首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
BackgroundOsteosarcoma is the most frequent type of malignant bone tumor in children and adolescents and is associated with a high propensity for lung metastasis. Recent experiments have indicated that PLA2G16 contributes to osteosarcoma progression and metastasis in both mouse and human osteosarcoma cell lines. The aim of this study was to compare the expression of PLA2G16 in non-metastatic and metastatic osteosarcomas to determine whether PLA2G16 expression can serve as a biomarker of osteosarcoma prognosis and metastasis.MethodsQuantitative real-time PCR was used to examine PLA2G16 mRNA in primary osteosarcoma patients (18 patients without metastases and 17 patients with metastases), and immunohistochemistry (IHC) staining of PLA2G16 was performed on tissue microarrays from 119 osteosarcoma patients. Tumor metastatic behavior and survival of the patients were followed up for a minimum of 36 months and a maximum of 171 months. The prognostic value of PLA2G16 expression was evaluated by the Kaplan–Meier method and a log-rank test. Multivariate Cox regression analysis was used to identify significant independent prognostic factors.ResultsOsteosarcoma patients with metastasis showed a higher expression of PLA2G16 at both the mRNA and protein levels (both at P values< 0.05) than did patients without metastasis. Osteosarcoma patients with positive IHC staining of PLA2G16 expression at primary sites had shorter overall survival and metastasis-free survival (both at P values <0.02). Moreover, multivariate Cox analysis identified PLA2G16 expression as an independent prognostic factor to predict poor overall survival and metastasis-free survival (both P values < 0.03).ConclusionsThis study indicated that PLA2G16 expression is a significant prognostic factor in primary osteosarcoma patients for predicting the development of metastases and poor survival.  相似文献   

2.
Osteosarcoma is the most common malignant bone cancer that mainly affects children and young adults. Recently, the NAD+-dependent deacetylase, sirtuin 1 (SIRT1), has been reported to play a key role in the development of malignant tumors. The study aimed to investigate the role of SIRT1 in osteosarcoma and explore its underlying oncogenic mechanisms. The prognostic value of SIRT1 in osteosarcoma was assessed through detection of SIRT1 expression based on osteosarcoma biopsy tissue. Then, to further investigate the effect of SIRT1 in osteosarcoma, osteosarcoma cells were treated with small interfering RNA SIRT1 and overexpressed SIRT1 to detect the cell migration, invasion, and epithelial-mesenchymal transition (EMT). The levels of SIRT1 expression were significantly higher in osteosarcoma tissues than those in adjacent normal tissues, and the SIRT1 protein level may be coupled with metastatic and poor prognosis risk in patients with osteosarcoma. Moreover, SIRT1 silencing inhibited the migration as well as invasion ability of osteosarcoma cells in vitro, and SIRT1 upregulation reversed those effects. Finally, we found that SIRT1-ZEB1-positive feedback enhanced the EMT process and metastasis of osteosarcoma. Altogether, the results of the current study revealed that high levels of SIRT1 might be a biomarker for a high metastatic rate in patients with osteosarcoma, which suggested that inhibition of SIRT1 might be promising for the therapeutics of osteosarcoma.  相似文献   

3.
4.

Background

Adipocytes make up the major component of breast tissue, accounting for 90% of stromal tissue. Thus, the crosstalk between adipocytes and breast cancer cells may play a critical role in cancer progression. Adipocyte-breast cancer interactions have been considered important for the promotion of breast cancer metastasis. However, the specific mechanisms underlying these interactions are unclear. In this study, we investigated the mechanisms of adipocyte-mediated breast cancer metastasis.

Methods

Breast cancer cells were cocultured with mature adipocytes for migration and 3D matrix invasion assays. Next, lentivirus-mediated loss-of-function experiments were used to explore the function of lysyl hydroxylase (PLOD2) in breast cancer migration and adipocyte-dependent migration of breast cancer cells. The role of PLOD2 in breast cancer metastasis was further confirmed using orthotopic mammary fat pad xenografts in vivo. Clinical samples were used to confirm that PLOD2 expression is increased in tumor tissue and is associated with poor prognosis of breast cancer patients. Cells were treated with cytokines and pharmacological inhibitors in order to verify which adipokines were responsible for activation of PLOD2 expression and which signaling pathways were activated in vitro.

