首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present study, mineralization of an aromaticN-heterocyclic molecule, indole, by microorganisms present in anaerobically digested sewage sludge was examined. The first step in indole mineralization was the formation of a hydroxylated intermediate, oxindole. The rate of transformation of indole to oxindole and its subsequent disappearance was dependent on the concentration of inoculum and indole and the incubation temperature. Methanogenesis appeared to be the dominant process in the mineralization of indole in 10% digested sludge even in the presence of high concentrations of sulfate. Enrichment of the digested sludge with sulfate as an electron acceptor allowed the isolation of a metabolically stable mixed culture of anaerobic bacteria which transformed indole to oxindole and acetate, and ultimately to methane and carbon dioxide. This mixed culture exhibited a predominance of sulfate-reducers over methanogens with more than 75% of the substrate mineralized to carbon dioxide. The investigation demonstrates that indole can be transformed by both methanogenic and sulfate-reducing microbial populations.  相似文献   

2.
This study examined whether the abundance and expression of microbial 16S rRNA genes were associated with elemental concentrations and substrate conversion biokinetics in 20 full‐scale anaerobic digesters, including seven municipal sewage sludge (SS) digesters and 13 industrial codigesters. SS digester contents had higher methane production rates from acetate, propionate and phenyl acetate compared to industrial codigesters. SS digesters and industrial codigesters were distinctly clustered based on their elemental concentrations, with higher concentrations of NH3‐N, Cl, K and Na observed in codigesters. Amplicon sequencing of 16S rRNA genes and reverse‐transcribed 16S rRNA revealed divergent grouping of microbial communities between mesophilic SS digesters, mesophilic codigesters and thermophilic digesters. Higher intradigester distances between Archaea 16S rRNA and rRNA gene profiles were observed in mesophilic codigesters, which also had the lowest acetate utilization biokinetics. Constrained ordination showed that microbial rRNA and rRNA gene profiles were significantly associated with maximum methane production rates from acetate, propionate, oleate and phenyl acetate, as well as concentrations of NH3‐N, Fe, S, Mo and Ni. A co‐occurrence network of rRNA gene expression confirmed the three main clusters of anaerobic digester communities based on active populations. Syntrophic and methanogenic taxa were highly represented within the subnetworks, indicating that obligate energy‐sharing partnerships play critical roles in stabilizing the digester microbiome. Overall, these results provide new evidence showing that different feed substrates associate with different micronutrient compositions in anaerobic digesters, which in turn may influence microbial abundance, activity and function.  相似文献   

3.
Microbial population dynamics were investigated during start-up and during periods of overload conditions in anaerobic co-digesters treating municipal solid waste and sewage sludge. Changes in community structure were monitored using ribosomal RNA-based oligonucleotide probe hybridization to measure the abundance of syntrophic propionate-oxidizing bacteria (SPOB), saturated fatty acid-beta-oxidizing syntrophs (SFAS), and methanogens. These changes were linked to traditional performance parameters such as biogas production and volatile fatty acid (VFA) concentrations. Digesters with high levels of Archaea started up successfully. Methanosaeta concilii was the dominant aceticlastic methanogen in these systems. In contrast, digesters that experienced a difficult start-up period had lower levels of Archaea with proportionally more abundant Methanosarcina spp. Syntrophic propionate-oxidizing bacteria and saturated fatty acid-beta-oxidizing syntrophs were present at low levels in all digesters, and SPOB appeared to play a role in stabilizing propionate levels during start-up of one digester. Digesters with a history of poor performance tolerated a severe organic overload event better than digesters that had previously performed well. It is hypothesized that higher levels of SPOB and SFAS and their methanogenic partners in previously unstable digesters are responsible for this behavior.  相似文献   

