首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundN6-methyladenosine (m6A) modification plays key roles in tumor progression. LncRNA deoxyguanosine kinase antisense RNA 1 (DGUOK-AS1) has been reported as a promoter in tumors, but its role and mechanism in non-small cell lung cancer (NSCLC) development remain uncertain.MethodsCell proliferation, migration, invasion and angiogenesis were investigated via CCK-8, colony formation, transwell, and tube formation assays, respectively. The location of DGUOK-AS1 was detected via FISH assay. The interaction relationship among DGUOK-AS1, IGF2BP2 and TRPM7 was confirmed by RIP and MeRIP assays. The effects of DGUOK-AS1 on NSCLC growth and metastasis in vivo were investigated using xenograft and pulmonary metastatic models.ResultsDGUOK-AS1 was upregulated in NSCLC. DGUOK-AS1 silencing inhibited NSCLC cell proliferation, migration, invasion and angiogenesis. DGUOK-AS1 was mostly expressed in cytoplasm, and positively regulated IGF2BP2. METTL3/IGF2BP2 axis could increase TRPM7 mRNA stability in m6A-dependent manner. TRPM7 overexpression reversed the inhibitive function of DGUOK-AS1 silencing on NSCLC development. DGUOK-AS1 knockdown suppressed NSCLC cell growth and metastasis in nude mice.ConclusionDGUOK-AS1 silencing restrains NSCLC cell growth and metastasis through decreasing TRPM7 stability via regulation of the METTL3/IGF2BP2-mediated m6A modification.  相似文献   

2.
3.
Breast cancer ranks as the most frequently diagnosed cancer among women worldwide. Elevated cytoplasmic p21 levels are often found in breast cancer tissues and related to a poor prognosis. However, the underlying mechanisms that lead to the stabilization of cytoplasmic p21 protein, which normally has a very short half-life, remain obscure. In this study, we found that there was a strong correlation between p21 and USP11 in the cytoplasm of breast cancer tissues and cells. Furthermore, we revealed that ERK1/2 phosphorylated USP11 at the Ser905 site, which promoted the cytoplasmic localization of USP11. In the cytoplasm, USP11 colocalized and interacted with p21. As a result, USP11 catalyzed the removal of polyubiquitin chains bound to cytoplasmic p21 and resulted in its stabilization. Functionally, USP11-mediated stabilization of cytoplasmic p21 induced breast cancer cell proliferation in vitro and in vivo. Our findings provide the first evidence that ubiquitinated p21 in the cytoplasm can be recycled through USP11-mediated deubiquitination, and we identified the USP11-p21 axis in the cytoplasm as a potential therapeutic target for breast cancer control.  相似文献   

4.
Deubiquitinases (DUBs) have important biological functions, but their roles in breast cancer metastasis are not completely clear. In this study, through screening a series of DUBs related to breast cancer distant metastasis-free survival (DMFS) in the Kaplan-Meier Plotter database, we identified ubiquitin-specific protease 12 (USP12) as a key deubiquitinating enzyme for breast cancer metastasis. We confirmed this via an orthotopic mouse lung metastasis model. We revealed that the DMFS of breast cancer patients with high USP12 was worse than that of others. Knockdown of USP12 decreased the lung metastasis ability of 4T1 cells, while USP12 overexpression increased the lung metastasis ability of these cells in vivo. Furthermore, our results showed that the supernatant from USP12-overexpressing breast cancer cells could promote angiogenesis according to human umbilical vein endothelial cell (HUVEC) migration and tube formation assays. Subsequently, we identified midkine (MDK) as one of its substrates. USP12 could directly interact with MDK, decrease its polyubiquitination and increase its protein stability in cells. Overexpression of MDK rescued the loss of angiogenesis ability mediated by knockdown of USP12 in breast cancer cells in vitro and in vivo. There was a strong positive relationship between USP12 and MDK protein expression in clinical breast cancer samples. Consistent with the pattern for USP12, high MDK expression predicted lower DMFS and overall survival (OS) in breast cancer. Collectively, our study identified that USP12 is responsible for deubiquitinating and stabilizing MDK and leads to metastasis by promoting angiogenesis. Therefore, the USP12–MDK axis could serve as a potential target for the therapeutic treatment of breast cancer metastasis.Subject terms: Breast cancer, Breast cancer  相似文献   