Results

Gene expression profiling and Western blotting analyses revealed that PLOD2 was upregulated in breast cancer cells following coculture with adipocytes; this process was accompanied by enhanced breast cancer cell migration and invasion. Loss-of-function studies indicated that PLOD2 knockdown suppressed cell migration and disrupted the formation of actin stress fibers in breast cancer cells and abrogated the migration induced by following coculture with adipocytes. Moreover, experiments performed in orthotopic mammary fat pad xenografts showed that PLOD2 knockdown could reduce metastasis to the lung and liver. Further, high PLOD2 expression correlated with poor prognosis of breast cancer patients. Mechanistically, adipocyte-derived interleukin-6 (IL-6) and leptin may facilitate PLOD2 upregulation in breast cancer cells and promote breast cancer metastasis in tail vein metastasis assays. Further investigation revealed that adipocyte-derived IL-6 and leptin promoted PLOD2 expression through activation of the JAK/STAT3 and PI3K/AKT signaling pathways.

Conclusions

Our study reveals that adipocyte-derived IL-6 and leptin promote PLOD2 expression by activating the JAK/STAT3 and PI3K/AKT signaling pathways, thus promoting breast cancer metastasis.
  相似文献   

5.
Osteosarcoma is the most common primary malignancy of bone and patients often develop pulmonary metastases. Despite the advances in surgical and medical management, the mechanisms underlying human osteosarcoma progression and metastasis remain to be elucidated. Gene expression profiles were compared by the cDNA microarray technique between two different human osteosarcoma sublines, MNNG/HOS and 143B, which differ greatly in spontaneous pulmonary metastatic potential. Here we report an enhanced expression of matrix metalloproteinase (MMP)-1 in the highly metastatic human osteosarcoma cell line 143B. Moreover, the in vitro invasion activity of 143B cells was MMP-1-dependent. The activator protein (AP)-1 binding site in the MMP-1 gene promoter was required for the constitutive expression of MMP-1 in 143B cells. Two AP-1 components, c-Jun and Fra-1, were phosphorylated, and bound to the AP-1 binding site of the MMP-1 promoter in 143B cells. Activated c-Jun and Fra-1 were essential for MMP-1 gene expression in 143B cells. Mitogen-activated protein kinase pathways including the c-Jun NH2-terminal kinase and the extracellular signal-regulated kinase activate c-Jun and Fra-1 and thereby regulate c-Jun/Fra-1 mediated events, establishing the mitogen-activated protein kinase/AP-1/MMP-1 axis as important in 143B cells. These data suggest that MMP-1 plays a central role in osteosarcoma invasion. Accordingly, MMP-1 might be a biomarker and therapeutic target for invasive osteosarcomas and pulmonary metastases.  相似文献   

6.

Purpose

The tumor biology of metastatic breast cancers differ according to the metastatic sites, and the features of cancer metabolism may also be different. The aim of this study is to investigate the expression of lipid metabolism-related proteins in metastatic breast cancer according to metastatic site and discuss the clinical significance thereof.

Methods

Immunohistochemical staining for lipid metabolism-related proteins [fatty acid synthase (FASN), hormone-sensitive lipase (HSL), carnitine palmitoyltransferase IA (CPT-1A), acyl-CoA oxidase 1 (ACOX1), fatty acid binding protein 4 (FABP4,) and perilipin 1 (PLIN1)] was performed using a tissue microarray of 149 cases of metastatic breast cancer (bone metastasis = 39, brain metastasis = 37, liver metastasis = 21, and lung metastasis = 52).

Results

The expression levels of ACOX1 (p = 0.009) and FASN (p = 0.007) varied significantly according to metastatic site, with the highest expression in brain metastasis and the lowest expression in liver metastasis. ACOX1 positivity (p = 0.005) and FASN positivity (p = 0.003) correlated with HER-2 positivity. The expression of FASN was significantly higher in HER-2 type breast cancer, and lower in luminal A and TNBC type breast cancer (p<0.001). Among lipid metabolism-related proteins, PLIN1 positivity was found to be an independent poor prognostic factor on multivariate analysis (Hazard ratio: 4.979, 95% CI: 1.054–22.59, p = 0.043).

