首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A transient reduction of cell coupling during reperfusion limits myocardial necrosis, but little is known about its arrhythmogenic effects during ischemia-reperfusion. Thus, we analyzed the effect of an extreme reduction in the number of gap junction channels or in their unitary conductance on ventricular arrhythmias during myocardial ischemia-reperfusion. Available gap junction uncouplers have electrophysiological effects independent from their uncoupling actions. Thus, isolated hearts from Cx43(Cre-ER(T)/fl) mice treated with 4-hydroxytamoxifen (4-OHT), from Cx43KI32 mice [in which connexin (Cx)43 was replaced with Cx32], and from control animals were submitted to regional ischemia and reperfusion, and spontaneous and induced ventricular arrhythmias were monitored. In additional hearts, changes in activation time and electrical impedance during global ischemia-reperfusion were assessed. In contrast to treatment with 4-OHT, replacement of Cx43 with Cx32 did not modify baseline activation time or electrical impedance. However, the number of extrasistole and ventricular tachyarrhythmias was higher in isolated hearts from Cx43KI32 and 4-OHT-treated Cx43(Cre-ER(T)/fl) animals versus wild-type animals during normoxia, ischemia (12.29 ± 3.26 and 52.17 ± 22.51 vs. 3.00 ± 1.46 spontaneous tachyarrhythmias, P < 0.05), and reperfusion. The impairment in conduction during ischemia was steeper in isolated hearts from Cx43KI32 animals, whereas changes in myocardial impedance were attenuated during ischemia in both transgenic models, suggesting altered cell-to-cell coupling at baseline. In conclusion, both reduction of Cx43 with 4-OHT and replacement of Cx43 by less-conductive Cx32 were arrhythmogenic under normoxia and ischemia-reperfusion, despite no major effects on baseline electrical properties. These results suggest that modifications in gap junction communication silent under normal conditions may be arrhythmogenic during ischemia-reperfusion.  相似文献   

2.
Connexin 43 (Cx43) is localized at left ventricular (LV) gap junctions and in cardiomyocyte mitochondria. A genetically induced reduction of Cx43 as well as blockade of mitochondrial Cx43 import abolishes the infarct size (IS) reduction by ischemic preconditioning (IP). With progressing age, Cx43 content in ventricular and atrial tissue homogenates is reduced. We now investigated whether or not 1) the mitochondrial Cx43 content is reduced in aged mice hearts and 2) IS reduction by IP is lost in aged mice hearts in vivo. Confirming previous results, sarcolemmal Cx43 content was reduced in aged (>13 mo) compared with young (<3 mo) C57Bl/6 mice hearts, whereas the expression levels of protein kinase C epsilon and endothelial nitric oxide synthase remained unchanged. Also in mitochondria isolated from aged mice LV myocardium, Western blot analysis indicated a 40% decrease in Cx43 content compared with mitochondria isolated from young mice hearts. In young mice hearts, IP by one cycle of 10 min ischemia and 10 min reperfusion reduced IS (% of area at risk) following 30 min regional ischemia and 120 min reperfusion from 67.7 +/- 3.3 (n = 17) to 34.2 +/- 6.6 (n = 5, P < 0.05). In contrast, IP's cardioprotection was lost in aged mice hearts, since IS in nonpreconditioned (57.5 +/- 4.0, n = 10) and preconditioned hearts (65.4 +/- 6.3, n = 8, P = not significant) was not different. In conclusion, mitochondrial Cx43 content is decreased in aged mouse hearts. The reduced levels of Cx43 may contribute to the age-related loss of cardioprotection by IP.  相似文献   