5.
6.
Enhanced aerobic glycolysis constitutes an additional source of energy for tumor proliferation and metastasis. Human papillomavirus (HPV) infection is the main cause of cervical cancer (CC); however, the associated molecular mechanisms remain poorly defined, as does the relationship between CC and aerobic glycolysis. To investigate whether HPV 16/18 E6/E7 can enhance aerobic glycolysis in CC, E6/E7 expression was knocked down in SiHa and HeLa cells using small interfering RNA (siRNA). Then, glucose uptake, lactate production, ATP levels, reactive oxygen species (ROS) content, extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were evaluated. RNA-seq was used to probe the molecular mechanism involved in E6/E7-driven aerobic glycolysis, and identified IGF2BP2 as a target of E6/E7. The regulatory effect of IGF2BP2 was confirmed by qRT-PCR, western blot, and RIP assay. The biological roles and mechanisms underlying how HPV E6/E7 and IGF2BP2 promote CC progression were confirmed in vitro and in vivo. Human CC tissue microarrays were used to analyze IGF2BP2 expression in CC. The knockdown of E6/E7 and IGF2BP2 attenuated the aerobic glycolytic capacity and growth of CC cells, while IGF2BP2 overexpression rescued this effect in vitro and in vivo. IGF2BP2 expression was higher in CC tissues than in adjacent tissues and was positively correlated with tumor stage. Mechanistically, E6/E7 proteins promoted aerobic glycolysis, proliferation, and metastasis in CC cells by regulating MYC mRNA m6A modifications through IGF2BP2. We found that E6/E7 promote CC by regulating MYC methylation sites via activating IGF2BP2 and established a link between E6/E7 and the promotion of aerobic glycolysis and CC progression. Blocking the HPV E6/E7-related metabolic pathway represents a potential strategy for the treatment of CC.  相似文献   

7.
Cryptotanshinone (CPT) has been demonstrated to inhibit proliferation and mammalian target of rapamycin (mTOR) pathway in MCF‐7 breast cancer cells. However, the same results are unable to be repeated in MDA‐MB‐231 cells. Given the main difference of oestrogen receptor α (ERα) between two types of breast cancer cells, It is possibly suggested that CPT inhibits mTOR pathway dependent on ERα in breast cancer. CPT could significantly inhibit cell proliferation of ERα‐positive cancer cells, whereas ERα‐negative cancer cells are insensitive to CPT. The molecular docking results indicated that CPT has a high affinity with ERα, and the oestrogen receptor element luciferase reporter verified CPT distinct anti‐oestrogen effect. Furthermore, CPT inhibits mTOR signalling in MCF‐7 cells, but not in MDA‐MB‐231 cells, which is independent on binding to the FKBP12 and disrupting the mTOR complex. Meanwhile, increased expression of phosphorylation AKT and insulin receptor substrate (IRS1) induced by insulin‐like growth factor 1 (IGF‐1) was antagonized by CPT, but other molecules of IGF‐1/AKT/mTOR signalling pathway such as phosphatase and tensin homolog (PTEN) and phosphatidylinositol‐4,5‐bisphosphate 3‐kinase (PI3K) were negatively affected. Finally, the MCF‐7 cells transfected with shERα for silencing ERα show resistant to CPT, and p‐AKT, phosphorylation of p70 S6 kinase 1 (p‐S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E‐BP1) were partially recovered, suggesting ERα is required for CPT inhibition of mTOR signalling. Overall, CPT inhibition of mTOR is dependent on ERα in breast cancer and should be a potential anti‐oestrogen agent and a natural adjuvant for application in endocrine resistance therapy.  相似文献   

