首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tightly packed complexes of nucleocapsid protein and genomic RNA form the core of viruses and assemble within viral factories, dynamic compartments formed within the host cells associated with human stress granules. Here, we test the possibility that the multivalent RNA‐binding nucleocapsid protein (N) from severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) condenses with RNA via liquid–liquid phase separation (LLPS) and that N protein can be recruited in phase‐separated forms of human RNA‐binding proteins associated with SG formation. Robust LLPS with RNA requires two intrinsically disordered regions (IDRs), the N‐terminal IDR and central‐linker IDR, as well as the folded C‐terminal oligomerization domain, while the folded N‐terminal domain and the C‐terminal IDR are not required. N protein phase separation is induced by addition of non‐specific RNA. In addition, N partitions in vitro into phase‐separated forms of full‐length human hnRNPs (TDP‐43, FUS, hnRNPA2) and their low‐complexity domains (LCs). These results provide a potential mechanism for the role of N in SARS‐CoV‐2 viral genome packing and in host‐protein co‐opting necessary for viral replication and infectivity.  相似文献   

2.
Post‐translational modifications (PTMs) have emerged as key modulators of protein phase separation and have been linked to protein aggregation in neurodegenerative disorders. The major aggregating protein in amyotrophic lateral sclerosis and frontotemporal dementia, the RNA‐binding protein TAR DNA‐binding protein (TDP‐43), is hyperphosphorylated in disease on several C‐terminal serine residues, a process generally believed to promote TDP‐43 aggregation. Here, we however find that Casein kinase 1δ‐mediated TDP‐43 hyperphosphorylation or C‐terminal phosphomimetic mutations reduce TDP‐43 phase separation and aggregation, and instead render TDP‐43 condensates more liquid‐like and dynamic. Multi‐scale molecular dynamics simulations reveal reduced homotypic interactions of TDP‐43 low‐complexity domains through enhanced solvation of phosphomimetic residues. Cellular experiments show that phosphomimetic substitutions do not affect nuclear import or RNA regulatory functions of TDP‐43, but suppress accumulation of TDP‐43 in membrane‐less organelles and promote its solubility in neurons. We speculate that TDP‐43 hyperphosphorylation may be a protective cellular response to counteract TDP‐43 aggregation.  相似文献   

3.
Potassium‐coupled chloride transporters (KCCs) play crucial roles in regulating cell volume and intracellular chloride concentration. They are characteristically inhibited under isotonic conditions via phospho‐regulatory sites located within the cytoplasmic termini. Decreased inhibitory phosphorylation in response to hypotonic cell swelling stimulates transport activity, and dysfunction of this regulatory process has been associated with various human diseases. Here, we present cryo‐EM structures of human KCC3b and KCC1, revealing structural determinants for phospho‐regulation in both N‐ and C‐termini. We show that phospho‐mimetic KCC3b is arrested in an inward‐facing state in which intracellular ion access is blocked by extensive contacts with the N‐terminus. In another mutant with increased isotonic transport activity, KCC1Δ19, this interdomain interaction is absent, likely due to a unique phospho‐regulatory site in the KCC1 N‐terminus. Furthermore, we map additional phosphorylation sites as well as a previously unknown ATP/ADP‐binding pocket in the large C‐terminal domain and show enhanced thermal stabilization of other CCCs by adenine nucleotides. These findings provide fundamentally new insights into the complex regulation of KCCs and may unlock innovative strategies for drug development.  相似文献   

4.
The Staphylococcal Bap proteins sense environmental signals (such as pH, [Ca2+]) to build amyloid scaffold biofilm matrices via unknown mechanisms. We here report the crystal structure of the aggregation‐prone region of Staphylococcus aureus Bap which adopts a dumbbell‐shaped fold. The middle module (MM) connecting the N‐terminal and C‐terminal lobes consists of a tandem of novel double‐Ca2+‐binding motifs involved in cooperative interaction networks, which undergoes Ca2+‐dependent order–disorder conformational switches. The N‐terminal lobe is sufficient to mediate amyloid aggregation through liquid–liquid phase separation and maturation, and subsequent biofilm formation under acidic conditions. Such processes are promoted by disordered MM at low [Ca2+] but inhibited by ordered MM stabilized by Ca2+ binding, with inhibition efficiency depending on structural integrity of the interaction networks. These studies illustrate a novel protein switch in pathogenic bacteria and provide insights into the mechanistic understanding of Bap proteins in modulation of functional amyloid and biofilm formation, which could be implemented in the anti‐biofilm drug design.  相似文献   

