rabbits produce antibodies of high specificity and affinity through gene conversion and somatic hypermutation.  相似文献   

12.
In most animals that have X and Y sex chromosomes, chromosome-wide mechanisms are used to balance X-linked gene expression in males and females. In the fly Drosophila melanogaster, the dosage compensation mechanism also generally extends to X-linked transgenes. Over 70 transgenic lines of the Australian sheep blowfly Lucilia cuprina have been made as part of an effort to develop male-only strains for a genetic control program of this major pest of sheep. All lines carry a constitutively expressed fluorescent protein marker gene. In all 12 X-linked lines, female larvae show brighter fluorescence than male larvae, suggesting the marker gene is not dosage compensated. This has been confirmed by quantitative RT-PCR for selected lines. To determine if endogenous X-linked genes are dosage compensated, we isolated 8 genes that are orthologs of genes that are on the fourth chromosome in D. melanogaster. Recent evidence suggests that the D. melanogaster fourth chromosome, or Muller element F, is the ancestral X chromosome in Diptera that has reverted to an autosome in Drosophila species. We show by quantitative PCR of male and female DNA that 6 of the 8 linkage group F genes reside on the X chromosome in L. cuprina. The other two Muller element F genes were found to be autosomal in L. cuprina, whereas two Muller element B genes were found on the same region of the X chromosome as the L. cuprina orthologs of the D. melanogaster Ephrin and gawky genes. We find that the L. cuprina X chromosome genes are equally expressed in males and females (i.e., fully dosage compensated). Thus, unlike in Drosophila, it appears that the Lucilia dosage compensation system is specific for genes endogenous to the X chromosome and cannot be co-opted by recently arrived transgenes.  相似文献   

13.
In this study, we characterize changes in the genome during a swift evolutionary adaptation, by combining experimental selection with high-throughput sequencing. We imposed strong experimental selection on an ecologically relevant trait, parasitoid resistance in Drosophila melanogaster against Asobara tabida. Replicated selection lines rapidly evolved towards enhanced immunity. Larval survival after parasitization increased twofold after just five generations of selection. Whole-genome sequencing revealed that the fast and strong selection response in innate immunity produced multiple, highly localized genomic changes. We identified narrow genomic regions carrying a significant signature of selection, which were present across all chromosomes and covered in total less than 5% of the whole D. melanogaster genome. We identified segregating sites with highly significant changes in frequency between control and selection lines that fell within these narrow ‘selected regions’. These segregating sites were associated with 42 genes that constitute possible targets of selection. A region on chromosome 2R was highly enriched in significant segregating sites and may be of major effect on parasitoid defence. The high genetic variability and small linkage blocks in our base population are likely responsible for allowing this complex trait to evolve without causing widespread erosive effects in the genome, even under such a fast and strong selective regime.  相似文献   

14.
Genes with male- and testis-enriched expression are under-represented on the Drosophila melanogaster X chromosome. There is also an excess of retrotransposed genes, many of which are expressed in testis, that have “escaped” the X chromosome and moved to the autosomes. It has been proposed that inactivation of the X chromosome during spermatogenesis contributes to these patterns: genes with a beneficial function late in spermatogenesis should be selectively favored to be autosomal in order to avoid inactivation. However, conclusive evidence for X inactivation in the male germline has been lacking. To test for such inactivation, we used a transgenic construct in which expression of a lacZ reporter gene was driven by the promoter sequence of the autosomal, testis-specific ocnus gene. Autosomal insertions of this transgene showed the expected pattern of male- and testis-specific expression. X-linked insertions, in contrast, showed only very low levels of reporter gene expression. Thus, we find that X linkage inhibits the activity of a testis-specific promoter. We obtained the same result using a vector in which the transgene was flanked by chromosomal insulator sequences. These results are consistent with global inactivation of the X chromosome in the male germline and support a selective explanation for X chromosome avoidance of genes with beneficial effects late in spermatogenesis.  相似文献   

15.
Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH), using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log2 ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1) rates of protein evolution, 2) the pattern of gene duplication, and 3) the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information.  相似文献   

