首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A''s activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state.  相似文献   

2.
Lee JR  Shin H  Choi J  Ko J  Kim S  Lee HW  Kim K  Rho SH  Lee JH  Song HE  Eom SH  Kim E 《The EMBO journal》2004,23(7):1506-1515
Motor proteins not actively involved in transporting cargoes should remain inactive at sites of cargo loading to save energy and remain available for loading. KIF1A/Unc104 is a monomeric kinesin known to dimerize into a processive motor at high protein concentrations. However, the molecular mechanisms underlying monomer stabilization and monomer-to-dimer transition are not well understood. Here, we report an intramolecular interaction in KIF1A between the forkhead-associated (FHA) domain and a coiled-coil domain (CC2) immediately following the FHA domain. Disrupting this interaction by point mutations in the FHA or CC2 domains leads to a dramatic accumulation of KIF1A in the periphery of living cultured neurons and an enhancement of the microtubule (MT) binding and self-multimerization of KIF1A. In addition, point mutations causing rigidity in the predicted flexible hinge disrupt the intramolecular FHA-CC2 interaction and increase MT binding and peripheral accumulation of KIF1A. These results suggest that the intramolecular FHA-CC2 interaction negatively regulates KIF1A activity by inhibiting MT binding and dimerization of KIF1A, and point to a novel role of the FHA domain in the regulation of kinesin motors.  相似文献   

3.
    
《Current biology : CB》2022,32(17):3862-3870.e6
  相似文献   

4.
5.
    
Several mammalian kinesin motor proteins exist as multiple isoforms that arise from alternative splicing of a single gene. However, the roles of many motor protein splice variants remain unclear. The kinesin-3 motor protein KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein. The insertions are located in the loop region containing the lysine-rich cluster, also known as the K-loop, and in the hinge region adjacent to the motor domain. To clarify the functions of these alternative splice variants of KIF1B, we examined the biochemical properties of recombinant KIF1B with and without insertion sequences. In a microtubule-dependent ATPase assay, KIF1B variants that contained both insertions had higher activity and affinity for microtubules than KIF1B variants that contained no insertions. Mutational analysis of the K-loop insertion revealed that variants with a longer insertion sequence at this site had higher activity. However, the velocity of movement in motility assays was similar between KIF1B with and without insertion sequences. Our results indicate that splicing isoforms of KIF1B that vary in their insertion sequences have different motor activities.  相似文献   

6.
Conventional kinesin is a highly processive molecular motor that takes several hundred steps per encounter with a microtubule. Processive motility is believed to result from the coordinated, hand-over-hand motion of the two heads of the kinesin dimer, but the specific factors that determine kinesin's run length (distance traveled per microtubule encounter) are not known. Here, we show that the neck coiled-coil, a structure adjacent to the motor domain, plays an important role in governing the run length. By adding positive charge to the neck coiled-coil, we have created ultra-processive kinesin mutants that have fourfold longer run lengths than the wild-type motor, but that have normal ATPase activity and motor velocity. Conversely, adding negative charge on the neck coiled-coil decreases the run length. The gain in processivity can be suppressed by either proteolytic cleavage of tubulin's negatively charged COOH terminus or by high salt concentrations. Therefore, modulation of processivity by the neck coiled-coil appears to involve an electrostatic tethering interaction with the COOH terminus of tubulin. The ability to readily increase kinesin processivity by mutation, taken together with the strong sequence conservation of the neck coiled-coil, suggests that evolutionary pressures may limit kinesin's run length to optimize its in vivo function.  相似文献   