3.
Connexin 43 (Cx43), which is highly expressed in the heart and especially in cardiomyocytes, interferes with the expression of nitric oxide synthase (NOS) isoforms. Conversely, Cx43 gene expression is down‐regulated by nitric oxide derived from the inducible NOS. Thus, a complex interplay between Cx43 and NOS expression appears to exist. As cardiac mitochondria are supposed to contain a NOS, we now investigated the expression of NOS isoforms and the nitric oxide production rate in isolated mitochondria of wild‐type and Cx43‐deficient (Cx43Cre‐ER(T)/fl) mice hearts. Mitochondria were isolated from hearts using differential centrifugation and purified via Percoll gradient ultracentrifugation. Isolated mitochondria were stained with an antibody against the mitochondrial marker protein adenine‐nucleotide‐translocator (ANT) in combination with either a neuronal NOS (nNOS) or an inducible NOS (iNOS) antibody and analysed using confocal laser scanning microscopy. The nitric oxide formation was quantified in purified mitochondria using the oxyhaemoglobin assay. Co‐localization of predominantly nNOS (nNOS: 93 ± 4.1%; iNOS: 24.6 ± 7.5%) with ANT was detected in isolated mitochondria of wild‐type mice. In contrast, iNOS expression was increased in Cx43Cre‐ER(T)/fl mitochondria (iNOS: 90.7 ± 3.2%; nNOS: 53.8 ± 17.5%). The mitochondrial nitric oxide formation was reduced in Cx43Cre‐ER(T)/fl mitochondria (0.14 ± 0.02 nmol/min./mg protein) in comparison to wild‐type mitochondria (0.24 ± 0.02 nmol/min./mg). These are the first data demonstrating, that a reduced mitochondrial Cx43 content is associated with a switch of the mitochondrial NOS isoform and the respective mitochondrial rate of nitric oxide formation.  相似文献   

4.
Ischemic preconditioning (IPC) before sustained ischemia decreases myocardial infarct size mediated in part via protection of cardiac mitochondria. Reversible blockade of electron transport at complex I immediately before sustained ischemia also preserves mitochondrial respiration and decreases infarct size. We proposed that IPC would attenuate electron transport from complex I as a potential effector mechanism of cardioprotection. Isolated, Langendorff-perfused rat hearts underwent IPC (3 cycles of 5-min 37 degrees C global ischemia and 5-min reperfusion) or were perfused for 40 min without ischemia as controls. Subsarcolemmal (SSM) and interfibrillar (IFM) populations of mitochondria were isolated. IPC did not decrease ADP-stimulated respiration measured in intact mitochondria using substrates that donate reducing equivalents to complex I. Maximally expressed complex I activity measured as rotenone-sensitive NADH:ubiquinone oxidoreductase in detergent-solubilized mitochondria was also unaffected by IPC. Thus the protection of IPC does not occur as a consequence of a partial decrease in complex I activity leading to a decrease in integrated respiration through complex I. IPC and blockade of electron transport both converge on mitochondria as effectors of cardioprotection; however, each modulates mitochondrial metabolism during ischemia by different mechanisms to achieve cardioprotection.  相似文献   

5.
We analyzed the expression of connexin(Cx)43 in proliferating and differentiating C(2)C(12) cells and in myoblasts obtained from newborn mice. Cx43 was present in both cell types and under both conditions. The functional role of gap junctional communication (GJC) during terminal differentiation was evaluated in C(2)C(12) myoblasts in the presence or absence of the gap junction blocker 18beta-glycyrrhetinic acid (beta-GA). Differentiation was temporally analyzed through myogenin expression, activity of creatine kinase (CK), and yield of multinucleated cells. In cells treated with beta-GA, the CK activity and myotube formation were reversibly blocked. While in control cultures positive myogenin expression was seen in cell clusters, in beta-GA treated cultures the myogenin immunoreactivity was detected in few, preferentially sparse cells. The role of Cx43 during terminal differentiation was evaluated in cultures of myoblasts obtained from Cx43(Cre-ER(T)/fl) transgenic mice. Inducible deletion of Cx43 was obtained upon activation of Cre-ER(T) via 4-OH-tamoxifen applications. Cx43 deletion led to a drastic decrease in myogenin expression at 24 h of differentiation as compared to myoblasts from control mice. Our results indicate that Cx43-containing gap junctions are required for normal skeletal muscle terminal differentiation. These channels might provide a pathway for the intercellular transfer of signals involved in myogenesis.  相似文献   

