首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The filamentous virion of the closterovirus Beet yellows virus (BYV) consists of a long body formed by the major capsid protein (CP) and a short tail composed of the minor capsid protein (CPm) and the virus-encoded Hsp70 homolog. By using nano-liquid chromatography-tandem mass spectrometry and biochemical analyses, we show here that the BYV 64-kDa protein (p64) is the fourth integral component of BYV virions. The N-terminal domain of p64 is exposed at the virion surface and is accessible to antibodies and mild trypsin digestion. In contrast, the C-terminal domain is embedded in the virion and is inaccessible to antibodies or trypsin. The C-terminal domain of p64 is shown to be homologous to CP and CPm. Mutation of the signature motifs of capsid proteins of filamentous RNA viruses in p64 results in the formation of tailless virions, which are unable to move from cell to cell. These results reveal the dual function of p64 in tail assembly and BYV motility and support the concept of the virion tail as a specialized device for BYV cell-to-cell movement.  相似文献   

2.
Systemic spread of viruses in plants involves local movement from cell to cell and long-distance transport through the vascular system. The cell-to-cell movement of the Beet yellows virus (BYV) is mediated by a movement protein that is an Hsp70 homolog (Hsp70h). This protein is required for the assembly of movement-competent virions that incorporate Hsp70h. By using the yeast two-hybrid system, in vitro coimmunoprecipitation, and in planta coexpression approaches, we show here that the Hsp70h interacts with a 20-kDa BYV protein (p20). We further demonstrate that p20 is associated with the virions presumably via binding to Hsp70h. Genetic and immunochemical analyses indicate that p20 is dispensable for assembly and cell-to-cell movement of BYV but is required for the long-distance transport of virus through the phloem. These results reveal a novel activity for the Hsp70h that provides a molecular link between the local and systemic spread of a plant virus by docking a long-distance transport factor to virions.  相似文献   

3.
Hsp70 chaperones play a role in polyoma- and papillomavirus assembly, as evidenced by their interaction in vivo with polyomavirus capsid proteins at late times after virus infection and by their ability to assemble viral capsomeres into capsids in vitro. We studied whether Hsp70 chaperones might also participate in the uncoating reaction. In vivo, Hsp70 co-immunoprecipitated with polyomavirus virion VP1 at 3 h after infection of mouse cells. In vitro, prokaryotic and eukaryotic Hsp70 chaperones efficiently disassembled polyoma- and papillomavirus-like particles and virions in energy-dependent reactions. These observations support a role for cell chaperones in the disassembly of these viruses.  相似文献   

4.
5.
The Hsp70 homolog (Hsp70h) of Beet yellows virus (BYV) functions in virion assembly and cell-to-cell movement and is autonomously targeted to plasmodesmata in association with the actomyosin motility system (A. I. Prokhnevsky, V. V. Peremyslov, and V. V. Dolja, J. Virol. 79:14421-14428, 2005). Myosins are a diverse category of molecular motors that possess a motor domain and a tail domain involved in cargo binding. Plants have two classes of myosins, VIII and XI, whose specific functions are poorly understood. We used dominant negative inhibition to identify myosins required for Hsp70h localization to plasmodesmata. Six full-length myosin cDNAs from the BYV host plant Nicotiana benthamiana were sequenced and shown to encode apparent orthologs of the Arabidopsis thaliana myosins VIII-1, VIII-2, VIII-B, XI-2, XI-F, and XI-K. We found that the ectopic expression of the tail domains of each of the class VIII, but not the class XI, myosins inhibited the plasmodesmatal localization of Hsp70h. In contrast, the overexpression of the motor domains or the entire molecules of the class VIII myosins did not affect Hsp70h targeting. Further mapping revealed that the minimal cargo-binding part of the myosin VIII tails was both essential and sufficient for the inhibition of the proper Hsp70h localization. Interestingly, plasmodesmatal localization of the Tobacco mosaic virus movement protein and Arabidopsis protein RGP2 was not affected by myosin VIII tail overexpression. Collectively, our data implicate class VIII myosins in protein delivery to plasmodesmata and suggest that more than one mechanism of such delivery exist in plants.  相似文献   