7.
  总被引:1,自引:1,他引:1  
Recent research on kinesin motors has outlined the diversity of the superfamily and defined specific cargoes moved by kinesin family (KIF) members. Owing to the difficulty of purifying large amounts of native motors, much of this work has relied on recombinant proteins expressed in vitro. This approach does not allow ready determination of the complement of kinesin motors present in a given tissue, the relative amounts of different motors, or comparison of their native activities. To address these questions, we isolated nucleotide-dependent, microtubule-binding proteins from 13-day chick embryo brain. Proteins were enriched by microtubule affinity purification, then subjected to velocity sedimentation to separate the 20S dynein/dynactin pool from a slower sedimenting KIF containing pool. Analysis of the latter pool by anion exchange chromatography revealed three KIF species: kinesin I (KIF5), kinesin II (KIF3), and KIF1C (Unc104/KIF1). The most abundant species, kinesin I, exhibited the expected long range microtubule gliding activity. By contrast, KIF1C did not move microtubules. Kinesin II, the second most abundant KIF, could be fractionated into two pools, one containing predominantly A/B isoforms and the other containing A/C isoforms. The two motor species had similar activities, powering microtubule gliding at slower speeds and over shorter distances than kinesin I.  相似文献   

8.
Dodding MP  Way M 《The EMBO journal》2011,30(17):3527-3539
It is now clear that transport on microtubules by dynein and kinesin family motors has an important if not critical role in the replication and spread of many different viruses. Understanding how viruses hijack dynein and kinesin motors using a limited repertoire of proteins offers a great opportunity to determine the molecular basis of motor recruitment. In this review, we discuss the interactions of dynein and kinesin-1 with adenovirus, the α herpes viruses: herpes simplex virus (HSV1) and pseudorabies virus (PrV), human immunodeficiency virus type 1 (HIV-1) and vaccinia virus. We highlight where the molecular links to these opposite polarity motors have been defined and discuss the difficulties associated with identifying viral binding partners where the basis of motor recruitment remains to be established. Ultimately, studying microtubule-based motility of viruses promises to answer fundamental questions as to how the activity and recruitment of the dynein and kinesin-1 motors are coordinated and regulated during bi-directional transport.  相似文献   

9.
Kinesin and related motor proteins utilize ATP fuel to propel themselves along the external surface of microtubules in a processive and directional fashion. We show that the observed step-like motion is possible through time-varying charge distributions furnished by the ATP hydrolysis cycle while the static charge configuration on the microtubule provides the guide for motion. Thus, while the chemical hydrolysis energy induces appropriate local conformational changes, the motor translational energy is fundamentally electrostatic. Numerical simulations of the mechanical equations of motion show that processivity and directionality are direct consequences of the ATP-dependent electrostatic interaction between the different charge distributions of kinesin and the microtubule.  相似文献   

10.
A paper by DeGiorgis et al. (DeGiorgis JA, Petukhova TA, Evans TA, Reese TS. Kinesin-3 is an organelle motor in the squid giant axon. Traffic 2008; DOI: 10.1111/j.1600-0854.2008.00809.x) in this issue of Traffic reports on the identification and function of a second squid kinesin, a kinesin-3 motor. As expected, the newly discovered motor associates with axoplasmic organelles in situ and powers motility along microtubules of vesicles isolated from squid axoplasm. Less expected was the finding that kinesin-3 may be the predominant motor for anterograde organelle movement in the squid axon, which challenges the so far undisputed view that this function is fulfilled by the conventional kinesin, kinesin-1. These novel findings let us wonder what the real function of kinesin-1--the most abundant motor in squid axons--actually is.  相似文献   

11.
Mammalian KIF3AC contains two distinct motor polypeptides and is best known for its role in organelle transport in neurons. Our recent studies showed that KIF3AC is as processive as conventional kinesin-1, suggesting that their ATPase mechanochemistry may be similar. However, the presence of two different motor polypeptides in KIF3AC implies that there must be a cellular advantage for the KIF3AC heterodimer. The hypothesis tested was whether there is an intrinsic bias within KIF3AC such that either KIF3A or KIF3C initiates the processive run. To pursue these experiments, a mechanistic approach was used to compare the pre-steady-state kinetics of KIF3AC to the kinetics of homodimeric KIF3AA and KIF3CC. The results indicate that microtubule collision at 11.4 μm−1 s−1 coupled with ADP release at 78 s−1 are fast steps for homodimeric KIF3AA. In contrast, KIF3CC exhibits much slower microtubule association at 2.1 μm−1 s−1 and ADP release at 8 s−1. For KIF3AC, microtubule association at 6.6 μm−1 s−1 and ADP release at 51 s−1 are intermediate between the constants for KIF3AA and KIF3CC. These results indicate that either KIF3A or KIF3C can initiate the processive run. Surprisingly, the kinetics of the initial event of microtubule collision followed by ADP release for KIF3AC is not equivalent to 1:1 mixtures of KIF3AA plus KIF3CC homodimers at the same motor concentration. These results reveal that the intermolecular communication within the KIF3AC heterodimer modulates entry into the processive run regardless of whether the run is initiated by the KIF3A or KIF3C motor domain.  相似文献   

