首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
Summary Canavanine kills Chlamydomonas reinhardi because it is incorporated into protein. This has made it possible to develop a convenient method for isolating mutants which are conditionally defective in protein synthesis. Sixty percent of all mutants isolated by this method prove to have reversible defects in protein synthesis. These mutants have a variety of phenotypes.  相似文献   

2.
Amputating the flagella of Chlamydomonas reinhardtii stimulates increased synthesis of many flagellar proteins within 30 min. We have isolated a series of mutants which are defective in this stimulation, taking advantage of the fact that cells which cannot stimulate flagellar protein synthesis cannot regenerate flagella. More than a dozen mutants which have flagella, but cannot regenerate them after amputation, were isolated and studied by in vivo labeling to identify those non-regenerator mutants which were specifically defective in the induction of flagellar protein synthesis. Ten such mutants have been identified, and in each of them flagellar amputation does not stimulate the synthesis of any of the major flagellar proteins. At least four of the mutants display an interesting conditional phenotype. The synthesis of flagellar proteins after deflagellation is defective only in gametic cells; vegetative cells of these mutants are capable of flagellar protein synthesis after flagellar amputation.  相似文献   

3.
This study concerns the correlation between the type of mutation in a bacterial gene and the ability of the mutant organism to produce immunologically cross-reacting material (CRM). Ninety-five mutants of the A gene of the histidine operon in Salmonella typhimurium have been separated into three classes, by means of mutagenesis and suppression tests, according to the classification scheme devised by H. J. Whitfield, Jr., et al.: (i) missense mutants (in which there is a single amino acid substitution in the A protein); (ii) nonsense mutants (in which various portions of the carboxyl-terminal segment of the A protein are missing); and (iii) deletion and frameshift mutants. Extracts of all mutants were also examined for the presence of CRM. At least 70% of the missense mutants produced CRM. The genetic loci affected in these mutants were randomly distributed throughout the A gene. None of the nonsense, deletion, or frameshift mutants produced CRM. The absence of CRM in the nonsense mutants is in keeping with the finding that removal of the carboxyl-terminal valine residue from the A protein by carboxypeptidase A eliminates antigenicity.  相似文献   

4.
Amputating the flagella of Chlamydomonas reinhardtii stimulates increased synthesis of many flagellar proteins within 30 min. We have isolated a series of mutants which are defective in this stimulation, taking advantage of the fact that cells which cannot stimulate flagellar protein synthesis cannot regenerate flagella. More than a dozen mutants which have flagella, but cannot regenerate them after amputation, were isolated and studied by in vivo labeling to identify those non-regenerator mutants which were specifically defective in the induction of flagellar protein synthesis. Ten such mutants have been identified, and in each of them flagellar amputation does not stimulate the synthesis of any of the major flagellar proteins. At least four of the mutants display an interesting conditional phenotype. The synthesis of flagellar proteins after deflagellation is defective only in gametic cells; vegetative cells of these mutants are capable of flagellar protein synthesis after flagellar amputation.  相似文献   

5.
The adenovirus type 12 mutants in700 and pm700 carry site-specific mutations within the reading frame encoding the E1B 19-kilodalton protein (19K protein) which prevent the production of the intact 19K protein. In cultures of human A549 cells, these mutants grow just as well as the wild-type virus does, but they display a large-plaque (lp), cytocidal (cyt) phenotype. DNA in these infected cells is not degraded, but at late times in human KB cells infected by the mutants, the mutants display a DNA degradation (deg) phenotype. The transformation phenotype of these mutants is also host range. Although the mutants are defective for transformation of the 3Y1 rat cell line, they transform rat and mouse primary kidney cells in vitro at wild-type efficiency and are capable of inducing tumors in rats. These results support the view that the type 12 E1B 19K protein is not obligatory for oncogenic transformation.  相似文献   