Conclusion

Different expression levels of lipid metabolism-related proteins were observed according to metastatic site. The expression of ACOX1 and FASN was highest in brain metastasis. These results suggest that the metastatic site should be considered when using lipid metabolism inhibitors for targeted therapy.  相似文献   

7.
8.
SASH1, a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in breast and colon cancer. The SASH1 protein possesses both the SH3 and SAM domains, indicating that it may play an important role in intracellular signal transduction. Reduced expression of SASH1 is closely related to tumor growth, invasion, metastasis, and poor prognosis. However, the biological role of SASH1 remains unknown in osteosarcoma. To unravel the function of SASH1, we explored the expression of SASH1 in osteosarcoma tissues and its correlation to the clinical pathology of osteosarcoma and analyzed the relationship between SASH1 expression and cell cycle, apoptosis and invasion of osteosarcoma MG-63 cells, using the flow cytometry analysis and transwell invasion chamber experiments. Furthermore, the effect of SASH1 on the expression of cyclin D1, caspase-3, matrix metalloproteinase (MMP)-9 were observed by western blot. Our results showed that the expression rate of SASH1 mRNA in osteosarcoma tissues was significantly lower than that in normal bone tissue (p = 0.000), that the expression rate of SASH1 mRNA in the carcinoma tissues from patients with lung metastasis was significantly lower than that from patients without lung metastasis (p = 0.041), and that the expression rate of SASH1 mRNA also decreased with increasing Enneking stage (p = 0.032). However, the mRNA expression of SASH1 in osteosarcoma was independent of the patient’s gender, age, and tumor size (p = 0.983, 0.343, 0.517, respectively). The SASH1 protein displayed a down-regulation in osteosarcoma tissues compared to normal bone tissue (p = 0.000), displayed a down-regulation in osteosarcoma tissues from patients with lung metastasis compared to from patients without lung metastasis (p = 0.000), and displayed a gradual decrease with increasing Enneking stage (p = 0.000). In addition, the MG-63 cells from pcDNA3.1-SASH1 group exhibited significantly reduced cell viability, proliferation, and invasive ability compared to the empty vector group and blank control group (p = 0.023, 0.001, respectively), and there was no difference between the empty vector group and blank control group. The pcDNA3.1-SASH1 group displayed significantly more apoptotic cells than the empty vector group and blank control group (p = 0.004). The expression of cyclin D1, MMP-9 displayed a down-regulation in MG-63 cells from pcDNA3.1-SASH1 group compared to the empty vector group and blank control group (p = 0.000, 0.001, respectively) and the expression levels of caspase-3 displayed an up-regulation in MG-63 cells from pcDNA3.1-SASH1 group compared to the empty vector group and blank control group (p = 0.000). Taken together, these data indicated that the overexpression of SASH1 might be associated with the inhibition of growth, proliferation, and invasion of MG-63 cells and the promotion of apoptosis of MG-63 cells.  相似文献   

9.
The cure rate of osteosarcoma has not improved in the past 30 years. The new treatments and drugs is urgently needed, especially for metastatic osteosarcoma. Anti-angiogenesis therapy and immunotherapy has got promising anti-tumor effects in various tumors. It is hypothesised that combining checkpoint inhibitor immunotherapies with antiangiogenic treatment may have a synergistic effect and enhance the efficacy of both treatments. However, its underlying mechanism remain largely uninvestigated. To investigate the clinical significance of vascular endothelial growth factor receptor-2 (VEGFR2) and programmed death ligand-1 (PD-L1) in osteosarcoma, we analyzes their expression levels in 93 osteosarcoma specimens by immunohistochemistry. Meanwhile, we analyzes their correlation with the metastatic behavior and overall survival (OS). We also investigate the effects of Apatinib on migration and invasion of osteosarcoma cells and its underlying mechanism in vitro and in vivo. In our study, the positive rates of the VEGFR2 and PD-L1 expression are 64.5% (60/93) and 35.5% (33/93), respectively. A significant correlation is detected between VEGFR2 and PD-L1 expression (P = 0.009). Receiver-operating characteristic (ROC) curves analysis indicates the predictive value of the two markers in tumor metastasis, and both PD-L1 and VEGFR2 are negatively correlated with OS. Transwell assays reveals that VEGFR2 inhibition attenuates migration and invasion of osteosarcoma cells. Mechanistically, we demonstrate that Apatinib attenuates migration and invasion by suppressing epithelial-mesenchymal transition (EMT) and inactivating STAT3. Additionally, Apatinib reduces PD-L1 expression in osteosarcoma cells. Apatinib markedly weakens pulmonary metastatic potential of osteosarcoma in vivo. In conclusion, our study reveals a pro-metastatic functional mechanism for VEGFR2 in osteosarcoma. Furthermore, we demonstrate that Apatinib exerts anti-tumor effect not only through antiangiogenic effect, but also via suppressing immune escape, which may represent a potential therapeutic target for metastatic osteosarcoma.  相似文献   

