共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
洪平杏(Armeniaca hongpingensis C. L. Li)是杏属的一个狭域分布种,基于形态观察被推测为杏(A.vulgaris Lam.)和梅(A. mume Sieb.)的天然杂交种,但目前尚无该种与杏、梅亲缘关系的分子系统学研究。本文以洪平杏的成株和实生苗以及包括杏、梅在内的6种(含1变种)杏属植物为研究材料,分别采用核基因(ITS和SBEI)和叶绿体基因(mat K和ycf1b)序列构建系统发育树,并采用mat K、ycf1b和SBEI基因序列构建单倍型网络图,探讨该物种与杏、梅及杏梅(A. mume Sieb. var. bungo Makino)之间的亲缘关系。基于核基因和叶绿体基因序列分别构建的系统发育树均显示,洪平杏的成株及其全部实生苗个体单独聚为一支,且具有较高的支持率(分别为99/79、71/81),独立于杏属其他种之外。而基于核基因ITS序列的系统发育分析结果表明,洪平杏除极少数成株与杏、杏梅聚为一支外,其余所有成株与实生苗聚为2大支(支持率分别为0.82和0.97),而没有克隆的与梅聚在一起。单倍型分析结果表明,该物种的成株与实生苗在SBEI和ycf1b基因序列中均未检测到杏或梅的单倍型,仅有少数(2/9)的实生苗个体在叶绿体mat K基因序列中检测到杏的单倍型。研究结果不支持将洪平杏定为杏和梅的天然杂交种的观点,推测洪平杏应为一个独立的物种,与杏之间的亲缘关系更近并且存在可检测到的基因流。 相似文献
3.
Marie-Françoise Liaud Christiane Valentin William Martin François-Yves Bouget Bernard Kloareg Rüdiger Cerff 《Journal of molecular evolution》1994,38(4):319-327
Algae are a heterogeneous group of photosynthetic eukaryotes traditionally separated into three major subdivisions: rhodophytes, chlorophytes, and chromophytes. The evolutionary origin of rhodophytes or red algae and their links to other photosynthetic and nonphotosynthetic eukaryotes have been a matter of much controversy and speculation. Here we present the first cDNAs of nuclear protein genes from red algae: Those encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from Chondrus crispus. A phylogenetic analysis including GAPDH gene sequences from a number of eukaryotic taxa, cyanobacteria, and purple bacteria suggests that chloroplasts and rhodoplasts together form a monophyletic group of cyanobacterial descent and that rhodophytes separated from chlorophytes at about the same time as animals and fungi. The composite GAPDH tree further demonstrates that chloroplast and cytosolic GAPDH genes are closely related to their homologs in cyanobacteria and purple bacteria, respectively, the presumptive ancestors of chloroplasts and mitochondria, thereby firmly establishing the endosymbiotic origin of these nuclear genes and their fixation in eukaryotic cells before the rhodophyte/chlorophyte separation. The present data are in conflict with phylogenetic inferences based on plastid-encoded rbcL sequences supporting a polyphyletic origin of rhodoplasts and chloroplasts. Comparison of rbcL to GAPDH phylogenies suggests that rbcL trees may be misleading because they are composed of branches representing ancient duplicated (paralogous) genes.
Correspondence to: R. Cerff 相似文献
4.
True fungi (Eumycota) are heterotrophic eukaryotic microorganisms encompassing ascomycetes, basidiomycetes, chytridiomycetes and zygomycetes. The natural systematics of the latter group, Zygomycota, are very poorly understood due to the lack of distinguishing morphological characters. We have determined sequences for the nuclear-encoded genes actin (act) from 82 zygomycetes representing all 54 currently recognized genera from the two zygomycetous orders Mucorales and Mortierellales. We also determined sequences for translation elongation factor EF-1α (tef) from 16 zygomycetes (total of 96,837 bp). Phylogenetic analysis in the context of available sequence data (total 2,062 nucleotide positions per species) revealed that current classification schemes for the mucoralean fungi are highly unnatural at the family and, to a large extent, at the genus level. The data clearly indicate a deep, ancient and distinct dichotomy of the orders Mucorales and Mortierellales, which are recognized only in some zygomycete systems. Yet at the same time the data show that two genera – Umbelopsis and Micromucor – previously placed within the Mortierellales on the basis of their weakly developed columella (a morphological structure of the sporangiophore well-developed within all Mucorales) are in fact members of the Mucorales. Phylogenetic analyses of the encoded amino acid sequences in the context of homologues from eukaryotes and archaebacterial outgroups indicate that the Eumycota studied here are a natural group but provide little or no support for the monophyly of either zygomycetes, ascomycetes or basidiomycetes. The data clearly indicate that a complete revision of zygomycete natural systematics is necessary. 相似文献
5.
Takezaki N Figueroa F Zaleska-Rutczynska Z Takahata N Klein J 《Molecular biology and evolution》2004,21(8):1512-1524
The origin of tetrapods is a major outstanding issue in vertebrate phylogeny. Each of the three possible principal hypotheses (coelacanth, lungfish, or neither being the sister group of tetrapods) has found support in different sets of data. In an attempt to resolve the controversy, sequences of 44 nuclear genes encoding amino acid residues at 10,404 positions were obtained and analyzed. However, this large set of sequences did not support conclusively one of the three hypotheses. Apparently, the coelacanth, lungfish, and tetrapod lineages diverged within such a short time interval that at this level of analysis, their relationships appear to be an irresolvable trichotomy. 相似文献
6.
7.
Estela R. álvarez-Martínez ángel Valverde Martha Helena Ramírez-Bahena Paula García-Fraile Carmen Tejedor Pedro F. Mateos Nery Santillana Doris Zú?iga Alvaro Peix Encarna Velázquez 《Archives of microbiology》2009,191(8):659-668
In this work, we analysed the core and symbiotic genes of rhizobial strains isolated from Vicia sativa in three soils from the Northwest of Spain, and compared them with other Vicia endosymbionts isolated in other geographical locations. The analysis of rrs, recA and atpD genes and 16S–23S rRNA intergenic spacer showed that the Spanish strains nodulating V. sativa are phylogenetically close to those isolated from V. sativa and V. faba in different European, American and Asian countries forming a group related to Rhizobium leguminosarum. The analysis of the nodC gene of strains nodulating V. sativa and V. faba in different continents showed they belong to a phylogenetically compact group indicating that these legumes are restrictive
hosts. The results of the nodC gene analysis allow the delineation of the biovar viciae showing a common phylogenetic origin of V. sativa and V. faba endosymbionts in several continents. Since these two legume species are indigenous from Europe, our results suggest a world
distribution of strains from R. leguminosarum together with the V. sativa and V. faba seeds and a close coevolution among chromosome, symbiotic genes and legume host in this Rhizobium–Vicia symbiosis. 相似文献