首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson’s disease (PD). As such, functions and dysfunctions of LRRK2 in PD have been the subject of extensive investigation. In addition to PD, increasing evidence is suggesting that LRRK2 is associated with a wide range of diseases. Genome-wide association studies have implicated LRRK2 in Crohn’s disease (CD) and leprosy, and the carriers with pathogenic mutations of LRRK2 show increased risk to develop particular types of cancer. LRRK2 mutations are rarely found in Alzheimer’s disease (AD), but LRRK2 might play a part in tauopathies. The association of LRRK2 with the pathogenesis of apparently unrelated diseases remains enigmatic, but it might be related to the yet unknown diverse functions of LRRK2. Here, we reviewed current knowledge on the link between LRRK2 and several diseases, including PD, AD, CD, leprosy, and cancer, and discussed the possibility of targeting LRRK2 in such diseases. [BMB Reports 2015; 48(5): 243-248]  相似文献   

2.
Aptamers are oligonucleotides selected from large pools of random sequences based on their affinity for bioactive molecules and are used in similar ways to antibodies. Aptamers provide several advantages over antibodies, including their small size, facile, large-scale chemical synthesis, high stability, and low immunogenicity. Amyloidogenic proteins, whose aggregation is relevant to neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and prion diseases, are among the most challenging targets for aptamer development due to their conformational instability and heterogeneity, the same characteristics that make drug development against amyloidogenic proteins difficult. Recently, chemical tethering of aptagens (equivalent to antigens) and advances in high-throughput sequencing-based analysis have been used to overcome some of these challenges. In addition, internalization technologies using fusion to cellular receptors and extracellular vesicles have facilitated central nervous system (CNS) aptamer delivery. In view of the development of these techniques and resources, here we review antiamyloid aptamers, highlighting preclinical application to CNS therapy.  相似文献   

3.
Alzheimer’s disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the disease, the current mainstay of treatment cannot modify pathogenesis or effectively address the associated cognitive and memory deficits. Emerging evidence suggests adenosine G protein-coupled receptors (GPCRs) are promising therapeutic targets for Alzheimer’s disease. The adenosine A1 and A2A receptors are expressed in the human brain and have a proposed involvement in the pathogenesis of dementia. Targeting these receptors preclinically can mitigate pathogenic β-amyloid and tau neurotoxicity whilst improving cognition and memory. In this review, we provide an accessible summary of the literature on Alzheimer’s disease and the therapeutic potential of A1 and A2A receptors. Although there are no available medicines targeting these receptors approved for treating dementia, we provide insights into some novel strategies, including allosterism and the targeting of oligomers, which may increase drug discovery success and enhance the therapeutic response.  相似文献   

4.
Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm−1 μm) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer’s disease and Parkinson’ disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics.  相似文献   

5.
Discovering drugs that efficiently treat brain diseases has been challenging. Genetic variants that modulate the expression of potential drug targets can be utilized to assess the efficacy of therapeutic interventions. We therefore employed Mendelian Randomization (MR) on gene expression measured in brain tissue to identify drug targets involved in neurological and psychiatric diseases. We conducted a two-sample MR using cis-acting brain-derived expression quantitative trait loci (eQTLs) from the Accelerating Medicines Partnership for Alzheimer’s Disease consortium (AMP-AD) and the CommonMind Consortium (CMC) meta-analysis study (n = 1,286) as genetic instruments to predict the effects of 7,137 genes on 12 neurological and psychiatric disorders. We conducted Bayesian colocalization analysis on the top MR findings (using P<6x10-7 as evidence threshold, Bonferroni-corrected for 80,557 MR tests) to confirm sharing of the same causal variants between gene expression and trait in each genomic region. We then intersected the colocalized genes with known monogenic disease genes recorded in Online Mendelian Inheritance in Man (OMIM) and with genes annotated as drug targets in the Open Targets platform to identify promising drug targets. 80 eQTLs showed MR evidence of a causal effect, from which we prioritised 47 genes based on colocalization with the trait. We causally linked the expression of 23 genes with schizophrenia and a single gene each with anorexia, bipolar disorder and major depressive disorder within the psychiatric diseases and 9 genes with Alzheimer’s disease, 6 genes with Parkinson’s disease, 4 genes with multiple sclerosis and two genes with amyotrophic lateral sclerosis within the neurological diseases we tested. From these we identified five genes (ACE, GPNMB, KCNQ5, RERE and SUOX) as attractive drug targets that may warrant follow-up in functional studies and clinical trials, demonstrating the value of this study design for discovering drug targets in neuropsychiatric diseases.  相似文献   

