首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The economical production of 5-aminolevulinic acid (ALA) has recently received increasing attention for its extensive use in agriculture. In this study, a strain of Bacillus cereus PT1 could initially produce ALA at a titre of 251.72 mg/L by using a hydrolysate mixture of low-cost cassava residue and fish waste. The integration of endogenous hemA encoding glutamyl-tRNA reductase led to a 39.30% increase in ALA production. Moreover, improving cell permeability by deletion of the LytR-CpsA-Psr (LCP) family gene tagU led to a further increase of 59.73% in ALA production. Finally, the engineered strain B. cereus PT1-hemAtagU produced 2.62 g/L of ALA from the previously mentioned hydrolysate mixture in a 7-L bioreactor. In a pot experiment, foliar spray of the ALA produced by B. cereus PT1-hemAtagU from the hydrolysates increased salt tolerance of cucumber by improving chlorophyll content and catalase activity, while decreasing malondialdehyde content. Overall, this study demonstrated an economic way to produce ALA using a microbial platform and evidenced the potential of ALA in agricultural application.  相似文献   

2.
Several chromosomally expressed AceE variants were constructed in Escherichia coli ΔldhA ΔpoxB ΔppsA and compared using glucose as the sole carbon source. These variants were examined in shake flask cultures for growth rate, pyruvate accumulation, and acetoin production via heterologous expression of the budA and budB genes from Enterobacter cloacae ssp. dissolvens. The best acetoin‐producing strains were subsequently studied in controlled batch culture at the one‐liter scale. PDH variant strains attained up to four‐fold greater acetoin than the strain expressing the wild‐type PDH. In a repeated batch process, the H106V PDH variant strain attained over 43 g/L of pyruvate‐derived products, acetoin (38.5 g/L) and 2R,3R‐butanediol (5.0 g/L), corresponding to an effective concentration of 59 g/L considering the dilution. The acetoin yield from glucose was 0.29 g/g with a volumetric productivity of 0.9 g/L·h (0.34 g/g and 1.0 g/L·h total products). The results demonstrate a new tool in pathway engineering, the modification of a key metabolic enzyme to improve the formation of a product via a kinetically slow, introduced pathway. Direct modification of the pathway enzyme offers an alternative to promoter engineering in cases where the promoter is involved in a complex regulatory network.  相似文献   

3.
Microbial lipids for chemical synthesis are commonly obtained from sugar‐based substrates which in most cases is not economically viable. As a low‐cost carbon source, short‐chain fatty acids (SCFAs) that can be obtained from food wastes offer an interesting alternative for achieving an affordable lipid production process. In this study, SCFAs were employed to accumulate lipids using Yarrowia lipolytica ACA DC 50109. For this purpose, different amounts of SCFAs, sulfate, phosphate and carbon: phosphate ratios were used in both synthetic and real SCFAs‐rich media. Although sulfate limitation did not increase lipid accumulation, phosphate limitation was proved to be an optimal strategy for increasing lipid content and lipid yields in both synthetic and real media, reaching a lipid productivity up to 8.95 g/L h. Remarkably, the highest lipid yield (0.30 g/g) was achieved under phosphate absence condition (0 g/L). This fact demonstrated the suitability of using low‐phosphate concentrations to boost lipid production from SCFAs.

Microbial lipids for chemical synthesis are commonly obtained from sugar‐based substrates which in most cases is not economically viable. As a low‐cost carbon source, short‐chain fatty acids (SCFAs) that can be obtained from food‐wastes offer an interesting alternative for achieving an affordable lipid production process. In this study, SCFAs were employed to accumulate lipids using Yarrowia lipolytica ACA DC 50109.  相似文献   