6.
In tailed icosahedral bacteriophages the connection between the 5-fold symmetric environment of the portal vertex in the capsid and the 6-fold symmetric phage tail is formed by a complex interface structure. The current study provides the detailed analysis of the assembly and structural organisation of such an interface within a phage having a long tail. The region of the interface assembled as part of the viral capsid (connector) was purified from DNA-filled capsids of the Bacillus subtilis bacteriophage SPP1. It is composed of oligomers of gp6, the SPP1 portal protein, of gp15, and of gp16. The SPP1 connector structure is formed by a mushroom-like portal protein whose cap faces the interior of the viral capsid in intact virions, an annular structure below the stem of the mushroom, and a second narrower annulus that is in direct contact with the helical tail extremity. The layered arrangement correlates to the stacking of gp6, gp15, and gp16 on top of the tail. The gp16 ring is exposed to the virion outside. During SPP1 morphogenesis, gp6 participates in the procapsid assembly reaction, an early step in the assembly pathway, while gp15 and gp16 bind to the capsid portal vertex after viral chromosome encapsidation. gp16 is processed during or after tail attachment to the connector region. The portal protein gp6 has 12-fold cyclical symmetry in the connector structure, whereas assembly-na?ve gp6 exhibits 13-fold symmetry. We propose that it is the interaction of gp6 with other viral morphogenetic proteins that drives its assembly into the 12-mer state.  相似文献   

7.
The cell-to-cell movement of plant viruses involves translocation of virus particles or nucleoproteins to and through the plasmodesmata (PDs). As we have shown previously, the movement of the Beet yellows virus requires the concerted action of five viral proteins including a homolog of cellular approximately 70-kDa heat shock proteins (Hsp70h). Hsp70h is an integral component of the virus particles and is also found in PDs of the infected cells. Here we investigate subcellular distribution of Hsp70h using transient expression of Hsp70h fused to three spectrally distinct fluorescent proteins. We found that fluorophore-tagged Hsp70h forms motile granules that are associated with actin microfilaments, but not with microtubules. In addition, immobile granules were observed at the cell periphery. A pairwise appearance of these granules at the opposite sides of cell walls and their colocalization with the movement protein of Tobacco mosaic virus indicated an association of Hsp70h with PDs. Treatment with various cytoskeleton-specific drugs revealed that the intact actomyosin motility system is required for trafficking of Hsp70h in cytosol and its targeting to PDs. In contrast, none of the drugs interfered with the PD localization of Tobacco mosaic virus movement protein. Collectively, these findings suggest that Hsp70h is translocated and anchored to PDs in association with the actin cytoskeleton.  相似文献   

8.
The capsid protein (CP) of potyviruses is required for various steps during plant infection, such as virion assembly, cell-to-cell movement, and long-distance transport. This suggests a series of compatible interactions with putative host factors which, however, are largely unknown. By using the yeast two-hybrid system the CP from Potato virus Y (PVY) was found to interact with a novel subset of DnaJ-like proteins from tobacco, designated NtCPIPs. Mutational analysis identified the CP core region, previously shown to be essential for virion formation and plasmodesmal trafficking, as the interacting domain. The ability of NtCPIP1 and NtCPIP2a to associate with PVY CP could be confirmed in vitro and was additionally verified in planta by bimolecular fluorescence complementation. The biological significance of the interaction was assayed by PVY infection of agroinfiltrated leaves and transgenic tobacco plants that expressed either full-length or J-domain-deficient variants of NtCPIPs. Transient expression of truncated dominant-interfering NtCPIP2a but not of the functional protein resulted in strongly reduced accumulation of PVY in the inoculated leaf. Consistently, stable overexpression of J-domain-deficient variants of NtCPIP1 and NtCPIP2a dramatically increased the virus resistance of various transgenic lines, indicating a critical role of functional NtCPIPs during PVY infection. The negative effect of impaired NtCPIP function on viral pathogenicity seemed to be the consequence of delayed cell-to-cell movement, as visualized by microprojectile bombardment with green fluorescent protein-tagged PVY. Therefore, we propose that NtCPIPs act as important susceptibility factors during PVY infection, possibly by recruiting heat shock protein 70 chaperones for viral assembly and/or cellular spread.  相似文献   

9.
The modification patterns of histones present in various forms of intracellular simian virus 40 nucleoprotein complexes were analyzed by acetic acid-urea-polyacrylamide gel electrophoresis. The results showed that different viral nucleoprotein complexes contain different histone patterns. Simian virus 40 chromatin, which contains the activities for the synthesis of viral RNA and DNA, exhibits a histone modification pattern similar to that of the host chromatin. However, virion assembly intermediates and mature virions contain highly modified histones. Pulse-chase experiments with [3H]lysine showed that the newly incorporated histones in the virion assembly intermediates were already highly modified. The majority of in vivo acetylation activity of histones occurred on the 70S simian virus 40 chromatin as analyzed by pulse-labeling with [3H]acetate. These results and our previous analysis of the virion assembly pathway suggest that three stages are involved in the packaging of simian virus 40 chromatin into the mature virion: (i) modification of histones, (ii) accumulation of capsid protein around the chromatin with highly modified histones, and (iii) organization of capsid proteins into salt-resistant shells. The role of histone modification in virion assembly is discussed.  相似文献   