6.
Over 60 genes have been identified that affect protein sorting to the lysosome-like vacuole in Saccharomyces cerevisiae. Cells with mutations in these vacuolar protein sorting (vps) genes fall into seven general classes based upon their vacuolar morphology. Class A mutants have a morphologically wild type vacuole, while Class B mutants have a fragmented vacuole. There is no discernable vacuolar structure in Class C mutants. Class D mutants have a slightly enlarged vacuole, but Class E mutants have a normal looking vacuole with an enlarged prevacuolar compartment (PVC), which is analogous to the mammalian late endosome. Class F mutants have a wild type appearing vacuole as well as fragmented vacuolar structures. vps mutants have also been found with a tubulo-vesicular vacuole structure. vps mutant morphology is pertinent, as mutants of the same class may work together and/or have a block in the same general step in the vacuolar protein sorting pathway. We probed PVC morphology and location microscopically in live cells of several null vps mutants using a GFP fusion protein of Nhx1p, an Na(+)/H(+) exchanger normally localized to the PVC. We show that cell strains deleted for VPS proteins that have been previously shown to work together, regardless of VPS Class, have the same PVC morphology. Cell strains lacking VPS genes that have not been implicated in the same pathway show different PVC morphologies, even if the mutant strains are in the same VPS Class. These new studies indicate that PVC morphology is another tier of classification that may more accurately identify proteins that function together in vacuolar protein sorting than the original vps mutation classes.  相似文献   

7.
Seventy independent mutants have been analyzed affecting a major protein, polypeptide II, of the outer cell envelope membrane from Escherichia coli K12. They were classified as nonsense mutants of the amber type (20%), mutants most likely of the missense type possessing the protein at normal concentrations (9%), and mutants either missing the protein or harboring it at much reduced concentrations for unknown reasons (71%). Forty of the mutants were analyzed genetically and all were found to map at or near ompA, the structural gene for protein II. Two-dimensional electrophoretic analyses of envelopes from such mutants revealed an unusual heterogeneity of the protein which on such patterns appeared as at least 12 well separated spots, and the majority of these is due to artifacts of the method but apparently specific for this protein. In no case was a polypeptide fragment found in envelopes from the nonsense mutants. The results are discussed regarding two different phages which use the protein as a receptor and concerning the biosynthetic incorporation of the protein into the outer membrane.  相似文献   

8.
Four substitutions at serine residue 160 which increase the activity of the sigma 54-dependent activator protein NTRC in the absence of NTRB have been analysed in detail. Mutagenesis of the putative phosphoacceptor site of NTRC and analysis of double mutants indicate that the positive control function of the S160W and S160C mutants is phosphorylation-dependent, whereas the activity of the S160Y and S160F mutants is phosphorylation-independent. This was confirmed with two purified mutant proteins in vitro. Occupancy of tandem NTRC-binding sites upstream of the Klebsiella pneumoniae nifL promoter by S160W protein is also phosphorylation-dependent in contrast to occupancy by S160F protein, confirming that both the DNA-binding and activator functions of NTRC are influenced by phosphorylation. The S160W and S160C mutants are apparently more responsive than wild-type protein to 'cross-talk' by other members of the histidine protein kinase family but are less responsive to phosphorylation and dephosphorylation mediated by NTRB.  相似文献   

9.
Molecular defects in Drosophila rhodopsin mutants   总被引:6,自引:0,他引:6  
Four well characterized Drosophila rhodopsin (ninaE) mutants possess low levels of rhodopsin in their major class of photoreceptors. The molecular defect present in each strain was determined by isolating and sequencing the mutant genes. Two missense mutants encode proteins which have arginine residues positioned within membrane-spanning domains. The third missense mutant eliminates a proline found near an extracellular domain/membrane-spanning domain interface. Thus, the low levels of rhodopsin protein found in these mutants result directly from changes in protein structure which likely affect the positioning and stability of membrane-spanning domains. The fourth and most severe mutation is a nonsense mutation.  相似文献   

10.
Summary Among mutants of E. coli selected for temperaturesensitive growth, four were found to possess alterations in ribosomal proteins L7/L12. Of these, three apparently lack protein L7, the acetylated form of protein L12. Genetic analyses have revealed that the mutation responsible for this alteration maps at a locus around 34 min of the current E. coli genetic map, which is clearly different from the location for the structural gene for protein L7/L12 which is situated at 89 min. Hence, the gene affected in these mutants was termed rimL. Tryptic and thermolysin fingerprints of the protein L12 purified from the rimL mutants showed a profile indistinguishable from that of wild-type protein. It was found that the acetylase activity specific for protein L12 was negligible, when assayed in vitro, in the high-speed supernatant prepared from mutant cells. These results indicated that the three mutants contain mutations in the gene rimL that codes for an acetylating enzyme specific for ribosomal protein L12.Previous paper in this series is Isono and Isono (1980)  相似文献   