4.
Acanthamoeba polyphaga Mimivirus, a complex virus that infects amoeba, was first reported in 2003. It is now known that its DNA genome encodes for nearly 1,000 proteins including enzymes that are required for the biosynthesis of the unusual sugar 4‐amino‐4,6‐dideoxy‐d‐glucose, also known as d‐viosamine. As observed in some bacteria, the pathway for the production of this sugar initiates with a nucleotide‐linked sugar, which in the Mimivirus is thought to be UDP‐d‐glucose. The enzyme required for the installment of the amino group at the C‐4′ position of the pyranosyl moiety is encoded in the Mimivirus by the L136 gene. Here, we describe a structural and functional analysis of this pyridoxal 5′‐phosphate‐dependent enzyme, referred to as L136. For this analysis, three high‐resolution X‐ray structures were determined: the wildtype enzyme/pyridoxamine 5′‐phosphate/dTDP complex and the site‐directed mutant variant K185A in the presence of either UDP‐4‐amino‐4,6‐dideoxy‐d‐glucose or dTDP‐4‐amino‐4,6‐dideoxy‐d‐glucose. Additionally, the kinetic parameters of the enzyme utilizing either UDP‐d‐glucose or dTDP‐d‐glucose were measured and demonstrated that L136 is efficient with both substrates. This is in sharp contrast to the structurally related DesI from Streptomyces venezuelae, whose three‐dimensional architecture was previously reported by this laboratory. As determined in this investigation,DesI shows a profound preference in its catalytic efficiency for the dTDP‐linked sugar substrate. This difference can be explained in part by a hydrophobic patch in DesI that is missing in L136. Notably, the structure of L136 reported here represents the first three‐dimensional model for a virally encoded PLP‐dependent enzyme and thus provides new information on sugar aminotransferases in general.  相似文献   

5.
Peroxiredoxins use a variety of thiols to rapidly reduce hydroperoxides and peroxynitrite. While the oxidation kinetics of peroxiredoxins have been studied in great detail, enzyme‐specific differences regarding peroxiredoxin reduction and the overall rate‐limiting step under physiological conditions often remain to be deciphered. The 1‐Cys peroxiredoxin 5 homolog PfAOP from the malaria parasite Plasmodium falciparum is an established model enzyme for glutathione/glutaredoxin‐dependent peroxiredoxins. Here, we reconstituted the catalytic cycle of PfAOP in vitro and analyzed the reaction between oxidized PfAOP and reduced glutathione (GSH) using molecular docking and stopped‐flow measurements. Molecular docking revealed that oxidized PfAOP has to adopt a locally unfolded conformation to react with GSH. Furthermore, we determined a second‐order rate constant of 6 × 105 M−1 s−1 at 25°C and thermodynamic activation parameters ΔH , ΔS , and ΔG of 39.8 kJ/mol, −0.8 J/mol, and 40.0 kJ/mol, respectively. The gain‐of‐function mutant PfAOPL109M had almost identical reaction parameters. Taking into account physiological hydroperoxide and GSH concentrations, we suggest (a) that the reaction between oxidized PfAOP and GSH might be even faster than the formation of the sulfenic acid in vivo, and (b) that conformational changes are likely rate limiting for PfAOP catalysis. In summary, we characterized and quantified the reaction between GSH and the model enzyme PfAOP, thus providing detailed insights regarding the reactivity of its sulfenic acid and the versatile chemistry of peroxiredoxins.  相似文献   

6.
Reliable prediction of free energy changes upon amino acid substitutions (ΔΔGs) is crucial to investigate their impact on protein stability and protein–protein interaction. Advances in experimental mutational scans allow high‐throughput studies thanks to multiplex techniques. On the other hand, genomics initiatives provide a large amount of data on disease‐related variants that can benefit from analyses with structure‐based methods. Therefore, the computational field should keep the same pace and provide new tools for fast and accurate high‐throughput ΔΔG calculations. In this context, the Rosetta modeling suite implements effective approaches to predict folding/unfolding ΔΔGs in a protein monomer upon amino acid substitutions and calculate the changes in binding free energy in protein complexes. However, their application can be challenging to users without extensive experience with Rosetta. Furthermore, Rosetta protocols for ΔΔG prediction are designed considering one variant at a time, making the setup of high‐throughput screenings cumbersome. For these reasons, we devised RosettaDDGPrediction, a customizable Python wrapper designed to run free energy calculations on a set of amino acid substitutions using Rosetta protocols with little intervention from the user. Moreover, RosettaDDGPrediction assists with checking completed runs and aggregates raw data for multiple variants, as well as generates publication‐ready graphics. We showed the potential of the tool in four case studies, including variants of uncertain significance in childhood cancer, proteins with known experimental unfolding ΔΔGs values, interactions between target proteins and disordered motifs, and phosphomimetics. RosettaDDGPrediction is available, free of charge and under GNU General Public License v3.0, at https://github.com/ELELAB/RosettaDDGPrediction.  相似文献   