8.
TNF receptor-associated factor 6 (TRAF6)-BECN1 signaling axis plays a pivotal role in autophagy induction through ubiquitination of BECN1, thereby inducing lung cancer migration and invasion in response to toll-like receptor 4 (TLR4) stimulation. Herein, we provide novel molecular and cellular mechanisms involved in the negative effect of ubiquitin-specific peptidase 15 (USP15) on lung cancer progression. Clinical data of the TCGA and primary non-small cell lung cancer (NSCLC) patients (n = 41) revealed that the expression of USP15 was significantly downregulated in lung cancer patients. Importantly, USP15-knockout (USP15KO) A549 and USP15KO H1299 lung cancer cells generated with CRISPR-Cas9 gene-editing technology showed increases in cancer migration and invasion with enhanced autophagy induction in response to TLR4 stimulation. In addition, biochemical studies revealed that USP15 interacted with BECN1, but not with TRAF6, and induced deubiquitination of BECN1, thereby attenuating autophagy induction. Notably, in primary NSCLC patients (n = 4) with low expression of USP15, 10 genes (CCNE1, MMP9, SFN, UBE2C, CCR2, FAM83A, ETV4, MYO7A, MMP11, and GSDMB) known to promote lung cancer progression were significantly upregulated, whereas 10 tumor suppressor genes (FMO2, ZBTB16, FCN3, TCF21, SFTPA1B, HPGD, SOSTDC1, TMEM100, GDF10, and WIF1) were downregulated, providing clinical relevance of the functional role of USP15 in lung cancer progression. Taken together, our data demonstrate that USP15 can negatively regulate the TRAF6-BECN1 signaling axis for autophagy induction. Thus, USP15 is implicated in lung cancer progression.Subject terms: Non-small-cell lung cancer, Cell invasion  相似文献   

9.
Long non‐coding RNAs (lncRNAs) take various effects in cancer mostly through sponging with microRNAs (miRNAs). lncRNA NR2F1‐AS1 is found to promote tumour progression in hepatocellular carcinoma, endometrial cancer and thyroid cancer. However, the role of lncRNA NR2F1‐AS1 in breast cancer angiogenesis remains unknown. In this study, we found lncRNA NR2F1‐AS1 was positively related with CD31 and CD34 in breast cancer through Pearson's correlation analysis, while lncRNA NR2F1‐AS1 transfection promoted human umbilical vascular endothelial cell (HUVEC) tube formation. In breast cancer cells, lncRNA NR2F1‐AS1 enhanced the HUVEC proliferation, tube formation and migration ability through tumour‐conditioned medium (TCM). In zebrafish model, lncRNA NR2F1‐AS1 increased the breast cancer cell‐related neo‐vasculature and subsequently promoted the breast cancer cell metastasis. In mouse model, lncRNA NR2F1‐AS1 promoted the tumour vessel formation, increased the micro vessel density (MVD) and then induced the growth of primary tumour. Mechanically, lncRNA NR2F1‐AS1 increased insulin‐like growth factor‐1 (IGF‐1) expression through sponging miRNA‐338‐3p in breast cancer cells and then activated the receptor of IGF‐1 (IGF‐1R) and extracellular signal‐regulated kinase (ERK) pathway in HUVECs. These results indicated that lncRNA NR2F1‐AS1 could promote breast cancer angiogenesis through IGF‐1/IGF‐1R/ERK pathway.  相似文献   