11.
Transposon (Tn5) insertion mutants were isolated in Pseudomonas aeruginosa PAO. These mutants were screened for expression of the ferripyochelin-binding protein with monoclonal antibody in a whole-cell immunoblot assay. Fourteen mutants were identified which did not express ferripyochelin-binding protein on the cell surface. These mutants did not take up 59Fe-labeled pyochelin and grew slowly in the presence of iron chelators.  相似文献   

12.
The Escherichia coli adhesin involved in diffuse adherence (AIDA-I) is a multifunctional autotransporter protein that mediates bacterial aggregation and biofilm formation, as well as adhesion and invasion of cultured epithelial cells. To elucidate the structure-function relationships of AIDA-I, we performed transposon-based linker scanning mutagenesis and constructed mutants with site-directed deletions. Twenty-nine different mutants with insertions that did not affect protein expression were obtained. Eleven mutants were deficient for one or two but not all of the functions associated with the expression of AIDA-I. Functional characterization of the transposon mutants and of an additional deletion mutant suggested that the N-terminal third of mature AIDA-I is involved in binding of this protein to cultured epithelial cells. The purified product of the putative domain could bind to cultured epithelial cells, confirming the importance of this region in adhesion. We also identified several different mutants in which invasion and adhesion were changed to different extents and two mutants in which autoaggregation and biofilm formation were also affected differently. These results suggest that although conceptually linked, adhesion and invasion, as well as autoaggregation and biofilm formation, are phenomena that may rely on distinct mechanisms when they are mediated by AIDA-I. This study sheds new light on the workings of a protein belonging to an emerging family of strikingly versatile virulence factors.  相似文献   

13.
The v-myb oncogene of avian myeloblastosis virus causes acute myelomonocytic leukemia in chickens and transforms avian myeloid cells in vitro. Its protein product p48v-myb is a nuclear, sequence-specific, DNA-binding protein which activates gene expression in transient DNA transfection studies. To investigate the relationship between transformation and trans-activation by v-myb, we constructed 15 in-frame linker insertion mutants. The 12 mutants which transformed myeloid cells also trans-activated gene expression, whereas the 3 mutants which did not transform also did not trans-activate. This implies that trans-activation is required for transformation by v-myb. One of the transformation-defective mutants localized to the cell nucleus but failed to bind DNA. The other two transformation-defective mutants localized to the cell nucleus and bound DNA but nevertheless failed to trans-activate. These latter mutants define two distinct domains of p48v-myb which control trans-activation by DNA-bound protein, one within the amino-terminal DNA-binding domain itself and one in a carboxyl-terminal domain which is not required for DNA binding.  相似文献   

14.
M Gentzsch  W Tanner 《The EMBO journal》1996,15(21):5752-5759
The transfer of mannose to seryl and threonyl residues of secretory proteins is catalyzed by a family of protein mannosyltransferases coded for by seven genes (PMT1-7). Mannose dolichylphosphate is the sugar donor of the reaction, which is localized at the endoplasmic reticulum. By gene disruption and crosses all single, double and triple mutants of genes PMT1-4 were constructed. Two of the double and three of the triple mutants were not able to grow under normal conditions; three of these mutants could grow, however, when osmotically stabilized. The various mutants were extensively characterized concerning growth, morphology and their sensitivity to killer toxin K1, caffeine and calcofluor white. O-Mannosylation of gp115/Gas1p was affected only in pmt4 mutants, whereas glycosylation of chitinase was mainly affected in pmt1 and pmt2 mutants. The results show that protein O-glycosylation is essential for cell wall rigidity and cell integrity and that this protein modification, therefore, is vital for Saccharomyces cerevisiae.  相似文献   

15.
16.
A screen for nonsliding mutants of Mycobacterium smegmatis yielded 20 mutants with transposon insertions in the mps gene, which is involved in glycopeptidolipid biosynthesis. One mutant had an insertion in a gene predicted to encode a membrane transport protein. All mutants lacked glycopeptidolipids and were unable to form biofilms on polyvinyl chloride.  相似文献   