7.
We present improvements to the hydropathy scale (HPS) coarse‐grained (CG) model for simulating sequence‐specific behavior of intrinsically disordered proteins (IDPs), including their liquid–liquid phase separation (LLPS). The previous model based on an atomistic hydropathy scale by Kapcha and Rossky (KR scale) is not able to capture some well‐known LLPS trends such as reduced phase separation propensity upon mutations (R‐to‐K and Y‐to‐F). Here, we propose to use the Urry hydropathy scale instead, which was derived from the inverse temperature transitions in a model polypeptide with guest residues X. We introduce two free parameters to shift (Δ) and scale (µ) the overall interaction strengths for the new model (HPS‐Urry) and use the experimental radius of gyration for a diverse group of IDPs to find their optimal values. Interestingly, many possible (Δ, µ) combinations can be used for typical IDPs, but the phase behavior of a low‐complexity (LC) sequence FUS is only well described by one of these models, which highlights the need for a careful validation strategy based on multiple proteins. The CG HPS‐Urry model should enable accurate simulations of protein LLPS and provide a microscopically detailed view of molecular interactions.  相似文献   

8.
Aging of the auditory system is associated with the incremental production of reactive oxygen species (ROS) and the accumulation of oxidative damage in macromolecules, which contributes to cellular malfunction, compromises cell viability, and, ultimately, leads to functional decline. Cellular detoxification relies in part on the production of NADPH, which is an important cofactor for major cellular antioxidant systems. NADPH is produced principally by the housekeeping enzyme glucose‐6‐phosphate dehydrogenase (G6PD), which catalyzes the rate‐limiting step in the pentose phosphate pathway. We show here that G6PD transgenic mice (G6PD‐Tg), which show enhanced constitutive G6PD activity and NADPH production along life, have lower auditory thresholds than wild‐type mice during aging, together with preserved inner hair cell (IHC) and outer hair cell (OHC), OHC innervation, and a conserved number of synapses per IHC. Gene expression of antioxidant enzymes was higher in 3‐month‐old G6PD‐Tg mice than in wild‐type counterparts, whereas the levels of pro‐apoptotic proteins were lower. Consequently, nitration of proteins, mitochondrial damage, and TUNEL+ apoptotic cells were all lower in 9‐month‐old G6PD‐Tg than in wild‐type counterparts. Unexpectedly, G6PD overexpression triggered low‐grade inflammation that was effectively resolved in young mice, as shown by the absence of cochlear cellular damage and macrophage infiltration. Our results lead us to propose that NADPH overproduction from an early stage is an efficient mechanism to maintain the balance between the production of ROS and cellular detoxification power along aging and thus prevents hearing loss progression.  相似文献   

9.
10.
5-Aminolevulinic acid (ALA), the first committed intermediate for natural biosynthesis of tetrapyrrole compounds, has recently drawn intensive attention due to its broad potential applications. In this study, we describe the construction of recombinant Escherichia coli strains for ALA production from glucose via the C4 pathway. The hemA gene from Rhodobacter capsulatus was optimally overexpressed using a ribosome binding site engineering strategy, which enhanced ALA production substantially from 20 to 689 mg/L. Following optimization of biosynthesis pathways towards coenzyme A and precursor (glycine and succinyl-CoA), and downregulation of hemB expression, the production of ALA was further increased to 2.81 g/L in batch-fermentation.  相似文献   

11.
Cat's claw (Doxantha unguis-cati L.) vine accumulates nearly 80% palmitoleic acid (16:1Δ9) plus cis-vaccenic acid (18:1Δ11) in its seed oil. To characterize the biosynthetic origin of these unusual fatty acids, cDNAs for acyl-acyl carrier protein (acyl-ACP) desaturases were isolated from developing cat's claw seeds. The predominant acyl-ACP desaturase cDNA identified encoded a polypeptide that is closely related to the stearoyl (Δ9–18:0)-ACP desaturase from castor (Ricinis communis L.) and other species. Upon expression in Escherichia coli, the cat's claw polypeptide functioned as a Δ9 acyl-ACP desaturase but displayed a distinct substrate specificity for palmitate (16:0)-ACP rather than stearate (18:0)-ACP. Comparison of the predicted amino acid sequence of the cat's claw enzyme with that of the castor Δ9–18:0-ACP desaturase suggested that a single amino acid substitution (L118W) might account in large part for the differences in substrate specificity between the two desaturases. Consistent with this prediction, conversion of leucine-118 to tryptophan in the mature castor Δ9–18:0-ACP desaturase resulted in an 80-fold increase in the relative specificity of this enzyme for 16:0-ACP. The alteration in substrate specificity observed in the L118W mutant is in agreement with a crystallographic model of the proposed substrate-binding pocket of the castor Δ9–18:0-ACP desaturase.  相似文献   