6.
Cardiac ischemia decreases complex III activity, cytochrome c content, and respiration through cytochrome oxidase in subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). The reversible blockade of electron transport with amobarbital during ischemia protects mitochondrial respiration and decreases myocardial injury during reperfusion. These findings support that mitochondrial damage occurs during ischemia and contributes to myocardial injury during reperfusion. The current study addressed whether ischemic damage to the electron transport chain (ETC) increased the net production of reactive oxygen species (ROS) from mitochondria. SSM and IFM were isolated from 6-mo-old Fisher 344 rat hearts following 25 min global ischemia or following 40 min of perfusion alone as controls. H(2)O(2) release from SSM and IFM was measured using the amplex red assay. With glutamate as a complex I substrate, the net production of H(2)O(2) was increased by 178 +/- 14% and 179 +/- 17% in SSM and IFM (n = 9), respectively, following ischemia compared with controls (n = 8). With succinate as substrate in the presence of rotenone, H(2)O(2) increased by 272 +/- 22% and 171 +/- 21% in SSM and IFM, respectively, after ischemia. Inhibitors of electron transport were used to assess maximal ROS production. Inhibition of complex I with rotenone increased H(2)O(2) production by 179 +/- 24% and 155 +/- 14% in SSM and IFM, respectively, following ischemia. Ischemia also increased the antimycin A-stimulated production of H(2)O(2) from complex III. Thus ischemic damage to the ETC increased both the capacity and the net production of H(2)O(2) from complex I and complex III and sets the stage for an increase in ROS production during reperfusion as a mechanism of cardiac injury.  相似文献   

7.
Skeletal muscle exhibits considerable variation in mitochondrial content among fiber types, but it is less clear whether mitochondria from different fiber types also present specific functional and regulatory properties. The present experiment was undertaken on ten 170-day-old pigs to compare functional properties and control of respiration by adenine nucleotides in mitochondria isolated from predominantly slow-twitch (Rhomboideus (RM)) and fast-twitch (Longissimus (LM)) muscles. Mitochondrial ATP synthesis, respiratory control ratio (RCR) and ADP-stimulated respiration with either complex I or II substrates were significantly higher (25-30%, P<0.05) in RM than in LM mitochondria, whereas no difference was observed for basal respiration. Based on mitochondrial enzyme activities (cytochrome c oxidase [COX], F0F1-ATPase, mitochondrial creatine kinase [mi-CK]), the higher ADP-stimulated respiration rate of RM mitochondria appeared mainly related to a higher maximal oxidative capacity, without any difference in the maximal phosphorylation potential. Mitochondrial K(m) for ADP was similar in RM (4.4+/-0.9 microM) and LM (5.9+/-1.2 microM) muscles (P>0.05) but the inhibitory effect of ATP was more marked in LM (P<0.01). These findings demonstrate that the regulation of mitochondrial respiration by ATP differs according to muscle contractile type and that absolute muscle oxidative capacity not only relies on mitochondrial density but also on mitochondrial functioning per se.  相似文献   

8.
Nitric oxide (NO) and prostaglandins (PG) together play a role in regulating blood flow during exercise. NO also regulates mitochondrial oxygen consumption through competitive binding to cytochrome-c oxidase. Indomethacin uncouples and inhibits the electron transport chain in a concentration-dependent manner, and thus, inhibition of NO and PG synthesis may regulate both muscle oxygen delivery and utilization. The purpose of this study was to examine the independent and combined effects of NO and PG synthesis blockade (L-NMMA and indomethacin, respectively) on mitochondrial respiration in human muscle following knee extension exercise (KEE). Specifically, this study examined the physiological effect of NO, and the pharmacological effect of indomethacin, on muscle mitochondrial function. Consistent with their mechanism of action, we hypothesized that inhibition of nitric oxide synthase (NOS) and PG synthesis would have opposite effects on muscle mitochondrial respiration. Mitochondrial respiration was measured ex vivo by high-resolution respirometry in saponin-permeabilized fibers following 6 min KEE in control (CON; n = 8), arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA; n = 4) and Indo (n = 4) followed by combined inhibition of NOS and PG synthesis (L-NMMA + Indo, n = 8). ADP-stimulated state 3 respiration (OXPHOS) with substrates for complex I (glutamate, malate) was reduced 50% by Indo. State 3 O(2) flux with complex I and II substrates was reduced less with both Indo (20%) and L-NMMA + Indo (15%) compared with CON. The results indicate that indomethacin reduces state 3 mitochondrial respiration primarily at complex I of the respiratory chain, while blockade of NOS by L-NMMA counteracts the inhibition by Indo. This effect on muscle mitochondria, in concert with a reduction of blood flow accounts for in vivo changes in muscle O(2) consumption during combined blockade of NOS and PG synthesis.  相似文献   