10.
A minimal model proposed by the author [Zhdanov, V.P., 2004. Stochastic kinetics of reproduction of virions inside a cell. Biosystems 77, 143–150] to describe intracellular viral kinetics includes genome replication, mRNA and protein synthesis and degradation, capsid assembly, and virion release from a cell. Here, this model is complemented by the terms describing the balance of the amino acid determining the rate of the synthesis of viral capsid protein. If the effect of virions on this balance is negligible, the model predicts either a steady state or unlimited growth of the virion population. In the latter case, the cell eventually reaches the situation when the amino-acid concentration is reduced due to the synthesis of viral protein. For this stage, the viral-genome replication is asymptotically predicted to be unlimited while the virion population is limited. The unlimited viral-genome replication practically means that the cell will either die or the kinetics will be limited by additional feedbacks which were not taken into account in the model. All these findings, illustrating the use of the methods of integrative biology of biosystems, help to understand the role of the amino-acid supply in intracellular viral kinetics.  相似文献   

11.
The cauliflower mosaic virus (CaMV) has an icosahedral capsid composed of the viral protein P4. The viral product P3 is a multifunctional protein closely associated with the virus particle within host cells. The best-characterized function of P3 is its implication in CaMV plant-to-plant transmission by aphid vectors, involving a P3-virion complex. In this transmission process, the viral protein P2 attaches to virion-bound P3, and creates a molecular bridge between the virus and a putative receptor in the aphid's stylets. Recently, the virion-bound P3 has been suggested to participate in cell-to-cell or long-distance movement of CaMV within the host plant. Thus, as new data accumulate, the importance of the P3-virion complex during the virus life-cycle is becoming more and more evident. To provide a first insight into the knowledge of the transmission process of the virus, we determined the 3D structures of native and P3-decorated virions by cryo-electron microscopy and computer image processing. By difference mapping and biochemical analysis, we show that P3 forms a network around the capsomers and we propose a structural model for the binding of P3 to CaMV capsid in which its C terminus is anchored deeply in the inner shell of the virion, while the N-terminal extremity is facing out of the CaMV capsid, forming dimers by coiled-coil interactions. Our results combined with existing data reinforce the hypothesis that this coiled-coil N-terminal region of P3 could coordinate several functions during the virus life-cycle, such as cell-to-cell movement and aphid-transmission.  相似文献   

12.
Zhdanov VP 《Bio Systems》2004,77(1-3):143-150
We analyze intracellular viral kinetics in the framework of the model incorporating viral genome replication, mRNA synthesis and degradation, protein synthesis and degradation, capsid assembly, and virion release from a cell. Due to the existence of the critical concentration of viral capsid proteins and other features of reproduction of virions inside a cell, the kinetics is demonstrated to exhibit three distinct initial stages. Specifically, (i) the exponential growth of the viral genome, mRNA and protein concentrations is followed by (ii) the transient stage to (iii) the steady-state regime. The formation of mature virions starts during the transient stage. Comparison of the kinetics, obtained by using the mass-action law and Monte Carlo (MC) technique, indicates that they are nearly identical during the initial exponential growth of the viral intermediates and also during the steady-state stage. The transition from the initial stage to the steady-state regime occurs however somewhat faster in the determenistic case even if the steady-state populations of virions and genomes are appreciable (e.g., about 250 and 500, respectively).  相似文献   

13.
The triple gene block proteins (TGBp1-3) and coat protein (CP) of potexviruses are required for cell-to-cell movement. Separate models have been proposed for intercellular movement of two of these viruses, transport of intact virions, or a ribonucleoprotein complex (RNP) comprising genomic RNA, TGBp1, and the CP. At issue therefore, is the form(s) in which RNA transport occurs and the roles of TGBp1-3 and the CP in movement. Evidence is presented that, based on microprojectile bombardment studies, TGBp1 and the CP, but not TGBp2 or TGBp3, are co-translocated between cells with viral RNA. In addition, cell-to-cell movement and encapsidation functions of the CP were shown to be separable, and the rate-limiting factor of potexvirus movement was shown not to be virion accumulation, but rather, the presence of TGBp1-3 and the CP in the infected cell. These findings are consistent with a common mode of transport for potexviruses, involving a non-virion RNP, and show that TGBp1 is the movement protein, whereas TGBp2 and TGBp3 are either involved in intracellular transport or interact with the cellular machinery/docking sites at the plasmodesmata.  相似文献   