6.
In the late 20th century, identification of the major protein components of amyloid plaques and neurofibrillary tangles provided a window into the molecular pathology of Alzheimer’s disease, ushering in an era of optimism that targeted therapeutics would soon follow. The amyloid-cascade hypothesis took hold very early, supported by discoveries that dominant mutations in APP, PSEN1, and PSEN2 cause the very rare, early-onset, familial forms of the disease. However, in the past decade, a stunning series of failed Phase-3 clinical trials, testing anti-amyloid antibodies or processing-enzyme inhibitors, prompts the question, What went wrong? The FDA’s recent controversial approval of aducanumab, despite widespread concerns about efficacy and safety, only amplifies the question. The assumption that common, late-onset Alzheimer’s is a milder form of familial disease was not adequately questioned. The differential timing of discoveries, including blood–brain–barrier-penetrant tracers for imaging of plaques and tangles, made it easy to focus on amyloid. Furthermore, the neuropathology community initially implemented Alzheimer’s diagnostic criteria based on plaques only. The discovery that MAPT mutations cause frontotemporal dementia with tauopathy made it even easier to overlook the tangles in Alzheimer’s. Many important findings were simply ignored. The accepted mouse models did not predict the human clinical trials data. Given this lack of pharmacological validity, input from geneticists in collaboration with neuroscientists is needed to establish criteria for valid models of Alzheimer’s disease. More generally, scientists using genetic model organisms as whole-animal bioassays can contribute to building the pathogenesis network map of Alzheimer’s disease.  相似文献   

7.
The growing number and variety of genetic network datasets increases the feasibility of understanding how drugs and diseases are associated at the molecular level. Properly selected features of the network representations of existing drug-disease associations can be used to infer novel indications of existing drugs. To find new drug-disease associations, we generated an integrative genetic network using combinations of interactions, including protein-protein interactions and gene regulatory network datasets. Within this network, network adjacencies of drug-drug and disease-disease were quantified using a scored path between target sets of them. Furthermore, the common topological module of drugs or diseases was extracted, and thereby the distance between topological drug-module and disease (or disease-module and drug) was quantified. These quantified scores were used as features for the prediction of novel drug-disease associations. Our classifiers using Random Forest, Multilayer Perceptron and C4.5 showed a high specificity and sensitivity (AUC score of 0.855, 0.828 and 0.797 respectively) in predicting novel drug indications, and displayed a better performance than other methods with limited drug and disease properties. Our predictions and current clinical trials overlap significantly across the different phases of drug development. We also identified and visualized the topological modules of predicted drug indications for certain types of cancers, and for Alzheimer’s disease. Within the network, those modules show potential pathways that illustrate the mechanisms of new drug indications, including propranolol as a potential anticancer agent and telmisartan as treatment for Alzheimer’s disease.  相似文献   

8.
Millions of people cannot access essential medicines they need for deadly diseases like malaria, tuberculosis (TB) and HIV/AIDS. There is good information on the need for drugs for these diseases but until now, no global estimate of the impact drugs are having on this burden. This paper presents a model measuring companies’ key malaria, TB and HIV/AIDS drugs’ consequences for global health (global-health-impact.org). It aggregates drugs’ impacts in several ways–by disease, country and originator-company. The methodology can be extended across diseases as well as drugs to provide a more extensive picture of the impact companies’ drugs are having on the global burden of disease. The study suggests that key malaria, TB and HIV/AIDS drugs are, together, ameliorating about 37% of the global burden of these diseases and Sanofi, Novartis, and Pfizer’s drugs are having the largest effect on this burden. Moreover, drug impacts vary widely across countries. This index provides important information for policy makers, pharmaceutical companies, countries, and other stake-holders that can help increase access to essential medicines.  相似文献   

9.
Through a mechanism known as RNA interference (RNAi), small interfering RNA (siRNA) molecules can target complementary mRNA strands for degradation, thus specifically inhibiting gene expression. The ability of siRNAs to inhibit gene expression offers a mechanism that can be exploited for novel therapeutics. Indeed, over the past decade, at least 21 siRNA therapeutics have been developed for more than a dozen diseases, including various cancers, viruses, and genetic disorders. Like other biological drugs, RNAi-based therapeutics often require a delivery vehicle to transport them to the targeted cells. Thus, the clinical advancement of numerous siRNA drugs has relied on the development of siRNA carriers, including biodegradable nanoparticles, lipids, bacteria, and attenuated viruses. Most therapies permit systemic delivery of the siRNA drug, while others use ex vivo delivery by autologous cell therapy. Advancements in bioengineering and nanotechnology have led to improved control of delivery and release of some siRNA therapeutics. Likewise, progress in molecular biology has allowed for improved design of the siRNA molecules. Here, we provide an overview of siRNA therapeutics in clinical trials, including their clinical progress, the challenges they have encountered, and the future they hold in the treatment of human diseases.  相似文献   