4.
Rozanova  E. P.  Borzenkov  I. A.  Tarasov  A. L.  Suntsova  L. A.  Dong  Ch. L.  Belyaev  S. S.  Ivanov  M. V. 《Microbiology》2001,70(1):102-110
Thermophilic sulfate-reducing bacteria (SRB) oxidizing lactate, butyrate, and C12–C16 n-alkanes of oil at a temperature of 90°C were isolated from samples of water and oil originating from oil reservoirs of the White Tiger high-temperature oil field (Vietnam). At the same time, no thermophiles were detected in the injected seawater, which contained mesophilic microorganisms and was the site of low-temperature processes of sulfate reduction and methanogenesis. Thermophilic SRB were also found in samples of liquid taken from various engineering reservoirs used for oil storage, treatment, and transportation. These samples also contained mesophilic SRB, methanogens, aerobic oil-oxidizing bacteria, and heterotrophs. Rates of bacterial production of hydrogen sulfide varied from 0.11 to 2069.63 at 30°C and from 1.18 to 173.86 at 70°C g S/(l day); and those of methane production, varied from 58.4 to 100 629.8 nl CH4/(l day) (at 30°C). The sulfur isotopic compositions of sulfates contained in reservoir waters and of hydrogen sulfide of the accompanying gas indicate that bacterial sulfate reduction might be effective in the depth of the oil field.  相似文献   

5.
This study investigated the microbial community of the sulfate-reducing up-flow sludge bed (SRUSB) of a novel sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI®) process for saline sewage treatment. The investigation involved a lab-scale SANI® system treating synthetic saline sewage and a pilot-scale SANI® plant treating 10 m3/day of screened saline sewage. Sulfate-reducing bacteria (SRB) were the dominant population, responsible for more than 80% of the chemical oxygen demand removal, and no methane-producing archaea were detected in both SRUSBs. Thermotogales-like bacteria were the dominant SRB in the pilot-scale SRUSB while Desulforhopalus-like bacteria were the major species in the lab-scale SRUSB.  相似文献   

6.
Sulfate reduction by a syntrophic propionate-oxidizing bacterium   总被引:3,自引:0,他引:3  
The syntrophic propionate-oxidizing bacterium MPOB was able to grow in the absence of methanogens by coupling the oxidation of propionate to the reduction of sulfate. Growth on propionate plus sulfate was very slow (=0.024 day–1). An average growth yield was found of 1.5 g (dry weight) per mol of propionate. MPOB grew even slower than other sulfate-reducing syntrophic propionate-oxidizing bacteria. The growth rates and yields of strict sulfate-reducing bacteria (Desulfobulbus sp.) grown on propionate plus sulfate are considerably higher.  相似文献   

7.
The microbial population structure and function of natural anaerobic communities maintained in laboratory fixed-bed biofilm reactors were tracked before and after a major perturbation, which involved the addition of sulfate to the influent of a reactor that had previously been fed only glucose (methanogenic), while sulfate was withheld from a reactor that had been fed both glucose and sulfate (sulfidogenic). The population structure, determined by using phylogenetically based oligonucleotide probes for methanogens and sulfate-reducing bacteria, was linked to the functional performance of the biofilm reactors. Before the perturbation, the methanogenic reactor contained up to 25% methanogens as well as 15% sulfate-reducing bacteria, even though sulfate was not present in the influent of this reactor. Methanobacteriales and Desulfovibrio spp. were the most abundant methanogens and sulfate-reducing bacteria, respectively. The presence of sulfate-reducing bacteria (primarily Desulfovibrio spp. and Desulfobacterium spp.) in the absence of sulfate may be explained by their ability to function as proton-reducing acetogens and/or fermenters. Sulfate reduction began immediately following the addition of sulfate consistent with the presence of significant levels of sulfate-reducing bacteria in the methanogenic reactor, and levels of sulfate-reducing bacteria increased to a new steady-state level of 30 to 40%; coincidentally, effluent acetate concentrations decreased. Notably, some sulfate-reducing bacteria (Desulfococcus/Desulfosarcina/Desulfobotulus group) were more competitive without sulfate. Methane production decreased immediately following the addition of sulfate; this was later followed by a decrease in the relative concentration of methanogens, which reached a new steady-state level of approximately 8%. The changeover to sulfate-free medium in the sulfidogenic reactor did not cause a rapid shift to methanogenesis. Methane production and a substantial increase in the levels of methanogens were observed only after approximately 50 days following the perturbation.  相似文献   