12.
The development and progression of colorectal cancer (CRC) have been associated with inflammation processes that involve the overactivation of the NF‐κB signalling pathway. The characterization of the NF‐κB expression profile in CRC is an important topic since the suppression of NF‐κB represents a potential therapeutic approach. In this study, we assessed the expression levels of 84 NF‐κB‐related genes in paired tumoral (T) and peritumoral (PT) tissues from 18 CRC patients and 18 normal colonic mucosae, and the expression levels of three miRNAs targeting the most dysregulated genes revealed by the case–control analysis. Comparing the gene expression profile of T and controls, 60 genes were dysregulated. The comparison of T and PT revealed 17 dysregulated genes in the tumoral tissues, with IL1B, CXCL8, IL1A, and CSF2 being the most upregulated. Notably, through a bioinformatics analysis, the differential gene expression of 11 out of the 17 genes was validated on a larger cohort of 308 CRC patients compared with 41 controls. Moreover, a decrease in the levels of RELA, NOD1, CASP8, BCL2L1, ELK1, and IKBKB was identified in poorly differentiated tumours compared to moderately differentiated tumours. The analysis of the three miRNAs targeting IL1B, CXCL8, IL1A, and CSF2 showed that miR‐182‐5p was upregulated in T compared with PT, whereas miR‐10b‐5p was downregulated in T compared with PT and control tissues. Our results may contribute to the design of new experimental therapeutic strategies based on endogenous molecules, such as miRNAs, to target the genetic key players of the NF‐ κB pathway.  相似文献   

13.
Aberrant activation of inflammation signaling triggered by tumor necrosis factor α (TNF‐α), interleukin‐1 (IL‐1), and interleukin‐17 (IL‐17) is associated with immunopathology. Here, we identify neural precursor cells expressed developmentally down‐regulated gene 4‐like (NEDD4L), a HECT type E3 ligase, as a common negative regulator of signaling induced by TNF‐α, IL‐1, and IL‐17. NEDD4L modulates the degradation of mitogen‐activated protein kinase kinase kinase 2 (MEKK2) via constitutively and directly binding to MEKK2 and promotes its poly‐ubiquitination. In interleukin‐17 receptor (IL‐17R) signaling, Nedd4l knockdown or deficiency enhances IL‐17‐induced p38 and NF‐κB activation and the production of proinflammatory cytokines and chemokines in a MEKK2‐dependent manner. We further show that IL‐17‐induced MEKK2 Ser520 phosphorylation is required not only for downstream p38 and NF‐κB activation but also for NEDD4L‐mediated MEKK2 degradation and the subsequent shutdown of IL‐17R signaling. Importantly, Nedd4l‐deficient mice show increased susceptibility to IL‐17‐induced inflammation and aggravated symptoms of experimental autoimmune encephalomyelitis (EAE) in IL‐17R signaling‐dependent manner. These data suggest that NEDD4L acts as an inhibitor of IL‐17R signaling, which ameliorates the pathogenesis of IL‐17‐mediated autoimmune diseases.  相似文献   

14.
Dickeya oryzae is a bacterial pathogen causing the severe rice stem rot disease in China and other rice‐growing countries. We showed recently that the universal bacterial second messenger c‐di‐GMP plays an important role in modulation of bacterial motility and pathogenicity, but the mechanism of regulation remains unknown. In this study, bioinformatics analysis of the D. oryzae EC1 genome led to the identification of two proteins, YcgR and BcsA, both of which contain a conserved c‐di‐GMP receptor domain, known as the PilZ‐domain. By deleting all the genes encoding c‐di‐GMP‐degrading enzymes in Doryzae EC1, the resultant mutant 7ΔPDE with high c‐di‐GMP levels became nonmotile, formed hyperbiofilm, and lost the ability to colonize and invade rice seeds. These phenotypes were partially reversed by deletion of ycgR in the mutant 7ΔPDE, whereas deletion of bcsA only reversed the hyperbiofilm phenotype of mutant 7ΔPDE. Significantly, double deletion of ycgR and bcsA in mutant 7ΔPDE rescued its motility, biofilm formation, and virulence to levels of wild‐type EC1. In vitro biochemical experiments and in vivo phenotypic assays further validated that YcgR and BcsA proteins are the receptors for c‐di‐GMP, which together play a critical role in regulating the c‐di‐GMP‐associated functionality. The findings from this study fill a gap in our understanding of how c‐di‐GMP modulates bacterial motility and biofilm formation, and provide useful clues for further elucidation of sophisticated virulence regulatory mechanisms in this important plant pathogen.  相似文献   