10.
The side effects of chemotherapy, drug resistance, and tumor metastasis hinder the development of treatment for osteosarcoma, leading to poor prognosis of patients with the disease. Proscillaridin A, a kind of cardiac glycoside, has been proven to have anti-proliferative properties in many malignant tumors, but the efficacy of the drug in treating osteosarcoma is unclear. In the present study, we assessed the effects of Proscillaridin A on osteosarcoma and investigated its underlying action mechanism. The cell cytotoxicity assay showed that Proscillaridin A significantly inhibited the proliferation of 143B cells in a dose- and time-dependent manner. Also, flow cytometry and invasion assay revealed that Proscillaridin A induced apoptosis and reduced 143B cell motility. Western blotting and PCR were used to detect the expressions of Bcl-xl and MMP2 and showed that mRNA/protein expression levels decreased significantly in Proscillaridin A-treated osteosarcoma cells. Using a mouse xenograft model, we found that Proscillaridin A treatment significantly inhibited tumor growth and lung metastasis in vivo and decreased the expression levels of Bcl-xl and MMP2. No noticeable side effect was observed in the liver, kidney, and hematological functions. Conclusively, Proscillaridin A suppressed proliferation, induced apoptosis, and inhibited 143B cell metastasis in vitro and in vivo, and these effects could be mediated by downregulating the expressions of Bcl-xl and MMP2.  相似文献   

11.
Osteosarcoma is the most common primary bone tumor in children and adults. Despite improved prognosis, resistance to chemotherapy remains responsible for failure of osteosarcoma treatment. The identification of the molecular signals that contribute to the aberrant osteosarcoma cell growth may provide clues to develop new therapeutic strategies for chemoresistant osteosarcoma. Here we show that the expression of ErbB3 is increased in human osteosarcoma cells in vitro. Tissue microarray analysis of tissue cores from osteosarcoma patients further showed that the ErbB3 protein expression is higher in bone tumors compared to normal bone tissue, and is further increased in patients with recurrent disease or soft tissue metastasis. In murine osteosarcoma cells, silencing ErbB3 using shRNA decreased cell replication, cell migration and invasion, indicating that ErbB3 contributes to tumor cell growth and invasiveness. Furthermore, ErbB3 silencing markedly reduced tumor growth in a murine allograft model in vivo. Immunohistochemal analysis showed that the reduced tumor growth induced by ErbB3 silencing in this model resulted from decreased cell osteosarcoma cell proliferation, supporting a role of ErbB3 in bone tumor growth in vivo. Taken together, the results reveal that ErbB3 expression in human osteosarcoma correlates with tumor grade. Furthermore, silencing ErbB3 in a murine osteosarcoma model results in decreased cell growth and invasiveness in vitro, and reduced tumor growth in vivo, which supports the potential therapeutic interest of targeting ErbB3 in osteosarcoma.  相似文献   

12.
Previous reports document expression of low-density lipoprotein receptor-related protein 5 (LRP5) in osteosarcoma (OS) tissue. Expression of this Wnt receptor correlated with metastatic disease and poor disease-free survival. Forced expression of dominant-negative LRP5 (dnLRP5), which lacks the membrane binding domain of the native protein and therefore functions as a soluble receptor-sponge for Wnt ligands, reduced in vitro cellular invasion and in vivo xenograft tumor growth for osteosarcoma cell lines. Here, we use a genetically engineered mouse model of osteosarcomagenesis with and without expression of dnLRP5 to assess to what degree tumorigenesis is affected and whether Wnt/β-catenin signaling is circumvented or maintained. Each cohort of mice developed osteosarcoma at a similar ultimate prevalence, but after a slightly increased latency in those also expressing dnLRP5. On histology, there was no difference between groups, despite previous reports that the dnLRP5 osteosarcoma cells specifically undergo a mesenchymal-to-epithelial transition in vitro. Finally, immunohistochemistry showed the presence of cytosolic and nuclear β-catenin and nuclear Cyclin D1, markers consistent with preserved Wnt/β-catenin signaling despite constitutive blockade of the cell surface receipt of Wnt signaling ligand. These data suggest that canonical Wnt signaling plays a role in OS progression and that while blockade of singular nodes in signaling pathways can have dramatic effects on individual cell lines, real tumors readily evade such focused attacks.  相似文献   

13.

Background

Lymph node metastasis is a key event in the progression of breast cancer. Therefore it is important to understand the underlying mechanisms which facilitate regional lymph node metastatic progression.