9.
Use of norepinephrine to increase blood pressure in septic animals has been associated with increased efficiency of hepatic mitochondrial respiration. The aim of this study was to evaluate whether the same effect could be reproduced in isolated hepatic mitochondria after prolonged in vivo exposure to faecal peritonitis. Eighteen pigs were randomized to 27?h of faecal peritonitis and to a control condition (n?=?9 each group). At the end, hepatic mitochondria were isolated and incubated for one hour with either norepinephrine or placebo, with and without pretreatment with the specific receptor antagonists prazosin and yohimbine. Mitochondrial state 3 and state 4 respiration were measured for respiratory chain complexes I and II, and state 3 for complex IV using high-resolution respirometry, and respiratory control ratios were calculated. Additionally, skeletal muscle mitochondrial respiration was evaluated after incubation with norepinephrine and dobutamine with and without the respective antagonists (atenolol, propranolol and phentolamine for dobutamine). Faecal peritonitis was characterized by decreasing blood pressure and stroke volume, and maintained systemic oxygen consumption. Neither faecal peritonitis nor any of the drugs or drug combinations had measurable effects on hepatic or skeletal muscle mitochondrial respiration. Norepinephrine did not improve the efficiency of complex I- and complex II-dependent isolated hepatic mitochondrial respiration [respiratory control ratio (RCR) complex I: 5.6?±?5.3 (placebo) vs. 5.4?±?4.6 (norepinephrine) in controls and 2.7?±?2.1 (placebo) vs. 2.9?±?1.5 (norepinephrine) in septic animals; RCR complex II: 3.5?±?2.0 (placebo) vs. 3.5?±?1.8 (norepinephrine) in controls; 2.3?±?1.6 (placebo) vs. 2.2?±?1.1 (norepinephrine) in septic animals]. Prolonged faecal peritonitis did not affect either hepatic or skeletal muscle mitochondrial respiration. Subsequent incubation of isolated mitochondria with norepinephrine and dobutamine did not significantly influence their respiration.  相似文献   

10.
Protein kinase Cepsilon (PKCepsilon) plays a central role in ischemic preconditioning (IP) in mice and rabbits, and activated PKCepsilon colocalizes with and phosphorylates connexin43 (Cx43) in rats and humans. Whether or not Cx43 contributes to the mechanism(s) of IP in vivo is yet unknown. Therefore, wild-type (n = 8) and heterozygous Cx43-deficient mice (n = 8) were subjected to 30 min occlusion and 120 min reperfusion of the left anterior descending coronary artery. IP was induced by one cycle of 5 min occlusion and 10 min reperfusion (n = 8/8 mice) before the sustained occlusion. Infarct size was reduced by IP in wild-type mice [11.3 +/- 3.4% vs. 23.7 +/- 7.2% of the left ventricle (LV), P < 0.05] but not in Cx43-deficient mice (26.0 +/- 6.0% vs. 25.1 +/- 3.8% of LV). Also, three cycles of 5 min occlusion and 10 min reperfusion (n = 5) did not induce protection in Cx43-deficient mice (27.6 +/- 5.5 % of LV). Thus Cx43 contributes to the protection of IP in mice in vivo.  相似文献   