10.
Breast cancer has the highest incidence and mortality in women worldwide. There are 70% of breast cancers considered as estrogen receptor α (ERα) positive. Therefore, the ERα-targeted therapy has become one of the most effective solution for patients with breast cancer. Whereas a better understanding of ERα regulation is critical to shape evolutional treatments for breast cancer. By exploring the regulatory mechanisms of ERα at levels of post-translational modifications, we identified the deubiquitinase USP15 as a novel protector for preventing ERα degradation and a critical driver for breast cancer progression. Specifically, we demonstrated that USP15 promoted the proliferation of ERα+, but not ERα- breast cancer, in vivo and in vitro. Meanwhile, USP15 knockdown notably enhanced the antitumor activities of tamoxifen on breast cancer cells. Importantly, USP15 knockdown induced the downregulation of ERα protein via promoting its K48-linked ubiquitination, which is required for proliferative inhibition of breast cancer cells. These findings not only provide a novel treatment for overcoming resistance to endocrine therapy, but also represent a therapeutic strategy on ERα degradation by targeting USP15-ERα axis.Subject terms: Breast cancer, Translational research  相似文献   

11.
Angiotensin II type 1 receptor-associated protein (ATRAP) is widely expressed in different tissues and organs, although its mechanistic role in breast cancer remains unclear. Here, we show that ATRAP is highly expressed in breast cancer tissues. Its aberrant upregulation promotes breast cancer aggressiveness and is positively correlated with poor prognosis. Functional assays revealed that ATRAP participates in promoting cell growth, metastasis, and aerobic glycolysis, while microarray analysis showed that ATRAP can activate the AKT/mTOR signaling pathway in cancer progression. In addition, ATRAP was revealed to direct Ubiquitin-specific protease 14 (USP14)-mediated deubiquitination and stabilization of Pre-B cell leukemia homeobox 3 (PBX3). Importantly, ATRAP is a direct target of Upstream stimulatory factor 1 (USF1), and that ATRAP overexpression reverses the inhibitory effects of USF1 knockdown. Our study demonstrates the broad contribution of the USF1/ATRAP/PBX3 axis to breast cancer progression and provides a strong potential therapeutic target.  相似文献   

12.
目的探讨Rho A蛋白在人乳腺癌中的表达情况,Rho A蛋白与临床病理因素的关系,及其与细胞周期蛋白Cyclin D1,细胞周期抑制蛋白 P21 WAF1/CIP1表达的相关性.方法应用免疫组化S-P法,检测64例乳腺癌组织及20例正常乳腺组织中Rho A蛋白、Cyclin D1和P21 WAF1/CIP1蛋白的表达情况.结果 (1)Rho A、 Cyclin D1和P21 WAF1/CIP1蛋白在正常乳腺组织中的表达率分别为5.00%、25.00%、15.00%,在乳腺癌组织中的表达率分别为73.44%、59.38%、48.44%,三者在乳腺癌组织中的阳性表达分别与正常乳腺组织相比,均差异有显著性意义(P< 0.01).(2)Rho A蛋白表达与病理组织分级,淋巴结转移相关(P< 0.05),与患者年龄、肿瘤大小及临床分期无关.(3)RhoA蛋白与P21 WAF1/CIP1蛋白表达呈负相关(χ2=4.548,P<0.05),与Cyclin D1蛋白表达无关.结论乳腺癌患者RhoA蛋白过表达与预后不良有关.RhoA蛋白通过下调P21 WAF1/CIP1蛋白参与细胞周期调节,进而与乳腺癌发展及侵袭转移相关.  相似文献   

13.
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy mainly due to its extensive metastasis. Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3), a newly discovered splice variant of solute carrier organic anion transporter family member 1B3 (SLCO1B3), has been reported to be overexpressed in several types of cancer. However, the biological function of Ct-OATP1B3 remains largely unknown. Here, we reveal that Ct-OATP1B3 is overexpressed in HGSOC and promotes the metastasis of HGSOC in vivo and in vitro. Mechanically, Ct-OATP1B3 directly interacts with insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), an RNA-binding protein, which results in enhancement of the mRNA stability and expression of carnitine palmitoyltransferase 1A (CPT1A) and NADH:Ubiquinone Oxidoreductase Subunit A2 (NDUFA2), leading to increased mitochondrial fatty acid beta-oxidation (FAO) and oxidative phosphorylation (OXPHOS) activities. The increased FAO and OXPHOS activities further facilitate adenosine triphosphate (ATP) production and cellular lamellipodia formation, which is the initial step in the processes of tumor cell migration and invasion. Taken together, our study provides an insight into the function and underlying mechanism of Ct-OATP1B3 in HGSOC metastasis, and highlights Ct-OATP1B3 as a novel prognostic marker as well as therapeutic target in HGSOC.Subject terms: Metastasis, Metabolomics  相似文献   