12.
The Unc104/Kif1A class of kinesins transports synaptic vesicle precursors along microtubules with high speed and processivity that has been proposed to depend on reversible dimerization between two poorly motile monomers. In this issue, Al-Bassam et al. (2003) discover a structural basis for regulation of motility by reversible dimerization.  相似文献   

13.
Ciliary or flagellar movement is the model of microtubule-dependent motility, the best studied at the molecular level. It is based on the relative sliding of outer doublets of microtubules that are linked at their proximal end to the basal structure and interconnected by associated proteins, among which dynein ATPase is at the origin of the movement. It is regulated from inside and outside media by various diffusible factors such as Ca2+, cyclic adenosine monophosphate (cAMP), polypeptides and so on (see other conferences presented during this meeting). Other motility processes are based on microtubules: vesicle and organelle transport through the cytoplasm (axonal flow in neurons, pigment granule movements in fish chromatophores, movements of particles along heliozoan axopods, etc.) could be mediated by microtubule motors such as kinesin or MAP 1C. Kinesin and MAP 1C, like dynein, are proteins that bind to microtubules and show an ATPase activity associated with force production. They differ from each other by their structure, and biochemical and pharmacological properties. The movements of chromosomes during mitosis and meiosis have long been studied, but are still poorly understood at the molecular level; this topic will be discussed in the light of recent data. Other constituents of the cytoskeleton are certainly involved in cellular motility: actin microfilaments and their motor myosin, intermediate filaments, non-actin filaments, all organized around the Microtubule Organizing Center (MTOC). As more information becomes available, it seems increasingly obvious that these various networks are closely interconnected and that each component probably modulates, resists, or favors properties of its partners, contributing to cellular and intracellular motility.  相似文献   

14.
Kinesin-1 is the founding member of a superfamily of motor proteins that transport macromolecules along microtubules in an ATP-dependent manner. Classic studies show that kinesin-1 binds to intracellular cargos through non-covalent interactions with proteins on the cargo surface, that protein-protein interaction domains are present in the cargo-binding tail domain and that phosphorylation-dependent signal transduction pathways regulate kinesin-cargo interactions. A combination of genetics, biochemistry and proteomics has identified processes in which kinesin-1 has an important role, and helped reveal the mechanisms of kinesin-dependent transport events. These approaches have identified more than 35 proteins that bind to kinesin-1; these proteins act as cargos, cargo receptors and regulators of kinesin-1 activity. This review summarizes our current understanding of kinesin-1 associated proteins, and places those protein-protein interactions into the context of kinesin-1 in vivo function.  相似文献   

15.
Processive kinesin motors often contain a coiled-coil neck that controls the directionality and processivity. However, the neck coil (NC) of kinesin-3 is too short to form a stable coiled-coil dimer. Here, we found that the coiled-coil (CC1)-forkhead-associated (FHA) tandem (that is connected to NC by Pro-390) of kinesin-3 KIF13A assembles as an extended dimer. With the removal of Pro-390, the NC-CC1 tandem of KIF13A unexpectedly forms a continuous coiled-coil dimer that can be well aligned into the CC1-FHA dimer. The reverse introduction of Pro-390 breaks the NC-CC1 coiled-coil dimer but provides the intrinsic flexibility to couple NC with the CC1-FHA tandem. Mutations of either NC, CC1, or the FHA domain all significantly impaired the motor activity. Thus, the three elements within the NC-CC1-FHA tandem of KIF13A are structurally interrelated to form a stable dimer for activating the motor. This work also provides the first direct structural evidence to support the formation of a coiled-coil neck by the short characteristic neck domain of kinesin-3.  相似文献   