11.
The sulfonylurea receptor-2 (SUR2) is a subunit of ATP-sensitive potassium channels (K(ATP)) in heart. Mice with the SUR2 gene disrupted (SUR2m) are constitutively protected from ischemia-reperfusion (I/R) cardiac injury. This was surprising because K(ATP), either sarcolemmal or mitochondrial or both, are thought to be important for cardioprotection. We hypothesized that SUR2m mice have an altered mitochondrial phenotype that protects against I/R. Mitochondrial membrane potential (ΔΨ(m)), tolerance to Ca(2+) load, and reactive oxygen species (ROS) generation were studied by fluorescence-based assays, and volumetric changes in response to K(+) were measured by light scattering in isolated mitochondria. For resting SUR2m mitochondria compared with wild type, the ΔΨ(m) was less polarized (46.1 ± 0.4 vs. 51.9 ± 0.6%), tolerance to Ca(2+) loading was increased (163 ± 2 vs. 116 ± 2 μM), and ROS generation was enhanced with complex I [8.5 ± 1.2 vs. 4.9 ± 0.2 arbitrary fluorescence units (afu)/s] or complex II (351 ± 51.3 vs. 166 ± 36.2 afu/s) substrates. SUR2m mitochondria had greater swelling in K(+) medium (30.2 ± 3.1%) compared with wild type (14.5 ± 0.6%), indicating greater K(+) influx. Additionally, ΔΨ(m) decreased and swelling increased in the absence of ATP in SUR2m, but the sensitivity to ATP was less compared with wild type. When the mitochondria were subjected to hypoxia-reoxygenation, the decrease in respiration rates and respiratory control index was less in SUR2m. ΔΨ(m) maintenance in the SUR2m intact myocytes was also more tolerant to metabolic inhibition. In conclusion, the cardioprotection observed in the SUR2m mice is associated with a protected mitochondrial phenotype resulting from enhanced K(+) conductance that partially dissipated ΔΨ(m). These results have implications for possible SUR2 participation in mitochondrial K(ATP).  相似文献   

12.
The role of astrocytic gap junctions in ischemia remains controversial. Several studies support that astrocytic gap junctions play a role in the spread of hypoxic injury, while other reports have demonstrated that blocking astrocytic gap junctions increases neuronal death. Using a stroke model on animals in which the astrocytic gap junction protein connexin43 (Cx43) was compromised, we explored the neuroprotective role of astrocytic gap junctions. A focal brain stroke was performed on heterozygous Cx43 null [Cx43(+/-)] mice, wild type [Cx43(+/+)] mice, astrocyte-directed Cx43 deficient [Cx43(fl/ fl)/hGFAP-cre] mice (here designated as Cre(+) mice), and their corresponding controls [Cx43(fl/fl)] (here designated as Cre(-) mice). Four days following stroke, ischemic lesions were measured for size and analyzed immunohistochemically. Stroke volume was significantly larger in Cx43(+/-) and Cre(+) mice compared to Cx43(+/+) and Cre(-) mice, respectively. Apoptosis as detected by TUNEL labeling and caspase-3 immunostaining was amplified in Cx43(+/-) and Cre(+) mice compared to their control groups. Furthermore, increased inflammation as characterized by the immunohistochemical staining of the microglial marker CD11b was observed in the Cre(+) mice penumbra. Astrocytic gap junctions may reduce apoptosis and inflammation in the penumbra following ischemic insult, suggesting that coupled astrocytes fulfill a neuroprotective role under ischemic stroke conditions.  相似文献   

13.
Rat hepatic mitochondrial permeability and succinate + valinomycin-dependent swelling were studied in the presence of hydroxy derivatives of polychlorinated biphenyls (PCBOHs), Aroclor 1254 (ARO) and combinations of both. PCBOHs with two or more chlorines and pKas greater than 8.0 (PCBOH I) induced passive swelling in a potassium acetate-sucrose medium (pH 7.2), maximally stimulated succinate respiration, and suppressed ADP-stimulated H+ uptake. Mono- and certain dichlorinated biphenylols with similar high pKas (PCBOH II) were ineffective. Para-hydroxy PCBs with chlorines substituted in the 3,5 positions and with pKas near 6.8 (PCBOH III) inhibited succinate + valinomycin swelling and ADP-stimulated H+ and oxygen uptake. The efficacy of both PCBOH I and III derivatives required the presence of a hydroxyl moiety and increased directly with the degree of chlorination. Coplanarity was not a determining factor for PCBOH I compounds. ARO activated succinate + valinomycin swelling at low concentrations (3-25 nmol/mg protein) but inhibited at higher concentrations (greater than 40 nmol/mg). Activating concentrations of ARO potentiated the influence of PCBOHs on mitochondria. The uncoupling effects of the PCBOHs and ARO involved permeability changes of the inner membrane, respiratory inhibition, or combinations of both.  相似文献   