16.
The present report presents the results of starch and polyacrylamide gel electrophoretic studies of the influence of the X chromosome on the expression of esterase-6 in D. melanogaster × D. simulans hybrids heterozygous for locus Est-6 as well as studies of the influence of autosomes on esterase expression in Drosophila of the virilis group. A differential expression of esterase-6 has been detected in D. melanogaster × D. simulans hybrid males. A differential decrease in the activity of esterase-6 (both F and S allozymes) derived from D. melanogaster has been noted. In hybrid females, the activity of parental esterases is the same. It is suggested that the X chromosome regulates the expression of esterase-6 in D. melanogaster. Analysis of individuals obtained in different schemes of crosses between different species of Drosophila of the virilis group by use of stocks marked with mutations in various chromosomes indicates that other autosomes (in particular, autosomes 4 and 5) also influence the phenotypic expression of esterases (which are controlled by genes located on the second chromosome).  相似文献   

17.
The abundance and composition of heterochromatin changes rapidly between species and contributes to hybrid incompatibility and reproductive isolation. Heterochromatin differences may also destabilize chromosome segregation and cause meiotic drive, the non-Mendelian segregation of homologous chromosomes. Here we use a range of genetic and cytological assays to examine the meiotic properties of a Drosophila simulans chromosome 4 (sim-IV) introgressed into D. melanogaster. These two species differ by ∼12–13% at synonymous sites and several genes essential for chromosome segregation have experienced recurrent adaptive evolution since their divergence. Furthermore, their chromosome 4s are visibly different due to heterochromatin divergence, including in the AATAT pericentromeric satellite DNA. We find a visible imbalance in the positioning of the two chromosome 4s in sim-IV/mel-IV heterozygote and also replicate this finding with a D. melanogaster 4 containing a heterochromatic deletion. These results demonstrate that heterochromatin abundance can have a visible effect on chromosome positioning during meiosis. Despite this effect, however, we find that sim-IV segregates normally in both diplo and triplo 4 D. melanogaster females and does not experience elevated nondisjunction. We conclude that segregation abnormalities and a high level of meiotic drive are not inevitable byproducts of extensive heterochromatin divergence. Animal chromosomes typically contain large amounts of noncoding repetitive DNA that nevertheless varies widely between species. This variation may potentially induce non-Mendelian transmission of chromosomes. We have examined the meiotic properties and transmission of a highly diverged chromosome 4 from a foreign species within the fruitfly Drosophila melanogaster. This chromosome has substantially less of a simple sequence repeat than does D. melanogaster 4, and we find that this difference results in altered positioning when chromosomes align during meiosis. Yet this foreign chromosome segregates at normal frequencies, demonstrating that chromosome segregation can be robust to major differences in repetitive DNA abundance.  相似文献   

18.
Postzygotic reproductive barriers such as sterility and lethality of hybrids are important for establishing and maintaining reproductive isolation between species. Identifying the causal loci and discerning how they interfere with the development of hybrids is essential for understanding how hybrid incompatibilities (HIs) evolve, but little is known about the mechanisms of how HI genes cause hybrid dysfunctions. A previously discovered Drosophila melanogaster locus called Zhr causes lethality in F1 daughters from crosses between Drosophila simulans females and D. melanogaster males. Zhr maps to a heterochromatic region of the D. melanogaster X that contains 359-bp satellite repeats, suggesting either that Zhr is a rare protein-coding gene embedded within heterochromatin, or is a locus consisting of the noncoding repetitive DNA that forms heterochromatin. The latter possibility raises the question of how heterochromatic DNA can induce lethality in hybrids. Here we show that hybrid females die because of widespread mitotic defects induced by lagging chromatin at the time during early embryogenesis when heterochromatin is first established. The lagging chromatin is confined solely to the paternally inherited D. melanogaster X chromatids, and consists predominantly of DNA from the 359-bp satellite block. We further found that a rearranged X chromosome carrying a deletion of the entire 359-bp satellite block segregated normally, while a translocation of the 359-bp satellite block to the Y chromosome resulted in defective Y segregation in males, strongly suggesting that the 359-bp satellite block specifically and directly inhibits chromatid separation. In hybrids produced from wild-type parents, the 359-bp satellite block was highly stretched and abnormally enriched with Topoisomerase II throughout mitosis. The 359-bp satellite block is not present in D. simulans, suggesting that lethality is caused by the absence or divergence of factors in the D. simulans maternal cytoplasm that are required for heterochromatin formation of this species-specific satellite block. These findings demonstrate how divergence of noncoding repetitive sequences between species can directly cause reproductive isolation by altering chromosome segregation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号