10.
The era of nanotechnology has allowed new research strategies to flourish in the field of drug delivery. Nanoparticle-based drug delivery systems are suitable for targeting chronic intracellular infections such as tuberculosis. Polymeric nanoparticles employing poly lactide-co-glycolide have shown promise as far as intermittent chemotherapy in experimental tuberculosis is concerned. It has distinct advantages over the more traditional drug carriers, i.e. liposomes and microparticles. Although the experience with natural carriers, e.g. solid lipid nanoparticles and alginate nanoparticles is in its infancy, future research may rely heavily on these carrier systems. Given the options for oral as well as parenteral therapy, the very nature of the disease and its complex treatment urges one to emphasize on the oral route for controlled drug delivery. Pending the discovery of more potent antitubercular drugs, nanotechnology-based intermittent chemotherapy provides a novel and sound platform for an onslaught against tuberculosis.  相似文献   

11.
Ca2+ blockers, particularly those capable of crossing the blood-brain barrier (BBB), have been suggested as a possible treatment or disease modifying agents for neurodegenerative disorders, e.g., Alzheimer’s disease. The present study investigated the effects of a novel 4-(N-dodecyl) pyridinium group-containing 1,4-dihydropyridine derivative (AP-12) on cognition and synaptic protein expression in the brain. Treatment of AP-12 was investigated in wild type C57BL/6J mice and transgenic Alzheimer’s disease model mice (Tg APPSweDI) using behavioral tests and immunohistochemistry, as well as mass spectrometry to assess the blood-brain barrier (BBB) penetration. The data demonstrated the ability of AP-12 to cross the BBB, improve spatial learning and memory in both mice strains, induce anxiolytic action in transgenic mice, and increase expression of hippocampal and cortical proteins (GAD67, Homer-1) related to synaptic plasticity. The compound AP-12 can be seen as a prototype molecule for use in the design of novel drugs useful to halt progression of clinical symptoms (more specifically, anxiety and decline in memory) of neurodegenerative diseases, particularly Alzheimer’s disease.  相似文献   

12.
Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with a number of presently incurable diseases such as Alzheimer’s and Parkinson’s disease. Millions of people worldwide suffer from amyloid diseases. This review summarizes the unique cross-β structure of amyloid fibrils, morphological variations, the kinetics of amyloid fibril formation, and the cytotoxic effects of these fibrils and oligomers. Alzheimer’s disease is also explored as an example of an amyloid disease to show the various approaches to treat these amyloid diseases. Finally, this review investigates the nanotechnological and biological applications of amyloid fibrils; as well as a summary of the typical biological pathways involved in the disposal of amyloid fibrils and their precursors.  相似文献   

13.
Drug repositioning has shorter developmental time, lower cost and less safety risk than traditional drug development process. The current study aims to repurpose marketed drugs and clinical candidates for new indications in diabetes treatment by mining clinical ‘omics’ data. We analyzed data from genome wide association studies (GWAS), proteomics and metabolomics studies and revealed a total of 992 proteins as potential anti-diabetic targets in human. Information on the drugs that target these 992 proteins was retrieved from the Therapeutic Target Database (TTD) and 108 of these proteins are drug targets with drug projects information. Research and preclinical drug targets were excluded and 35 of the 108 proteins were selected as druggable proteins. Among them, five proteins were known targets for treating diabetes. Based on the pathogenesis knowledge gathered from the OMIM and PubMed databases, 12 protein targets of 58 drugs were found to have a new indication for treating diabetes. CMap (connectivity map) was used to compare the gene expression patterns of cells treated by these 58 drugs and that of cells treated by known anti-diabetic drugs or diabetes risk causing compounds. As a result, 9 drugs were found to have the potential to treat diabetes. Among the 9 drugs, 4 drugs (diflunisal, nabumetone, niflumic acid and valdecoxib) targeting COX2 (prostaglandin G/H synthase 2) were repurposed for treating type 1 diabetes, and 2 drugs (phenoxybenzamine and idazoxan) targeting ADRA2A (Alpha-2A adrenergic receptor) had a new indication for treating type 2 diabetes. These findings indicated that ‘omics’ data mining based drug repositioning is a potentially powerful tool to discover novel anti-diabetic indications from marketed drugs and clinical candidates. Furthermore, the results of our study could be related to other disorders, such as Alzheimer’s disease.  相似文献   