16.
驱动蛋白kinesin-3家族中的KIF1A蛋白主要参与轴突上分泌囊泡前体的正向运输.KIF1A中的CC1-FHA片段能够形成稳定的二聚体结构,同时促进驱动蛋白的活性,但是其具体的调节机制尚未清楚.基于已有的CC1-FHA二聚体的晶体结构,我们发现在二聚体表面的\"487SPKK490\"位置存在潜在的磷酸化位点.证明了将487位点模拟磷酸化后将导致CC1-FHA二聚体的解聚.进一步,在487位点进行点突变将影响KIF1A的活性以及线虫中KIF1A介导的突触囊泡在轴突上的运输.因此,高度保守的\"487SPKK490\"可能对CC1-FHA片段二聚化和调节KIF1A活性起着关键性作用.  相似文献   

17.
驱动蛋白是一类典型的分子马达蛋白,它在胞内运输、有丝分裂、细胞形成、细胞功能等方面起着至关重要的作用.驱动蛋白不仅负责运输各种膜细胞器、蛋白复合体、mRNA等以保证细胞的基本活性,还在大脑的发育、记忆功能以及神经元的活性等方面扮演着极其重要的角色,可以说驱动蛋白是生命体系赖以生存的基础之一.  相似文献   

18.
    
Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus‐end directed kinesin and minus‐end directed dynein motors. Microtubules are decorated by microtubule‐associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neuronal MAP that stabilizes axonal microtubules and crosslinks them into bundles. Dysregulation of tau leads to a range of neurodegenerative diseases known as tauopathies including Alzheimer's disease (AD). Tau reduces the processivity of kinesin and dynein by acting as an obstacle on the microtubule. Single‐molecule assays indicate that kinesin‐1 is more strongly inhibited than kinesin‐2 or dynein, suggesting tau might act to spatially modulate the activity of specific motors. To investigate the role of tau in regulating bidirectional transport, we isolated phagosomes driven by kinesin‐1, kinesin‐2, and dynein and reconstituted their motility along microtubules. We find that tau biases bidirectional motility towards the microtubule minus‐end in a dose‐dependent manner. Optical trapping measurements show that tau increases the magnitude and frequency of forces exerted by dynein through inhibiting opposing kinesin motors. Mathematical modeling indicates that tau controls the directional bias of intracellular cargoes through differentially tuning the processivity of kinesin‐1, kinesin‐2, and dynein. Taken together, these results demonstrate that tau modulates motility in a motor‐specific manner to direct intracellular transport, and suggests that dysregulation of tau might contribute to neurodegeneration by disrupting the balance of plus‐ and minus‐end directed transport.   相似文献   

19.
The bipolar kinesin-5 motors are one of the major players that govern mitotic spindle dynamics. Their bipolar structure enables them to cross-link and slide apart antiparallel microtubules (MTs) emanating from the opposing spindle poles. The budding yeast kinesin-5 Cin8 was shown to switch from fast minus-end- to slow plus-end-directed motility upon binding between antiparallel MTs. This unexpected finding revealed a new dimension of cellular control of transport, the mechanism of which is unknown. Here we have examined the role of the C-terminal tail domain of Cin8 in regulating directionality. We first constructed a stable dimeric Cin8/kinesin-1 chimera (Cin8Kin), consisting of head and neck linker of Cin8 fused to the stalk of kinesin-1. As a single dimeric motor, Cin8Kin switched frequently between plus and minus directionality along single MTs, demonstrating that the Cin8 head domains are inherently bidirectional, but control over directionality was lost. We next examined the activity of a tetrameric Cin8 lacking only the tail domains (Cin8Δtail). In contrast to wild-type Cin8, the motility of single molecules of Cin8Δtail in high ionic strength was slow and bidirectional, with almost no directionality switches. Cin8Δtail showed only a weak ability to cross-link MTs in vitro. In vivo, Cin8Δtail exhibited bias toward the plus-end of the MTs and was unable to support viability of cells as the sole kinesin-5 motor. We conclude that the tail of Cin8 is not necessary for bidirectional processive motion, but is controlling the switch between plus- and minus-end-directed motility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号