Methodology/Principal Findings

We performed gene expression profiling of purified tumor cells from human breast tumor and lymph node metastasis. By microarray network analysis, we found an increased expression of polycomb repression complex 2 (PRC2) core subunits EED and EZH2 in lymph node metastatic tumor cells over primary tumor cells which were validated through real-time PCR. Additionally, immunohistochemical (IHC) staining and quantitative image analysis of whole tissue sections showed a significant increase of EZH2 expressing tumor cells in lymph nodes over paired primary breast tumors, which strongly correlated with tumor cell proliferation in situ. We further explored the mechanisms of PRC2 gene up-regulation in metastatic tumor cells and found up-regulation of E2F genes, MYC targets and down-regulation of tumor suppressor gene E-cadherin targets in lymph node metastasis through GSEA analyses. Using IHC, the expression of potential EZH2 target, E-cadherin was examined in paired primary/lymph node samples and was found to be significantly decreased in lymph node metastases over paired primary tumors.

Conclusions/Significance

This study identified an over expression of the epigenetic silencing complex PRC2/EED-EZH2 in breast cancer lymph node metastasis as compared to primary tumor and its positive association with tumor cell proliferation in situ. Concurrently, PRC2 target protein E-cadherin was significant decreased in lymph node metastases, suggesting PRC2 promotes epithelial mesenchymal transition (EMT) in lymph node metastatic process through repression of E-cadherin. These results indicate that epigenetic regulation mediated by PRC2 proteins may provide additional advantage for the outgrowth of metastatic tumor cells in lymph nodes. This opens up epigenetic drug development possibilities for the treatment and prevention of lymph node metastasis in breast cancer.  相似文献   

14.
15.
Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre‐osteoblast proliferation by affecting cell cycle progression in the G1 phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G1/S phase transition, and Runx2 is again up‐regulated after mitosis. Runx2 expression also correlates with metastasis and poor chemotherapy response in osteosarcoma. Here we show that six human osteosarcoma cell lines (SaOS, MG63, U2OS, HOS, G292, and 143B) have different growth rates, which is consistent with differences in the lengths of the cell cycle. Runx2 protein levels are cell cycle‐regulated with respect to the G1/S phase transition in U2OS, HOS, G292, and 143B cells. In contrast, Runx2 protein levels are constitutively expressed during the cell cycle in SaOS and MG63 cells. Forced expression of Runx2 suppresses growth in all cell lines indicating that accumulation of Runx2 in excess of its pre‐established levels in a given cell type triggers one or more anti‐proliferative pathways in osteosarcoma cells. Thus, regulatory mechanisms controlling Runx2 expression in osteosarcoma cells must balance Runx2 protein levels to promote its putative oncogenic functions, while avoiding suppression of bone tumor growth. J. Cell. Physiol. 228: 714–723, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
17.
The precise molecular mechanisms enabling cancer cells to metastasize from the primary tumor to different tissue locations are still largely unknown. Secretion of some proteins by metastatic cells could facilitate metastasis formation. The comparison of secreted proteins from cancer cells with different metastatic capabilities in vivo might provide insight into proteins involved in the metastatic process. Comparison of the secreted proteins from the mouse breast cancer cell line 4T1 and its highly metastatic 4T1.2 clone revealed a prominent differentially secreted protein which was identified as SLPI (secretory leukocyte protease inhibitor). Western blotting indicated higher levels of the protein in both conditioned media and whole cell lysates of 4T1.2 cells. Additionally higher levels of SLPI were also observed in 4T1.2 breast tumors in vivo following immunohistochemical staining. A comparison of SLPI mRNA levels by gene profiling using microarrays and RT-PCR did not detect major differences in SLPI gene expression between the 4T1 and 4T1.2 cells indicating that SLPI secretion is regulated at the protein level. Our results demonstrate that secretion of SLPI is drastically increased in highly metastatic cells, suggesting a possible role for SLPI in enhancing the metastatic behavior of breast cancer cell line 4T1.  相似文献   