5.
The N‐degron pathway determines the half‐life of proteins in both prokaryotes and eukaryotes by precisely recognizing the N‐terminal residue (N‐degron) of substrates. ClpS proteins from bacteria bind to substrates containing hydrophobic N‐degrons (Leu, Phe, Tyr, and Trp) and deliver them to the caseinolytic protease system ClpAP. This mechanism is preserved in organelles such as mitochondria and chloroplasts. Bacterial ClpS adaptors bind preferentially to Leu and Phe N‐degrons; however, ClpS1 from Arabidopsis thaliana (AtClpS1) shows a difference in that it binds strongly to Phe and Trp N‐degrons and only weakly to Leu. This difference in behavior cannot be explained without structural information due to the high sequence homology between bacterial and plant ClpS proteins. Here, we report the structure of AtClpS1 at 2.0 Å resolution in the presence of a bound N‐degron. The key determinants for α‐amino group recognition are conserved among all ClpS proteins, but the α3‐helix of eukaryotic AtClpS1 is significantly shortened, and consequently, a loop forming a pocket for the N‐degron is moved slightly outward to enlarge the pocket. In addition, amino acid replacement from Val to Ala causes a reduction in hydrophobic interactions with Leu N‐degron. A combination of the fine‐tuned hydrophobic residues in the pocket and the basic gatekeeper at the entrance of the pocket controls the N‐degron selectivity of the plant ClpS protein.  相似文献   

6.
In eukaryotes, most secretory and membrane proteins are targeted by an N‐terminal signal sequence to the endoplasmic reticulum, where the trimeric Sec61 complex serves as protein‐conducting channel (PCC). In the post‐translational mode, fully synthesized proteins are recognized by a specialized channel additionally containing the Sec62, Sec63, Sec71, and Sec72 subunits. Recent structures of this Sec complex in the idle state revealed the overall architecture in a pre‐opened state. Here, we present a cryo‐EM structure of the yeast Sec complex bound to a substrate, and a crystal structure of the Sec62 cytosolic domain. The signal sequence is inserted into the lateral gate of Sec61α similar to previous structures, yet, with the gate adopting an even more open conformation. The signal sequence is flanked by two Sec62 transmembrane helices, the cytoplasmic N‐terminal domain of Sec62 is more rigidly positioned, and the plug domain is relocated. We crystallized the Sec62 domain and mapped its interaction with the C‐terminus of Sec63. Together, we obtained a near‐complete and integrated model of the active Sec complex.  相似文献   

7.
Protein termini are determinants of protein stability. Proteins bearing degradation signals, or degrons, at their amino‐ or carboxyl‐termini are eliminated by the N‐ or C‐degron pathways, respectively. We aimed to elucidate the function of C‐degron pathways and to unveil how normal proteomes are exempt from C‐degron pathway‐mediated destruction. Our data reveal that C‐degron pathways remove mislocalized cellular proteins and cleavage products of deubiquitinating enzymes. Furthermore, the C‐degron and N‐degron pathways cooperate in protein removal. Proteome analysis revealed a shortfall in normal proteins targeted by C‐degron pathways, but not of defective proteins, suggesting proteolysis‐based immunity as a constraint for protein evolution/selection. Our work highlights the importance of protein termini for protein quality surveillance, and the relationship between the functional proteome and protein degradation pathways.  相似文献   

8.
tRip is a tRNA import protein specific to Plasmodium, the causative agent of malaria. In addition to its membrane localization and tRNA trafficking properties, tRip has the capacity to associate with three aminoacyl‐tRNA synthetases (aaRS), the glutamyl‐ (ERS), glutaminyl‐ (QRS), and methionyl‐ (MRS) tRNA synthetases. In eukaryotes, such multi‐aaRSs complexes (MSC) regulate the moonlighting activities of aaRSs. In Plasmodium, tRip and the three aaRSs all contain an N‐terminal GST‐like domain involved in the assembly of two independent complexes: the Q‐complex (tRip:ERS:QRS) and the M‐complex (tRip:ERS:MRS) with a 2:2:2 stoichiometry and in which the association of the GST‐like domains of tRip and ERS (tRip‐N:ERS‐N) is central. In this study, the crystal structure of the N‐terminal GST‐like domain of ERS was solved and made possible further investigation of the solution architecture of the Q‐ and M‐complexes by small‐angle x‐ray scattering (SAXS). This strategy relied on the engineering of a tRip‐N‐ERS‐N chimeric protein to study the structural scaffold of both Plasmodium MSCs and confirm the unique homodimerization pattern of tRip in solution. The biological impact of these structural arrangements is discussed.  相似文献   