15.
At low temperatures, Bacillus cereus synthesizes large amounts of unsaturated fatty acids (UFAs) with double bonds in positions Δ5 and Δ10, as well as Δ5,10 diunsaturated fatty acids. Through sequence homology searches, we identified two open reading frames (ORFs) encoding a putative Δ5 desaturase and a fatty acid acyl-lipid desaturase in the B. cereus ATCC 14579 genome, and these were named BC2983 and BC0400, respectively. Functional characterization of ORFs BC2983 and BC0400 by means of heterologous expression in Bacillus subtilis confirmed that they both encode acyl-lipid desaturases that use phospholipids as the substrates and have Δ5 and Δ10 desaturase activities. Thus, these ORFs were correspondingly named desA (Δ5 desaturase) and desB (Δ10 desaturase). We established that DesA utilizes ferredoxin and flavodoxins (Flds) as electron donors for the desaturation reaction, while DesB preferably employs Flds. In addition, increased amounts of UFAs were found when B. subtilis expressing B. cereus desaturases was subjected to a cold shock treatment, indicating that the activity or the expression of these enzymes is upregulated in response to a decrease in growth temperature. This represents the first work reporting the functional characterization of fatty acid desaturases from B. cereus.  相似文献   

16.
High‐protein feeding acutely lowers postprandial glucose concentration compared to low‐protein feeding, despite a dichotomous rise of circulating glucagon levels. The physiological role of this glucagon rise has been largely overlooked. We here first report that glucagon signalling in the dorsal vagal complex (DVC) of the brain is sufficient to lower glucose production by activating a Gcgr–PKAERK–KATP channel signalling cascade in the DVC of rats in vivo. We further demonstrate that direct blockade of DVC Gcgr signalling negates the acute ability of high‐ vs. low‐protein feeding to reduce plasma glucose concentration, indicating that the elevated circulating glucagon during high‐protein feeding acts in the brain to lower plasma glucose levels. These data revise the physiological role of glucagon and argue that brain glucagon signalling contributes to glucose homeostasis during dietary protein intake.  相似文献   

17.
Monoclonal anti‐SARS‐CoV‐2 immunoglobulins represent a treatment option for COVID‐19. However, their production in mammalian cells is not scalable to meet the global demand. Single‐domain (VHH) antibodies (also called nanobodies) provide an alternative suitable for microbial production. Using alpaca immune libraries against the receptor‐binding domain (RBD) of the SARS‐CoV‐2 Spike protein, we isolated 45 infection‐blocking VHH antibodies. These include nanobodies that can withstand 95°C. The most effective VHH antibody neutralizes SARS‐CoV‐2 at 17–50 pM concentration (0.2–0.7 µg per liter), binds the open and closed states of the Spike, and shows a tight RBD interaction in the X‐ray and cryo‐EM structures. The best VHH trimers neutralize even at 40 ng per liter. We constructed nanobody tandems and identified nanobody monomers that tolerate the K417N/T, E484K, N501Y, and L452R immune‐escape mutations found in the Alpha, Beta, Gamma, Epsilon, Iota, and Delta/Kappa lineages. We also demonstrate neutralization of the Beta strain at low‐picomolar VHH concentrations. We further discovered VHH antibodies that enforce native folding of the RBD in the E. coli cytosol, where its folding normally fails. Such “fold‐promoting” nanobodies may allow for simplified production of vaccines and their adaptation to viral escape‐mutations.  相似文献   

18.
19.
20.
The high‐altitude environment may drive vertebrate evolution in a certain way, and vertebrates living in different altitude environments might have different energy requirements. We hypothesized that the high‐altitude environment might impose different influences on vertebrate mitochondrial genomes (mtDNA). We used selection pressure analyses and PIC (phylogenetic independent contrasts) analysis to detect the evolutionary rate of vertebrate mtDNA protein‐coding genes (PCGs) from different altitudes. The results showed that the ratio of nonsynonymous/synonymous substitutions (dN/dS) in the mtDNA PCGs was significantly higher in high‐altitude vertebrates than in low‐altitude vertebrates. The seven rapidly evolving genes were shared by the high‐altitude vertebrates, and only one positive selection gene (ND5 gene) was detected in the high‐altitude vertebrates. Our results suggest the mtDNA evolutionary rate in high‐altitude vertebrates was higher than in low‐altitude vertebrates as their evolution requires more energy in a high‐altitude environment. Our study demonstrates the high‐altitude environment (low atmospheric O2 levels) drives vertebrate evolution in mtDNA PCGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号