14.
Previous investigations into recombination in cowpea chlorotic mottle bromovirus (CCMV) resulted in the recovery of an unusual recombinant virus, 3-57, which caused a symptomless infection of cowpeas but formed no detectable virions. Sequence analysis of cDNA clones derived from 3-57 determined that mutations near the 5' terminus of the capsid protein gene introduced an early translational termination codon. Further mutations introduced a new in-frame start codon that allowed translation of the 3' two-thirds of the capsid protein gene. Based on the mutations observed in 3-57, wild-type CCMV clones were modified to determine if the carboxyl two-thirds of the capsid protein functions independently of the complete protein in long-distance movement. Analysis of these mutants determined that while virion formation is not required for systemic infection, the carboxy-terminal two-thirds of the capsid protein is both required and sufficient for systemic movement of viral RNA. This indicates that the CCMV capsid protein is multifunctional, with a distinct long-distance movement function in addition to its role in virion formation.  相似文献   

15.
In the spherical virion of the parvovirus minute virus of mice, several amino acid side chains of the capsid were previously found to be involved in interactions with the viral single-stranded DNA molecule. We have individually truncated by mutation to alanine many (ten) of these side chains and analyzed the effects on capsid assembly, stability and conformation, viral DNA encapsidation, and virion infectivity. Mutation of residues Tyr-270, Asp-273, or Asp-474 led to a drastic reduction in infectivity. Mutant Y270A was defective in capsid assembly; mutant D273A formed stable capsids, but it was essentially unable to encapsidate the viral DNA or to externalize the N terminus of the capsid protein VP2, a connected conformational event. Mutation of residues Asp-58, Trp-60, Asn-183, Thr-267, or Lys-471 led to a moderate reduction in infectivity. None of these mutations had an effect on capsid assembly or stability, or on the DNA encapsidation process. However, those five mutant virions were substantially less stable than the parental virion in thermal inactivation assays. The results with this model spherical virus indicate that several capsid residues that are found to be involved in polar interactions or multiple hydrophobic contacts with the viral DNA molecule contribute to preserving the active conformation of the infectious viral particle. Their effect appears to be mediated by the non-covalent interactions they establish with the viral DNA. In addition, at least one acidic residue at each DNA-binding region is needed for DNA packaging.  相似文献   

16.
Two acidic domains of the Potato leafroll virus (PLRV) coat protein, separated by 55 amino acids and predicted to be adjacent surface features on the virion, were the focus of a mutational analysis. Eleven site-directed mutants were generated from a cloned infectious cDNA of PLRV and delivered to plants by Agrobacterium-mediated mechanical inoculation. Alanine substitutions of any of the three amino acids of the sequence EWH (amino acids 170 to 172) or of D177 disrupted the ability of the coat protein to assemble stable particles and the ability of the viral RNA to move systemically in four host plant species. Alanine substitution of E109, D173, or E176 reduced the accumulation of virus in agrobacterium-infiltrated tissues, the efficiency of systemic infection, and the efficiency of aphid transmission relative to wild-type virus, but the mutations did not affect virion stability. A structural model of the PLRV capsid predicted that the amino acids critical for virion assembly were located within a depression at the center of a coat protein trimer. The other amino acids that affected plant infection and/or aphid transmission were predicted to be located around the perimeter of the depression. PLRV virions play key roles in phloem-limited virus movement in plant hosts as well as in transport and persistence in the aphid vectors. These results identified amino acid residues in a surface-oriented loop of the coat protein that are critical for virus assembly and stability, systemic infection of plants, and movement of virus through aphid vectors.  相似文献   