9.
Hypertension (high blood pressure) is a major risk factor for cardiovascular disease, which is the leading cause of death worldwide. The somatic isoform of angiotensin I‐converting enzyme (sACE) plays a critical role in blood pressure regulation, and ACE inhibitors are thus widely used to treat hypertension and cardiovascular disease. Our current understanding of sACE structure, dynamics, function, and inhibition has been limited because truncated, minimally glycosylated forms of sACE are typically used for X‐ray crystallography and molecular dynamics simulations. Here, we report the first cryo‐EM structures of full‐length, glycosylated, soluble sACE (sACES1211). Both monomeric and dimeric forms of the highly flexible apo enzyme were reconstructed from a single dataset. The N‐ and C‐terminal domains of monomeric sACES1211 were resolved at 3.7 and 4.1 Å, respectively, while the interacting N‐terminal domains responsible for dimer formation were resolved at 3.8 Å. Mechanisms are proposed for intradomain hinging, cooperativity, and homodimerization. Furthermore, the observation that both domains were in the open conformation has implications for the design of sACE modulators.  相似文献   

10.
11.
The RNA‐binding protein fused in sarcoma (FUS) assembles via liquid–liquid phase separation (LLPS) into functional RNA granules and aggregates in amyotrophic lateral sclerosis associated neuronal inclusions. Several studies have demonstrated that posttranslational modification (PTM) can significantly alter FUS phase separation and aggregation, particularly charge‐altering phosphorylation of the nearly uncharged N‐terminal low complexity domain of FUS (FUS LC). However, the occurrence and impact of N‐terminal acetylation on FUS phase separation remains unexplored, even though N‐terminal acetylation is the most common PTM in mammals and changes the charge at the N‐terminus. First, we find that FUS is predominantly acetylated in two human cell types and stress conditions. Next, we show that recombinant FUS LC can be acetylated when co‐expressed with the NatA complex in Escherichia coli. Using NMR spectroscopy, we find that N‐terminal acetylated FUS LC (FUS LC Nt‐Ac) does not notably alter monomeric FUS LC structure or motions. Despite no difference in structure, Nt‐Ac‐FUS LC phase separates more avidly than unmodified FUS LC. More importantly, N‐terminal acetylation of FUS LC reduces aggregation. Our findings highlight the importance of N‐terminal acetylation of proteins that undergo physiological LLPS and pathological aggregation.  相似文献   

12.
13.
Ribonucleotide reductases (RNRs) are used by all free‐living organisms and many viruses to catalyze an essential step in the de novo biosynthesis of DNA precursors. RNRs are remarkably diverse by primary sequence and cofactor requirement, while sharing a conserved fold and radical‐based mechanism for nucleotide reduction. In this work, we expand on our recent phylogenetic inference of the entire RNR family and describe the evolutionarily relatedness of insertions and extensions around the structurally homologous catalytic barrel. Using evo‐velocity and sequence similarity network (SSN) analyses, we show that the N‐terminal regulatory motif known as the ATP‐cone domain was likely inherited from an ancestral RNR. By combining SSN analysis with AlphaFold2 predictions, we also show that the C‐terminal extensions of class II RNRs can contain folded domains that share homology with an Fe‐S cluster assembly protein. Finally, using sequence analysis and AlphaFold2, we show that the sequence motif of a catalytically essential insertion known as the finger loop is tightly coupled to the catalytic mechanism. Based on these results, we propose an evolutionary model for the diversification of the RNR family.  相似文献   

14.
Eps15 homology (EH) domains are universal interaction domains to establish networks of protein–protein interactions in the cell. These networks mainly coordinate cellular functions including endocytosis, actin remodeling, and other intracellular signaling pathways. They are well characterized in structural terms, except for the internal EH domain from human γ‐synergin (EHγ). Here, we complete the family of EH domain structures by determining the solution structure of the EHγ domain. The structural ensemble follows the canonical EH domain fold and the identified binding site is similar to other known EH domains. But EHγ differs significantly in the N‐ and C‐terminal regions. The N‐terminal α‐helix is shortened compared to known homologues, while the C‐terminal one is fully formed. A significant proportion of the remaining N‐ and C‐terminal regions are well structured, a feature not seen in other EH domains. Single mutations in both the N‐terminal and the C‐terminal structured extensions lead to the loss of the distinct three‐dimensional fold and turn EHγ into a molten globule like state. Therefore, we propose that the structural extensions in EHγ function as a clamp and are undoubtedly required to maintain its tertiary fold.  相似文献   

15.
In activated B cells, activation‐induced cytidine deaminase (AID) generates programmed DNA lesions required for antibody class switch recombination (CSR), which may also threaten genome integrity. AID dynamically shuttles between cytoplasm and nucleus, and the majority stays in the cytoplasm due to active nuclear export mediated by its C‐terminal peptide. In immunodeficient‐patient cells expressing mutant AID lacking its C‐terminus, a catalytically active AID‐delC protein accumulates in the nucleus but nevertheless fails to support CSR. To resolve this apparent paradox, we dissected the function of AID‐delC proteins in the CSR process and found that they cannot efficiently target antibody genes. We demonstrate that AID‐delC proteins form condensates both in vivo and in vitro, dependent on its N‐terminus and on a surface arginine‐rich patch. Co‐expression of AID‐delC and wild‐type AID leads to an unbalanced nuclear AID‐delC/AID ratio, with AID‐delC proteins able to trap wild‐type AID in condensates, resulting in a dominant‐negative phenotype that could contribute to immunodeficiency. The co‐condensation model of mutant and wild‐type proteins could be an alternative explanation for the dominant‐negative effect in genetic disorders.  相似文献   