14.
Amyloid-beta peptides have long been implicated in the pathology of Alzheimer’s disease. Bexarotene, a drug approved by the U.S. Food and Drug Administration for treating a class of non-Hodgkin’s lymphoma, has been reported to facilitate the removal of amyloid-beta. We have developed a mathematical model to explore the efficacy of bexarotene treatment in reducing amyloid-beta load, and simulate amyloid-beta production throughout the lifespan of diseased mice. Both aspects of the model are based on and consistent with previous experimental results. Beyond what is known empirically, our model shows that low dosages of bexarotene are unable to reverse symptoms in diseased mice, but dosages at and above an age-dependent critical concentration can recover healthy brain cells. Further, early treatment was shown to have significantly improved efficacy versus treatment in older mice. Relevance with respect to bexarotene-based amyloid-beta-clearance mechanism and direct treatment for Alzheimer’s disease is emphasized.  相似文献   

15.
The amyloid cascade hypothesis, which proposes a prominent role for full-length amyloid β peptides in Alzheimer’s disease, is currently being questioned. In addition to full-length amyloid β peptide, several N-terminally truncated fragments of amyloid β peptide could well contribute to Alzheimer’s disease setting and/or progression. Among them, pyroGlu3–amyloid β peptide appears to be one of the main components of early anatomical lesions in Alzheimer’s disease–affected brains. Little is known about the proteolytic activities that could account for the N-terminal truncations of full-length amyloid β, but they appear as the rate-limiting enzymes yielding the Glu3–amyloid β peptide sequence that undergoes subsequent cyclization by glutaminyl cyclase, thereby yielding pyroGlu3–amyloid β. Here, we investigated the contribution of dipeptidyl peptidase 4 in Glu3–amyloid β peptide formation and the functional influence of its genetic depletion or pharmacological blockade on spine maturation as well as on pyroGlu3–amyloid β peptide and amyloid β 42–positive plaques and amyloid β 42 load in the triple transgenic Alzheimer’s disease mouse model. Furthermore, we examined whether reduction of dipeptidyl peptidase 4 could rescue learning and memory deficits displayed by these mice. Our data establish that dipeptidyl peptidase 4 reduction alleviates anatomical, biochemical, and behavioral Alzheimer’s disease–related defects. Furthermore, we demonstrate that dipeptidyl peptidase 4 activity is increased early in sporadic Alzheimer’s disease brains. Thus, our data demonstrate that dipeptidyl peptidase 4 participates in pyroGlu3–amyloid β peptide formation and that targeting this peptidase could be considered as an alternative strategy to interfere with Alzheimer’s disease progression.  相似文献   

16.
Neurodegenerative diseases, tauopathies, constitute a serious global health problem. The etiology of these diseases is unclear and an increase in their incidence has been projected in the next 30 years. Therefore, the study of the molecular mechanisms that might stop these neurodegenerative processes is very relevant. Classification of neurodegenerative diseases using Machine and Deep Learning algorithms has been widely studied for medical imaging such as Magnetic Resonance Imaging. However, post-mortem immunofluorescence imaging studies of the brains of patients have not yet been used for this purpose. These studies may represent a valuable tool for monitoring aberrant chemical changes or pathological post-translational modifications of the Tau polypeptide. We propose a Convolutional Neural Network pipeline for the classification of Tau pathology of Alzheimer’s disease and Progressive Supranuclear Palsy by analyzing post-mortem immunofluorescence images with different Tau biomarkers performed with models generated with the architecture ResNet-IFT using Transfer Learning. These models’ outputs were interpreted with interpretability algorithms such as Guided Grad-CAM and Occlusion Analysis. To determine the best classifier, four different architectures were tested. We demonstrated that our design was able to classify diseases with an accuracy of 98.41% on average whilst providing an interpretation concerning the proper classification involving different structural patterns in the immunoreactivity of the Tau protein in NFTs present in the brains of patients with Progressive Supranuclear Palsy and Alzheimer’s disease.  相似文献   