14.
IGF2BP1     
The oncofetal RNA-binding protein IGF2BP1 (IGF2 mRNA binding protein 1) controls the cytoplasmic fate of specific target mRNAs including ACTB and CD44. During neural development, IGF2BPs promote neurite protrusion and the migration of neuronal crest cells. In tumor-derived cells, IGF2BP1 enhances the formation of lamellipodia and invadopodia. Accordingly, the de novo synthesis of IGF2BP1 observed in primary malignancies was reported to correlate with increased metastasis and an overall poor prognosis. However, if and how the protein enhances metastasis remains controversial. In recent studies, we reveal that IGF2BP1 promotes the directed migration of tumor-derived cells in vitro by controlling the expression of MAPK4 and PTEN. The IGF2BP1-facilitated inhibition of MAPK4 mRNA translation interferes with MK5-directed phosphorylation of the heat shock protein 27 (HSP27). This limits G-actin sequestering by phosphorylated HSP27, enhances cell adhesion and elevates the velocity of tumor cell migration. Concomitantly, IGF2BP1 promotes the expression of PTEN by interfering with PTEN mRNA turnover. This results in a shift of cellular PtdIns(3,4,5)P3/PtdIns(4,5)P2 ratios and enhances RAC1-dependent cell polarization which finally promotes the directionality of tumor cell migration. These findings identify IGF2BP1 as a potent oncogenic factor that regulates the adhesion, migration and invasiveness of tumor cells by modulating intracellular signaling.  相似文献   

15.
Metastasis contributes to treatment failure in nasopharyngeal carcinoma (NPC) patients. Our study aimed at elucidating the role of insulin‐like growth factor 2 mRNA binding protein 3 (IGF2BP3) in NPC metastasis and the underlying mechanism involved. IGF2BP3 expression in NPC was determined by bioinformatics, quantitative polymerase chain reaction and immunohistochemistry analyses. The biological function of IGF2BP3 was investigated by using in vitro and in vivo studies. In this study, IGF2BP3 mRNA and protein levels were elevated in NPC tissues. In addition, IGF2BP3 exerted an oncogenic role by promoting epithelial‐mesenchymal transition (EMT), thereby inducing NPC cell migration and invasion. Further studies revealed that IGF2BP3 regulated the expression of key regulators of EMT by activating AKT/mTOR signalling, thus stimulating NPC cell migration and invasion. Remarkably, targeting IGF2BP3 delayed NPC metastasis through attenuating p‐AKT and vimentin expression and inducing E‐cadherin expression in vivo. Moreover, IGF2BP3 protein levels positively correlated with distant metastasis after initial treatment. Importantly, IGF2BP3 expression served as an independent prognostic factor in predicting the overall survival and distant metastasis‐free survival of NPC patients. This work identifies IGF2BP3 as a novel prognostic marker and a new target for NPC treatment.  相似文献   

16.
N6-methyladenosine (m6A), as the most abundant RNA epigenetic modifications, has been shown to play critical roles in various biological functions. Research about enzymes that can catalyze and remove m6A have revealed its comprehensive roles in messenger RNA (mRNA) metabolism and other physiological processes. The “readers” including YTH domain-containing proteins, hnRNPC, hnRNPG, hnRNPA2B1, IGF2BP1, IGF2BP2, and IGF2BP3, which can affect the fates of mRNA in an m6A-dependent manner. In this review, we focus on recent advances in the research of the m6A modifications, especially about the latest functions of its writers, erasers, readers in RNA metabolism, cancer, and lipid metabolism. In the end, we provide insights into the underlying molecular mechanisms of m6A modifications.  相似文献   