8.
Anaerobic digestion (AD) is widely used in treating the sewage sludge, as it can reduce the amount of sludge, eliminate pathogens and produce biofuel. To enhance the operational performance and stability of anaerobic bioreactors, operational and conventional chemical data from full-scale sludge anaerobic digesters were collected over a 2-year period and summarized, and the microbial community diversity of the sludge sample was investigated at various stages of the AD process. For the purpose of distinguishing between the functional and community diversity of the microbes, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) software was used to impute the prevalence of 16S rDNA marker gene sequences in the difference in various sludge samples. Meanwhile, a taxa analysis was also carried out to investigate the different sludge samples. The microbial community diversity analysis of one AD sludge sample showed that the most dominant bacterial genera were Saccharicrinis, Syntrophus, Anaerotruncus and Thermanaerothrix. Among archaea, acetoclastic Methanosaeta represented 56.0 %, and hydrogenotrophic Methanospirillum, Methanoculleus, Methanothermus and Methanolinea accounted for 41.3 % of all methanogens. The taxa, genetic and functional prediction analyses of the feedstock and AD sludge samples suggested great community diversity differences between them. The taxa of bacteria in two AD sludge samples were considerably different, but the abundances of the functional KEGG pathways took on similar levels. The numbers of identified pathogens were significantly lower in the digested sludge than in the feedstock, but the PICRUSt results showed the difference in “human diseases” abundances in the level-1 pathway between the two sludge samples was small.  相似文献   

9.
Methane emission from paddy fields may be reduced by the addition of electron acceptors to stimulate microbial populations competitive to methanogens. We have studied the effects of ferrihydrite and gypsum (CaSO4·2H2O) amendment on methanogenesis and population dynamics of methanogens after flooding of Italian rice field soil slurries. Changes in methanogen community structure were followed by archaeal small subunit (SSU) ribosomal DNA (rDNA)- and rRNA-based terminal restriction fragment length polymorphism analysis and by quantitative SSU rRNA hybridization probing. Under ferrihydrite amendment, acetate was consumed efficiently (<60 μM) and a rapid but incomplete inhibition of methanogenesis occurred after 3 days. In contrast to unamended controls, the dynamics of Methanosarcina populations were largely suppressed as indicated by rDNA and rRNA analysis. However, the low acetate availability was still sufficient for activation of Methanosaeta spp., as indicated by a strong increase of SSU rRNA but not of relative rDNA frequencies. Unexpectedly, rRNA amounts of the novel rice cluster I (RC-I) methanogens increased significantly, while methanogenesis was low, which may be indicative of transient energy conservation coupled to Fe(III) reduction by these methanogens. Under gypsum addition, hydrogen was rapidly consumed to low levels (~0.4 Pa), indicating the presence of a competitive population of hydrogenotrophic sulfate-reducing bacteria (SRB). This was paralleled by a suppressed activity of the hydrogenotrophic RC-I methanogens as indicated by the lowest SSU rRNA quantities detected in all experiments. Full inhibition of methanogenesis only became apparent when acetate was depleted to nonpermissive thresholds (<5 μM) after 10 days. Apparently, a competitive, acetotrophic population of SRB was not present initially, and hence, acetotrophic methanosarcinal populations were less suppressed than under ferrihydrite amendment. In conclusion, although methane production was inhibited effectively under both mitigation regimens, different methanogenic populations were either suppressed or stimulated, which demonstrates that functionally similar disturbances of an ecosystem may result in distinct responses of the populations involved.  相似文献   