18.
Background: Metastatic prostate cancer (PCa) predicts a poor prognosis and lower likelihood of survival. Osteoblasts (OBs) are known to be responsible for the synthesis and mineralization of bone, although it is unclear as to whether PCa in the prostate gland cooperates with OBs in bone to promote PCa malignant transformation. We aimed to elucidate how primary PCa cells cooperate with distal OBs and contribute to the vicious cycle that leads to metastatic PCa.Methods: N-cadherin, E-cadherin, and Twist protein expression were measured by Western blot. Twist translocation into the nucleus was detected by the immunofluorescence (IF) assay. Enzyme-linked immunosorbent assay (ELISA) detected protein levels in human serum samples. Levels of candidate protein expression were examined by the human cytokine array. Prostate tumor growth and metastasis were analyzed by orthotopic and metastatic prostate cancer models, respectively. Immunohistochemistry (IHC) staining was used to observe ADAM metallopeptidase domain 9 (ADAM9) and WNT1 inducible signaling pathway protein 1 (WISP-1) expression in tissue.Results: Our in vitro and in vivo analyses have now discovered that primary PCa expressing ADAM9 protein enables the transformation of OBs into PCa-associated osteoblasts (PCa-OBs), inducing WISP-1 secretion from PCa-OBs in the bone microenvironment. The upregulation of WISP-1 in bone provided feedback to primary PCa and promoted PCa cell aggressiveness via epithelial-mesenchymal transition (EMT) activity. Elevated levels of WISP-1 expression were detected in the serum of patients with PCa. ADAM9 levels were overexpressed in tumor tissue from PCa patients; ADAM9 blockade interrupted OB-induced release of WISP-1 and also suppressed primary tumor growth and distal metastasis in orthotopic PCa mouse models.Conclusion: Our study suggests that the ADAM9/WISP-1 axis assists with metastatic PCa progression. Thus, targeting the ADAM9/WISP-1 axis may help to prevent the malignant phenotypes of PCa cells.  相似文献   

19.
To know the involvement of glycosaminoglycans (GAGs) in the metastasis of mouse FBJ osteosarcoma cells, N α -lauroyl-O-(β-d-xylopyranosyl)-l-serinamide (Xyl-Ser-C12), which initiates elongation of GAG chains using the glycan biosynthesis system in cells, was administered to FBJ cells with different metastatic capacities. Production of glycosylated products derived from Xyl-Ser-C12, especially heparan sulfate (HS) GAG-type oligosaccharides such as GalNAc-GlcA-GlcNAc-GlcA-Gal-Gal-Xyl-Ser-C12, was indicated in poorly metastatic FBJ-S1 cells more than in highly metastatic FBJ-LL cells by LC–MS. The results of RT-PCR revealed that HS synthases, Ext1 and Ext2, were expressed in FBJ-S1 cells more than in FBJ-LL cells. Furthermore, siRNA against Ext1 suppressed the expression of HS and enhanced the motility of FBJ-S1 cells. In addition, the expression of heparanase (HPSE) was enhanced in Ext-1-knockdown FBJ-S1 cells, and responsible for the increase in cell motility caused by the down-regulation of Ext1 expression. Our data provide the first evidence that Ext1 regulates the expression of HPSE and also indicated that levels of Ext1 and HPSE influenced the motility of FBJ cells.  相似文献   

20.
Bai J  Guo C  Sun W  Li M  Meng X  Yu Y  Jin Y  Tong D  Geng J  Huang Q  Qi J  Fu S 《Molecular biology reports》2012,39(3):2697-2703
Lung cancer is a leading cause of cancer-related death, about 40% human non-small cell lung cancer (NSCLC) patients showed lymph node involvements. However, the precise mechanism for the metastasis is still not fully understood. This study was to analyze the potential molecular mechanism for lung cancer metastasis. In the current study, proteomics analysis by two-dimensional electrophoresis (2-DE) was performed first to identify the differentially expressed protein between the higher metastasis lung adenocarcinoma cell line Anip973 and the lower metastasis lung adenocarcinoma cell line AGZY83-a. We confirmed the result by RT-PCR, immunoblotting and immunocytochemistry analyses in these two cell lines. Then we examined the expression of the differentially expressed protein in tumor tissues of NSCLC patients by immunoblotting and immunohistochemistry analyses. Using 2-DE analysis, we have identified DJ-1 was expressed higher in the higher metastasis Anip973 compared to the parental cell line AGZY83-a, that was confirmed by RT-PCR, immunoblotting and immunocytochemistry analyses. In NSCLC patients?? tumor tissues study, immunoblotting data showed that, DJ-1 expression level was significantly higher in 72.2% (13/18) of NSCLC tissue samples compared to that in paired normal lung tissues (P?=?0.044). Immunohistochemistry analysis demonstrated increased DJ-1 expression in 85 NSCLC tumor tissue samples compared with 7 normal lung tissue samples (P?=?0.044). DJ-1 expression was also found to be significantly correlated with cancer lymphatic metastasis (P?=?0.039). DJ-1 might contribute to the metastasis of NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号