14.
Skeletal muscle (SKM) requires a large amount of energy, which is produced mainly by mitochondria, for their daily functioning. Of the several mitochondrial complexes, it has been reported that the dysfunction of complex II is associated with several diseases, including myopathy. However, the degree to which complex II contributes to ATP production by mitochondria remains unknown. As complex II is not included in supercomplexes, which are formed to produce ATP efficiently, we hypothesized that complex II-linked respiration was lower than that of complex I. In addition, differences in the characteristics of complex I and II activity suggest that different factors might regulate their function. The isolated mitochondria from gastrocnemius muscle was used for mitochondrial respiration measurement and immunoblotting in male C57BL/6J mice. Student paired t-tests were performed to compare means between two groups. A univariate linear regression model was used to determine the correlation between mitochondrial respiration and proteins. Contrary to our hypothesis, complex II-linked respiration was not significantly less than complex I-linked respiration in SKM mitochondria (complex I vs complex II, 3402 vs 2840 pmol/[s × mg]). Complex I-linked respiration correlated with the amount of complex I incorporated in supercomplexes (r = 0.727, p < 0.05), but not with the total amount of complex I subunits. In contrast, complex II-linked respiration correlated with the total amount of complex II (r = 0.883, p < 0.05), but not with the amount of each complex II subunit. We conclude that both complex I and II play important roles in mitochondrial respiration and that the assembly of both supercomplexes and complex II is essential for the normal functioning of complex I and II in mouse SKM mitochondria.  相似文献   

15.
Zungu M  Felix R  Essop MF 《Mitochondrion》2006,6(6):315-322
We investigated the direct effects of two selective PPARalpha ligands, fenofibrate and Wy-14,643, on mitochondrial respiratory function using isolated rat cardiac mitochondria. Isolated left ventricular mitochondria were incubated with increasing concentrations of fenofibrate or Wy-14,643 (10, 100, and 500 microM) and mitochondrial respiration determined using: malate/glutamate (complex I), succinate (complex II) and palmitoyl-l-carnitine as oxidative substrates. Our data show that acute exposure to Wy-14,643 and fenofibrate differentially perturb cardiac mitochondrial respiration i.e., fenofibrate more potently inhibited mitochondrial respiration and bioenergetic capacity compared to Wy-14,643. Moreover, we found that both agents increased uncoupling of mitochondrial oxidative phosphorylation.  相似文献   

16.
Rotenone and pyridaben were tested on activities and properties of rat brain mitochondria determining Ki (inhibitor concentration at half maximal inhibition) and Imax (% of inhibition at maximal inhibitor concentration). The assayed activities were complexes I, II and IV, respiration in states 3, 3u (uncoupled) and 4, biochemical and functional activities of mitochondrial nitric oxide synthase (mtNOS), and inner membrane potential. Selective inhibitions of complex I activity, mitochondrial respiration and membrane potential with malate-glutamate as substrate were observed, with a Ki of 0.28–0.36 nmol inhibitor/mg of mitochondrial protein. Functional mtNOS activity was half-inhibited at 0.70–0.74 nmol inhibitor/mg protein in state 3 mitochondria and at 2.52–2.98 nmol inhibitor/mg protein in state 3u mitochondria. This fact is interpreted as an indication of mtNOS being structurally adjacent to complex I with an intermolecular mtNOS-complex I hydrophobic bonding that is stronger at high Δψ and weaker at low Δψ.  相似文献   

17.
Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K(m)) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant role in mitochondrial positioning and respiratory function in cardiac and skeletal muscle.  相似文献   