10.
An aggressive start-up strategy was used to initiate codigestion in two anaerobic, continuously mixed bench-top reactors at mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. The digesters were inoculated with mesophilic anaerobic sewage sludge and cattle manure and were fed a mixture of simulated municipal solid waste and biosolids in proportions that reflect U.S. production rates. The design organic loading rate was 3.1 kg volatile solids/m3/day and the retention time was 20 days. Ribosomal RNA-targeted oligonucleotide probes were used to determine the methanogenic community structure in the inocula and the digesters. Chemical analyses were performed to evaluate digester performance. The aggressive start-up strategy was successful for the thermophilic reactor, despite the use of a mesophilic inoculum. After a short start-up period (20 days), stable performance was observed with high gas production rates (1.52 m3/m3/day), high levels of methane in the biogas (59%), and substantial volatile solids (54%) and cellulose (58%) removals. In contrast, the mesophilic digester did not respond favorably to the start-up method. The concentrations of volatile fatty acids increased dramatically and pH control was difficult. After several weeks of operation, the mesophilic digester became more stable, but propionate levels remained very high. Methanogenic population dynamics correlated well with performance measures. Large fluctuations were observed in methanogenic population levels during the start-up period as volatile fatty acids accumulated and were subsequently consumed. Methanosaeta species were the most abundant methanogens in the inoculum, but their levels decreased rapidly as acetate built up. The increase in acetate levels was paralleled by an increase in Methanosarcina species abundance (up to 11.6 and 4.8% of total ribosomal RNA consisted of Methanosarcina species ribosomal RNA in mesophilic and thermophilic digesters, respectively). Methanobacteriaceae were the most abundant hydrogenotrophic methanogens in both digesters, but their levels were higher in the thermophilic digester.  相似文献   

11.
Phenotypic characteristics of 60 strains ofPropionibacterium isolated from anaerobic hybrid digesters treating landfill leachate and a baker's yeast factory effluent were analysed using numerical taxonomy. With the use of the SSM similarity coefficient, 92% of the anaerobic digester strains were grouped in eight major clusters. The isolates were identified by relating them to specific type strains and comparison of phenotypic characteristics. These clusters were equated with the classical speciesP. acidipropionici, P. freudenreichii, P. jensenii andP. thoenii using the current classification system. Some of the digester isolates were identified to specifies level using the current identification system, but based on overall similarity they were clustered among members of another species. Furthermore, the data indicated that there was low similarity between the digester isolates and the type strains ofP. jensenii andP. thoeni. A hypothesis is presented as to the role of these propionic acid-producing bacteria during the granulation process found in anaerobic digesters.  相似文献   

12.
Four mesophilic, irregular, rod-shaped methanogenic bacteria were isolated from decomposing refuse recovered from laboratory-scale reactors and a municipal solid waste landfill. H2/CO2 was the only substrate on which the isolates could grow in a complex medium. Isolates grew between either 25° or 30° and 45°C and between pH 6 and 8. One isolate exhibited growth at pH 5. Growth of each isolate was enhanced by yeast extract and inhibited by anaerobic sewage sludge supernatant fluid. No isolate showed greater than 25% lysis on exposure to 1% sodium dodecyl sulphate (SDS) for 24 h, as is typical of methanogens with a proteinaceous cell wall. The physiological traits of the methanogens isolated here are similar to many previously characterized isolates.  相似文献   

13.
Methanogen population in a marine biofilm corrosive to mild steel   总被引:2,自引:0,他引:2  
This study was conducted to analyze the methanogen population in a corrosive marine biofilm based on 16S rDNA analysis, using a PCR-cloning-sequencing approach. There were 80 methanogen clones developed from the PCR-amplified DNA extracted from the biofilm on the mild steel surface. All clones were categorized into one of five operational taxonomy units (OTUs). Two OTUs (comprising 57 clones) were affiliated with the acetotrophic Methanosaeta genus; the remaining three OTUs (23 clones) were affiliated with the hydrogenotrophic genera of Methanogenium, Methanoplanus and Methanocalculus. The hydrogenotrophic methanogens could directly cause metal corrosion through cathodic depolarization, whereas the acetotrophic methanogens grew syntrophically with corrosion-causing sulfate-reducing bacteria, as observed by fluorescent in situ hybridization, and thus contribute indirectly to metal corrosion.  相似文献   