17.
The oncofetal RNA-binding protein IGF2BP1 (IGF2 mRNA binding protein 1) controls the cytoplasmic fate of specific target mRNAs including ACTB and CD44. During neural development, IGF2BPs promote neurite protrusion and the migration of neuronal crest cells. In tumor-derived cells, IGF2BP1 enhances the formation of lamellipodia and invadopodia. Accordingly, the de novo synthesis of IGF2BP1 observed in primary malignancies was reported to correlate with increased metastasis and an overall poor prognosis. However, if and how the protein enhances metastasis remains controversial. In recent studies, we reveal that IGF2BP1 promotes the directed migration of tumor-derived cells in vitro by controlling the expression of MAPK4 and PTEN. The IGF2BP1-facilitated inhibition of MAPK4 mRNA translation interferes with MK5-directed phosphorylation of the heat shock protein 27 (HSP27). This limits G-actin sequestering by phosphorylated HSP27, enhances cell adhesion and elevates the velocity of tumor cell migration. Concomitantly, IGF2BP1 promotes the expression of PTEN by interfering with PTEN mRNA turnover. This results in a shift of cellular PtdIns(3,4,5)P3/PtdIns(4,5)P2 ratios and enhances RAC1-dependent cell polarization which finally promotes the directionality of tumor cell migration. These findings identify IGF2BP1 as a potent oncogenic factor that regulates the adhesion, migration and invasiveness of tumor cells by modulating intracellular signaling.  相似文献   

18.
19.
Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) is an emerging prognostic indicator, and its elevated expression correlates with malignancy in a broad spectrum of cancers. However, its regulatory networks have not yet been reported. In this study, we identified the regulatory targets of IGF2BP3 in breast cancer MDA-MB-231 cells using RNA immunoprecipitation sequencing (RIP-seq) and high-throughput RNA-sequencing (RNA-seq). We discovered that these targets were enriched in the inflammatory response, endoplasmic reticulum stress, cell cycle, and cancer-related pathways, providing a new perspective for better understanding the functional mechanisms of IGF2BP3. Moreover, we identified that the epidermal growth factor receptor (EGFR), a downstream target, is regulated by IGF2BP3. IGF2BP3 binds to and protects EGFR mRNA from degradation and facilitates cell proliferation via the EGFR/AKT pathway in MDA-MB-231 cells. In addition, IGF2BP3 expression was robust and could not be altered by stimulation with EGF and anti-EGFR siRNA or EGFR signaling pathway inhibitors (gefitinib, LY294002 and SL-327). These results demonstrate that IGF2BP3, as a stubborn oncogene, promotes triple-negative breast cancer MDA-MB-231 cell proliferation by strengthening the role of the EGFR-AKT axis.  相似文献   

20.
CD44, a cell adhesion protein, involves in various process in cancer such as cell survival and metastasis. Most researches on CD44 in cancer focus on cancer cells. Recently, it is found that CD44 expression is high in fibroblasts of tumour microenvironment. However, its role in communication between fibroblasts and breast cancer cells is seldom known. In this study, CD44‐positive (CD44+Fbs) and CD44‐negative carcinoma‐associated fibroblasts (CD44?Fbs) were isolated and cocultured with breast cancer cells for analysis of cell survival and drug resistance. We found that CD44+Fbs promoted breast cancer cell survival and paclitaxel resistance and inhibited paclitaxel‐induced apoptosis. Our further research for the molecular mechanism showed that IGF2BP3 bound to CD44 mRNA and enhanced CD44 expression, which increased IGF2 levels of fibroblasts and then stimulated breast cancer cell proliferation and drug resistance. IGF2 was found to activate Hedgehog signal pathway in breast cancer cells. In conclusion, the results illustrated that in CD44+Fbs, binding of IGF2BP3 and CD44 promotes IGF2 expression and then accelerates breast cancer cell proliferation, survival and induced chemotherapy resistance likely by activating Hedgehog signal pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号