16.
TDP‐43 forms the primary constituents of the cytoplasmic inclusions contributing to various neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia (FTD). Over 60 TDP‐43 mutations have been identified in patients suffering from these two diseases, but most variations are located in the protein''s disordered C‐terminal glycine‐rich region. P112H mutation of TDP‐43 has been uniquely linked to FTD, and is located in the first RNA recognition motif (RRM1). This mutation is thought to be pathogenic, but its impact on TDP‐43 at the protein level remains unclear. Here, we compare the biochemical and biophysical properties of TDP‐43 truncated proteins with or without P112H mutation. We show that P112H‐mutated TDP‐43 proteins exhibit higher thermal stability, impaired RNA‐binding activity, and a reduced tendency to aggregate relative to wild‐type proteins. Near‐UV CD, 2D‐nuclear‐magnetic resonance, and intrinsic fluorescence spectrometry further reveal that the P112H mutation in RRM1 generates local conformational changes surrounding the mutational site that disrupt the stacking interactions of the W113 side chain with nucleic acids. Together, these results support the notion that P112H mutation of TDP‐43 contributes to FTD through functional impairment of RNA metabolism and/or structural changes that curtail protein clearance.  相似文献   

17.
Intrinsically disordered proteins (IDPs) are abundant in eukaryotic proteomes and preform critical roles in many cellular processes, most often through the association with globular proteins. Despite lacking a stable three‐dimensional structure by themselves, they may acquire a defined conformation upon binding globular targets. The most common type of secondary structure acquired by these binding motifs entails formation of an α‐helix. It has been hypothesized that such disorder‐to‐order transitions are associated with a significant free energy penalty due to IDP folding, which reduces the overall IDP‐target affinity. However, the exact magnitude of IDP folding penalty in α‐helical binding motifs has not been systematically estimated. Here, we report the folding penalty contributions for 30 IDPs undergoing folding‐upon‐binding and find that the average IDP folding penalty is +2.0 kcal/mol and ranges from 0.7 to 3.5 kcal/mol. We observe that the folding penalty scales approximately linearly with the change in IDP helicity upon binding, which provides a simple empirical way to estimate folding penalty. We analyze to what extent do pre‐structuring and target‐bound IDP dynamics (fuzziness) reduce the folding penalty and find that these effects combined, on average, reduce the folding cost by around half. Taken together, the presented analysis provides a quantitative basis for understanding the role of folding penalty in IDP‐target interactions and introduces a method estimate this quantity. Estimation and reduction of IDP folding penalty may prove useful in the rational design of helix‐stabilized inhibitors of IDP‐target interactions.StatementThe α‐helical binding motifs are ubiquitous among the intrinsically disordered proteins (IDPs). Upon binding their targets, they undergo a disorder‐to‐order transition, which is accompanied by a significant folding penalty whose magnitude is generally not known. Here, we use recently developed statistical‐thermodynamic model to estimate the folding penalties for 30 IDPs and clarify the roles of IDP pre‐folding and bound‐state dynamics in reducing the folding penalty.  相似文献   

18.
19.
While PAX5 is an important tumor suppressor gene in B‐cell acute lymphoblastic leukemia (B‐ALL), it is also involved in oncogenic translocations coding for diverse PAX5 fusion proteins. PAX5‐JAK2 encodes a protein consisting of the PAX5 DNA‐binding region fused to the constitutively active JAK2 kinase domain. Here, we studied the oncogenic function of the PAX5‐JAK2 fusion protein in a mouse model expressing it from the endogenous Pax5 locus, resulting in inactivation of one of the two Pax5 alleles. Pax5 Jak2/+ mice rapidly developed an aggressive B‐ALL in the absence of another cooperating exogenous gene mutation. The DNA‐binding function and kinase activity of Pax5‐Jak2 as well as IL‐7 signaling contributed to leukemia development. Interestingly, all Pax5 Jak2/+ tumors lost the remaining wild‐type Pax5 allele, allowing efficient DNA‐binding of Pax5‐Jak2. While we could not find evidence for a nuclear role of Pax5‐Jak2 as an epigenetic regulator, high levels of active phosphorylated STAT5 and increased expression of STAT5 target genes were seen in Pax5 Jak2/+ B‐ALL tumors, implying that nuclear Pax5‐Jak2 phosphorylates STAT5. Together, these data reveal Pax5‐Jak2 as an important nuclear driver of leukemogenesis by maintaining phosphorylated STAT5 levels in the nucleus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号