14.
The phylogenetic and physiological characteristics of mesophilic and thermophilic bacteria isolated from a field-scale sewage sludge composter were determined by 16S rDNA and phenotype analyses. Of the 34 mesophilic isolates, 5 (15%), 16 (47%), and 3 (9%) displayed amylase, protease, and lipase activities, respectively. Among these isolates, the following species were identified based on their 16S rRNA gene sequences: Aneurinibacillus aneurinilyticus, Bacillus fortis, Bacillus subtilis, Brachybacterium paraconglomeratum, Brevibacterium otitidis, Dietzia maris, Pseudomonas xiamenensis, Staphylococcus lentus, Thermobifida fusca, Ureibacillus thermosphaericus, and Vagococcus lutrae. However, 15 isolates could not be identified as known taxa, thus indicating new bacterial taxa. Of these new taxa, it is likely that NoID A plays an important role in organic matter decomposition during composting based on its physiological characteristics. Sapporo sewage sludge compost contains a microbial ecosystem with novel bacterial biodiversity, comprising a high percentage of previously unrecognized species. This study improves our knowledge of the unique bacteria in sewage sludge compost, providing a future resource for bacterial genetic information and bacterial species of agricultural benefit.  相似文献   

15.
The influence of compost as inoculum during continuous anaerobic digestion of fodder beet silage was studied over 330 days. Two simultaneously driven mesophilic fermentors (Inoc-1/Inoc-2) were inoculated with manure and sewage sludge. Only the digester Inoc-2 was inoculated additionally with compost. After 160 days fermentor Inoc-2 reached a hydraulic retention time (HRT) around 15 days whereas Inoc-1 remained at a HRT of 40d. After changing the substrate feed from one to three times a day both digesters stabilised at a shorter HRT; Inoc-2 at 10 days and Inoc-1 around 20 days. An additional inoculation of fermentor Inoc-1 by compost shortened the HRT to 10 days and revealed a minor increased gas production of about 6%. Fluorescence in situ hybridization indicated that probably an archaeal population shift was responsible for the observed stimulations. An addition of compost induced a methanogenic community change towards hydrogenotrophic methanogens.  相似文献   

16.
Competition for ethanol between sulfate-reducing and fermenting bacteria   总被引:2,自引:0,他引:2  
Competition for ethanol between the sulfate-reducing bacteria Desulfobulbus propionicus, Desulfotomaculum orientis, Desulfovibrio vulgaris Marburg, Desulfovibrio gigas, Desulfovibrio desulfuricans Essex and the fermenting bacteria Pelobacter propionicus and Acetobacterium carbinolicum were studied in batch culture. A number of these bacteria was also chosen for competition experiments under ethanol limitation in chemostat culture. The maximum growth rates determined by washout experiments were higher for the fermenting bacteria (max=0.096 resp. 0.335h–1) than for the sulfate-reducing bacteria (max0.03h–1). In contrast, the saturation concentrations for half maximum growth rates (Ks values) for ethanol were lower for the sulfate-reducing bacteria (Ks5 M) than for the fermenting bacteria (Ks50 M). In batch culture competition experiments the fermenting bacteria turned out to be the better competitors, degrading 51–80% of the ethanol added. In competition experiments with ethanollimited chemostat cultures the sulfate-reducing bacteria Desulfobulbus propionicus and Desulfovibrio vulgaris outcompeted Pelobacter propionicus at dilution rates below their maximum specific growth rates. At a high dilution rate, a fast growing population of Desulfobulbus propionicus originated and was enriched in the chemostat during the competition experiment.  相似文献   