17.
Viral coat proteins function in virion assembly and virus biology in a tightly coordinated manner with a role for virtually every amino acid. In this study, we demonstrated that the coat protein (CP) of Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) is unusually tolerant of extensive deletions, with continued virion assembly and/or systemic infection found after extensive deletions are made. A series of deletion and point mutations was created in the CP cistron of wild-type and/or green fluorescent protein-tagged WSMV, and the effects of these mutations on cell-to-cell and systemic transport and virion assembly of WSMV were examined. Mutants with overlapping deletions comprising N-terminal amino acids 6 to 27, 36 to 84, 85 to 100, 48 to 100, and 36 to 100 or the C-terminal 14 or 17 amino acids systemically infected wheat with different efficiencies. However, mutation of conserved amino acids in the core domain, which may be involved in a salt bridge, abolished virion assembly and cell-to-cell movement. N-terminal amino acids 6 to 27 and 85 to 100 are required for efficient virion assembly and cell-to-cell movement, while the C-terminal 65 amino acids are dispensable for virion assembly but are required for cell-to-cell movement, suggesting that the C terminus of CP functions as a dedicated cell-to-cell movement determinant. In contrast, amino acids 36 to 84 are expendable, with their deletion causing no obvious effects on systemic infection or virion assembly. In total, 152 amino acids (amino acids 6 to 27 and 36 to 100 and the 65 amino acids at the C-terminal end) of 349 amino acids of CP are dispensable for systemic infection and/or virion assembly, which is rare for multifunctional viral CPs.  相似文献   

18.
Interactions between viral glycoproteins, matrix protein and nucleocapsid sustain assembly of parainfluenza viruses at the plasma membrane. Although the protein interactions required for virion formation are considered to be highly specific, virions lacking envelope glycoprotein(s) can be produced, thus the molecular interactions driving viral assembly and production are still unclear. Sendai virus (SeV) and human parainfluenza virus type 1 (hPIV1) are highly similar in structure, however, the cytoplasmic tail sequences of the envelope glycoproteins (HN and F) are relatively less conserved. To unveil the specific role of the envelope glycoproteins in viral assembly, we created chimeric SeVs whose HN (rSeVhHN) or HN and F (rSeVh(HN+F)) were replaced with those of hPIV1. rSeVhHN grew as efficiently as wt SeV or hPIV1, suggesting that the sequence difference in HN does not have a significant impact on SeV replication and virion production. In sharp contrast, the growth of rSeVh(HN+F) was significantly impaired compared to rSeVhHN. rSeVh(HN+Fstail) which expresses a chimeric hPIV1 F with the SeV cytoplasmic tail sequence grew similar to wt SeV or rSeVhHN. Further analysis indicated that the F cytoplasmic tail plays a critical role in cell surface expression/accumulation of HN and F, as well as NP and M association at the plasma membrane. Trafficking of nucelocapsids in infected cells was not significantly affected by the origin of F, suggesting that F cytoplasmic tail is not involved in intracellular movement. These results demonstrate the role of the F cytoplasmic tail in accumulation of structural components at the plasma membrane assembly sites.  相似文献   

19.
Virions of Barley stripe mosaic virus (BSMV) were neglected for more than thirty years after their basic properties were determined. In this paper, the physicochemical characteristics of BSMV virions and virion-derived viral capsid protein (CP) were analyzed, namely, the absorption and intrinsic fluorescence spectra, circular dichroism spectra, differential scanning calorimetry curves, and size distributions by dynamic laser light scattering. The structural properties of BSMV virions proved to be intermediate between those of Tobacco mosaic virus (TMV), a well-characterized virus with rigid rod-shaped virions, and flexuous filamentous plant viruses. The BSMV virions were found to be considerably more labile than expected from their rod-like morphology and a distant sequence relation of the BSMV and TMV CPs. The circular dichroism spectra of BSMV CP subunits incorporated into the virions, but not subunits of free CP, demonstrated a significant proportion of beta-structure elements, which were proposed to be localized mostly in the protein regions exposed on the virion outer surface. These beta-structure elements likely formed during virion assembly can comprise the N- and C-terminal protein regions unstructured in the non-virion CP and can mediate inter-subunit interactions. Based on computer-assisted structure modeling, a model for BSMV CP subunit structural fold compliant with the available experimental data was proposed.  相似文献   

20.
It is generally accepted that in order to establish a systemic infection in a plant, viruses move from the initially infected cell to the vascular tissues by cell-to-cell movement through plasmodesmata (PD), and load into the vascular conducting tubes (i.e. phloem sieve elements and xylem vessel elements) for long-distance movement. The viral unit in these movements can be a virion or a yet-to-be-defined ribonucleic protein (RNP) complex. Using live-cell imaging, our laboratory has previously demonstrated that membrane-bound replication complexes move cell-to-cell during turnip mosaic virus (TuMV) infection. Our recent study shows that these membrane-bound replication complexes end up in the vascular conducting tubes, which is likely the case for potato virus X (PVX) also. The presence of TuMV-induced membrane complexes in xylem vessels suggests that viral components could also be found in other apoplastic regions of the plant, such as the intercellular space. This possibility may have implications regarding how we approach the study of plant innate immune responses against viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号