17.
Outer membrane protein e is induced in wild-type cells, just like alkaline phosphatase and some other periplasmic proteins, by growth under phosphatase limitation. nmpA and nmpB mutants, which synthesize protein e constitutively, are shown also to produce the periplasmic enzyme alkaline phosphatase constitutively. Alternatively, individual phoS, phoT, and phoR mutants as well as pit pst double mutants, all of which are known to produce alkaline phosphatase constitutively, were found to be constitutive for protein e. Also, the periplasmic space of most nmpA mutants and of all nmpB mutants grown in excess phosphate was found to contain, in addition to alkaline phosphatase, at least two new proteins, a phenomenon known for individual phoT and phoR mutants as well as for pit pst double mutants. The other nmpA mutants as well as phoS mutants lacked one of these extra periplasmic proteins, namely the phosphate-binding protein. From these data and from the known positions of the mentioned genes on the chromosomal map, it is concluded that nmpB mutants are identical to phoR mutants. Moreover, some nmpA mutants were shown to be identical to phoS mutants, whereas other nmpA mutants are likely to contain mutations in one of the genes phoS, phoT, or pst.  相似文献   

18.
Alterations in cytoplasmic membrane and ribosomes from sucrose-dependent spectinomycin-resistant (Sucd-Spcr) mutants of Escherichia coli, mutants that are resistant to spectinomycin in the presence of 20% sucrose but sensitive in the absence of sucrose, were studied. The protein composition of cytoplasmic membrane was analyzed by gel electrophoresis on polyacrylamide gel containing 8 M urea and 0.5% sodium dodecyl sulfate, which assured the reproducible separation of 28 protein bands. A major protein band, I-19, was missing in all cytoplasmic membrane preparations from 10 Sucd-Spcr mutants. Besides protein I-19, proteins I-13 and I-24 were missing in some mutants. On the other hand, the protein composition of cytoplasmic membrane from a sucrose-independent spectinomycin-resistant mutant was indistinguishable from that from the wild-type strain. The polypeptide synthetic activity of ribosomes from Sucd-Spcr mutants was resistant to spectinomycin. Studies on a revertant obtained from one of these mutants without any selection for sensitivity to spectinomycin revealed that a single mutation was responsible for both the ribosomal alteration, i.e., spectinomycin resistance, and the lack of protein I-19 in the cytoplasmic membrane. Studies on a transductant obtained with a Sucd-SPcr mutant as the donor also confirmed the single-mutation concept. It was concluded that in Sucd-SPcr mutants an alteration in the ribosomes caused the deletion of protein I-19 from cytoplasmic membrane.  相似文献   

19.
The pem locus, which is responsible for the stable maintenance of the low copy number plasmid R100, contains the pemK gene, whose product has been shown to be a growth inhibitor. Here, we attempted to isolate mutants which became tolerant to transient induction of the PemK protein. We obtained 20 mutants (here called pkt for PemK tolerance), of which 9 were temperature sensitive for growth. We analyzed the nine mutants genetically and found that they could be classified into three complementation groups, pktA, pktB and pktC, which corresponded to three genes, ileS, gltX and asnS, encoding isoleucyl-, glutamyl- and asparaginyl-tRNA synthetases, respectively. Since these aminoacyl-tRNA synthetase mutants did not produce the PemK protein upon induction at the restrictive temperature, these mutants could be isolated because they behaved as if they were tolerant to the PemK protein. The procedure is therefore useful for isolating temperature-sensitive mutants of aminoacyl-tRNA synthetases.  相似文献   

20.
The presence of multiple homologues of the same yeast Atg protein endows an additional layer of complexity on the autophagy pathway in higher eukaryotes. The physiological function of the individual genes, however, remains largely unknown. Here we investigated the role of the two Caenorhabditis elegans homologues of the cysteine protease Atg4 in the pathway responsible for degradation of protein aggregates. Loss of atg-4.1 activity causes defective degradation of a variety of protein aggregates, whereas atg-4.2 mutants remove these substrates normally. LGG-1 precursors accumulate in atg-4.1 mutants, but not atg-4.2 mutants. LGG-1 puncta, formation of which depends on lipidation of LGG-1, are present in atg-4.1 and atg-4.2 single mutants, but are completely absent in atg-4.1; atg-4.2 double mutants. In vitro enzymatic analysis revealed that ATG-4.1 processes LGG-1 precursors about 100-fold more efficiently than ATG-4.2. Expression of a mutant form LGG-1, which mimics the processed precursor, rescues the defective autophagic degradation of protein aggregates in atg-4.1 mutants and, to a lesser extent, in atg-4.1; atg-4.2 double mutants. Our study reveals that ATG-4.1 and ATG-4.2 are functionally redundant yet display differential LGG-1 processing and deconjugating activity in the aggrephagy pathway in C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号