17.
Anaerobic fermentative degradation of resorcinol and resorcylates was studied in enrichment cultures inoculated with marine or freshwater sediments or digested sludge. -Resorcylate (3,5-dihydroxybenzoate) was degraded very rapidly to acetate and methane by enrichment cultures inoculated with freshwater sediment or sewage sludge, but degradation was slow in enrichments from marine habitats. The freshwater cultures did not degrade any other related phenolic substrates. Inhibition of methanogenic bacteria by bromoethanesulfonate and acetylene led to enhanced acetate formation indicating homoacetogenic hydrogen oxidation. With resorcinol (1,3-dihydroxybenzene) and - and -resorcylate (2,4- and 2,6-dihydroxybenzoate), two different types of Gram-positive spore-forming strict anaerobes were isolated, which both did not grow with -resorcylate. Both were assigned to the genus Clostridium. From freshwater enrichments, six strains were isolated in defined coculture with Campylobacter sp. They fermented resorcinol and - and -resorcylate stoichiometrically to acetate and butyrate. No interspecies hydrogen transfer to methanogenic or other anaerobic bacteria was found. None out of numerous organic nutrients tested substituted for Campylobacter sp. as partner in defined cultures; the nutritive dependence of this bacterium could not be elucidated. Isolates from marine sediments formed acetate and hydrogen from resorcyclic compounds, and depended on syntrophic association with hydrogenscavenging anaerobes such as methanogens.  相似文献   

18.
Summary Membrane inlet mass spectrometry was used to monitor liquid phase hydrogen and methane concentrations in samples from laboratory mesophilic (37°C) and thermophilic (55°C) anaerobic digesters supplied with a glucose based medium. The Ks obtained for H2 utilisation for the mesophilic system was 5.5 M compared with 90 M for the thermophilic system. Under overload situations of fatty acids or glucose, hydrogen became more apparent in the mesophilic system in contrast to the thermophilic system in which even gross overload gave only transient detectable hydrogen production.  相似文献   

19.

Objective

To assess the effect of small temperature increases in mesophilic sludge-based digesters in order to develop and evaluate strategies for improving the biogas production in full-scale digesters.

Results

Methane production was strongly affected by small temperature differences, and this result was consistent across samples from 15 full-scale digesters. The specific methane yield varied between 42 and 97.5 ml g VS?1 after 15 days of incubation at 35 °C, and improved when increasing the digester temperature to 39 °C. Only a limited quantity of additional gas was required to balance out the cost of heating and a positive energy balance was obtained. Further increases in temperature, in some cases, negatively affected the production when operated at 42 °C compared to 39 °C.

Conclusions

Small temperature increases should be applied to mesophilic sludge-based digesters to optimize the biogas production and is applicable to digesters operated in the lower mesophilic temperature range.
  相似文献   

20.
Summary Bacterial sulphate reduction and the interaction between sulphate reduction and methane production was studied in an unadapted and sulphate-adapted thermophilic anaerobic sludge digestor. Addition of sulphate to a concentration of 5 mm (100 times the background level) did not influence gas production or volatile fatty acid concentration compared to the control digestor. When sulphate reduction was not limited by the sulphate concentration, the sulphate-adapted digestor had a sulphate reduction rate of 910 mol l–1 day compared with 17 mol l–1 day in the control digestor. The results indicate that the potential for sulphate reduction is low in a thermophilic sewage sludge digestor receiving a low sulphate concentration. Counts of sulphate-reducing bacteria and methanogens showed that sulphate-reducing bacteria were found only in significant numbers in the sulphate-adapted digestor and only with H2/CO2 as substrate. Only low numbers of acetate-utilizing sulphate-reducing bacteria were found in both digestors. When using radio-labelled acetate, the relative percentage of 2-labelled acetate converted to CO2 was two to four times higher in the sulphate-adapted digestor compared to the control digestor. These results suggest that oxidation of acetate seems to play a larger role in the sulphate-adapted digestor.Offprint requests to: B. K. Ahring  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号