18.
We analyzed the expression of connexin(Cx)43 in proliferating and differentiating C2C12cells and in myoblasts obtained from newborn mice. Cx43 was present in both cell types and under both conditions. The functional role of gap junctional communication (GJC) during terminal differentiation was evaluated in C2C12myoblasts in the presence or absence of the gap junction blocker 18β-glycyrrhetinic acid (β-GA). Differentiation was temporally analyzed through myogenin expression, activity of creatine kinase (CK), and yield of multinucleated cells. In cells treated with β-GA, the CK activity and myotube formation were reversibly blocked. While in control cultures positive myogenin expression was seen in cell clusters, in β-GA treated cultures the myogenin immunoreactivity was detected in few, preferentially sparse cells. The role of Cx43 during terminal differentiation was evaluated in cultures of myoblasts obtained from Cx43Cre-ER(T)/fltransgenic mice. Inducible deletion of Cx43 was obtained upon activation of Cre-ER(T) via 4-OH-tamoxifen applications. Cx43 deletion led to a drastic decrease in myogenin expression at 24 h of differentiation as compared to myoblasts from control mice. Our results indicate that Cx43-containing gap junctions are required for normal skeletal muscle terminal differentiation. These channels might provide a pathway for the intercellular transfer of signals involved in myogenesis.  相似文献   

19.
Genetic deficiency of Cx43 in vivo causes skeletal developmental defects, osteoblast dysfunction and perinatal lethality. To determine the role of Cx43 in the adult skeleton, we developed two models of osteoblast-specific Cx43 gene deletion using Cre mediated replacement of a "floxed" Cx43 allele with a LacZ reporter gene. Cre recombinase expression in osteoblasts was driven by either the osteocalcin OG2 promoter or the 2.3 kb fragment of the Colalpha1(I) promoter. Homozygous Cx43(fl/fl) mice, in which the Cx43 coding region is flanked by two loxP sites, were crossed with Cre expressing mice in a heterozygous Cx43-null background [Cx43(+/-); Colalpha1(I)-Cre or Cx43(+/-); OG2-Cre]. Cx43 gene ablation was demonstrated in tissues by selective X-gal staining of cells lining the endosteal surface, and in cultured osteoblastic cells from calvaria using different approaches. Although no LacZ expression was observed in proliferating calvaria cells, before osteoblast differentiation begins, post-proliferative cells isolated from conditional knockout mice [Cx43(fl/-); Colalpha1(I)-Cre or Cx43(fl/-); OG2-Cre] developed strong LacZ expression as they differentiated, in parallel to a progressive disappearance of Cx43 mRNA and protein abundance relative to controls. Selective Cre mediated Cx43 gene inactivation in bone forming cells will be useful to determine the role of Cx43 in adult skeletal homeostasis and overcome the perinatal lethality of the conventional null model.  相似文献   

20.
Introduction of the constitutively active calcineurin gene into neonatal rat cardiomyocytes by adenovirus resulted in decreased mitochondrial membrane potential (P < 0.05). Infection of H9c2 cells with calcineurin adenovirus resulted in increased superoxide production (P < 0.001). Transgenic mice with cardiac-specific expression of a constitutively active calcineurin cDNA (CalTG mice) exhibit a two- to threefold increase in heart size that progresses to heart failure. We prepared mitochondria enriched for the subsarcolemmal population from the hearts of CalTG mice and transgene negative littermates (control). Intact, well-coupled mitochondria prepared from one to two mouse hearts at a time yielded sufficient material for functional studies. Mitochondrial oxygen consumption was measured with a Clark-type oxygen electrode with substrates for mitochondrial complex II (succinate) and complex IV [tetramethylpentadecane (TMPD)/ascorbate]. CalTG mice exhibited a maximal rate of electron transfer in heart mitochondria that was reduced by approximately 50% (P < 0.002) without a loss of respiratory control. Mitochondrial respiration was unaffected in tropomodulin-overexpressing transgenic mice, another model of cardiomyopathy. Western blotting for mitochondrial electron transfer subunits from mitochondria of CalTG mice revealed a 20-30% reduction in subunit 3 of complex I (ND3) and subunits I and IV of cytochrome oxidase (CO-I, CO-IV) when normalized to total mitochondrial protein or to the adenine nucleotide transporter (ANT) and compared with littermate controls (P < 0.002). Impaired mitochondrial electron transport was associated with high levels of superoxide production in the CalTG mice. Taken together, these data indicate that calcineurin signaling affects mitochondrial energetics and superoxide production. The excessive production of superoxide may contribute to the development of cardiac failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号