17.
In addition to their roles in normal cell physiology, endocytic processes play a key role in many diseases. In this review, three diseases are discussed as examples of the role of endocytic processes in disease. The uptake of cholesterol via LDL is central to our understanding of atherosclerosis, and the study of this disease led to many of the key breakthroughs in understanding receptor-mediated endocytosis. Alzheimer’s disease is a growing burden as the population ages. Endosomes and lysosomes play important but only partially understood roles in both the formation and the degradation of the amyloid fibrils that are associated with Alzheimer’s disease. Inherited lysosomal storage diseases are individually rare, but collectively they affect many individuals. Recent advances are leading to improved enzyme replacement therapy and are also leading to small-molecule drugs to treat some of these diseases.Endocytosis plays many vital roles in normal cell physiology, and as described in this article, endocytic processes can also play significant roles in pathology. Nutrient uptake is one of the essential functions of endocytosis. Two of the best-characterized examples of this are the uptake of cholesterol via the low-density lipoprotein (LDL) receptor (Goldstein and Brown 2009) and the uptake of iron via transferrin and the transferrin receptor (Aisen et al. 2001). Another important role for endocytosis is the regulation of cell-surface expression of membrane proteins, especially receptors and transporters. The balance between recycling or trafficking to storage organelles or to late endosomes and lysosomes (LE/Ly) is often a determining factor in regulating surface expression levels of membrane proteins. Thus, the membrane sorting that occurs in endosomes is important for regulating cell physiology. The pH levels in endosomes play an important role in many functions of endocytosis, including release of iron from transferrin, release of LDL and other ligands from their receptors, and activation of lysosomal hydrolases. As discussed herein, many of these same processes can also play a role in human diseases. A few specific diseases—atherosclerosis, Alzheimer’s disease, and lysosomal storage diseases—are used to illustrate this.  相似文献   

18.
Cytokines such as TNFα can polarize microglia/macrophages into different neuroinflammatory types. Skewing of the phenotype towards a cytotoxic state is thought to impair phagocytosis and has been described in Alzheimer’s Disease (AD). Neuroinflammation can be perpetuated by a cycle of increasing cytokine production and maintenance of a polarized activation state that contributes to AD progression. In this study, 3xTgAD mice, age 6 months, were treated orally with 3 doses of the TNFα modulating compound isoindolin-1,3 dithione (IDT) for 10 months. We demonstrate that IDT is a TNFα modulating compound both in vitro and in vivo. Following long-term IDT administration, mice were assessed for learning & memory and tissue and serum were collected for analysis. Results demonstrate that IDT is safe for long-term treatment and significantly improves learning and memory in the 3xTgAD mouse model. IDT significantly reduced paired helical filament tau and fibrillar amyloid accumulation. Flow cytometry of brain cell populations revealed that IDT increased the infiltrating neutrophil population while reducing TNFα expression in this population. IDT is a safe and effective TNFα and innate immune system modulator. Thus small molecule, orally bioavailable modulators are promising therapeutics for Alzheimer’s disease.  相似文献   

19.
Au nanostructures: an emerging prospect in cancer theranostics   总被引:1,自引:0,他引:1  
Au nanoparticles have been used in biomedical applications since ancient times. However, the rapid development of nanotechnology over the past century has led to recognition of the great potential of Au nanoparticles in a wide range of applications. Advanced fabrication techniques allow us to synthesize a variety of Au nanostructures possessing physiochemical properties that can be exploited for different purposes. Functionalization of the surface of Au nanoparticles further eases their application in various roles. These advantages of Au nanoparticles make them particularly suited for cancer treatment and diagnosis. The small size of Au particles enables them to preferentially accumulate at tumor sites to achieve in vivo targeting after systemic administration. Efficient light absorption followed by rapid heat conversion makes them very promising in photothermal therapy. The facile surface chemistry of Au nanoparticles eases delivery of drugs, ligands or imaging contrast agents in vivo. In this review, we summarize recent development of Au nanoparticles in cancer theranostics including imaging-based detection, photothermal therapy, chemical therapy and drug delivery. The multifunctional nature of Au nanoparticles means they hold great promise as novel anti-cancer therapeutics.  相似文献   

20.
Astrocytes contribute to the maintenance of the health and function of the central nervous system (CNS). Thus, it is not surprising that these multifunctional cells have been implicated in the onset and progression of several neurodegenerative diseases. The involvement of astrocytes in the neuropathology of these diseases is likely a consequence of both the loss of normal homeostatic functions and gain of toxic functions. Intracellular aggregates in astrocytes are a common feature of various neurodegenerative diseases, and these aggregates perturb normal astrocytic functions in ways that can be harmful to neuronal viability. Here, we review the role of astrocytes in neurodegenerative diseases, focusing on their dysfunction in Huntington’s disease (HD), Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号