首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatoma-derived growth factor (HDGF) and HDGF-related proteins (HRP) belong to a gene family with a well-conserved amino acid sequence at the N-terminus (the hath region). A new member of the HDGF family in humans and mice was identified and cloned; we call it HRP-3. The deduced amino acid sequence from HRP-3 cDNA contained 203 amino acids without a signal peptide for secretion. HRP-3 has its 97-amino-acid sequence at the N-terminus, which is highly conserved with the hath region of the HDGF family proteins. It also has a putative bipartite nuclear localizing signal (NLS) sequence in a similar location in its self-specific region of HDGF and HRP-1. Northern blot analysis shows that HRP-3 is expressed predominantly in the testis and brain, to an intermediate extent in the heart, and to a slight extent in the ovaries, kidneys, spleen, and liver in humans. Transfection of green fluorescent protein (GFP)-tagged HRP-3 cDNA showed that HRP-3 translocated to the nucleus of 293 cells. GFP-HRP-3 transfectants significantly increased their DNA synthesis more than cells transfected with vector only. The HRP-3 gene was mapped to chromosome 15, region q25 by FISH analysis. These findings suggest that a new member of the HDGF gene family, HRP-3, may function mainly in the nucleus of the brain, testis, and heart, probably for cell proliferation.  相似文献   

2.
Chen FF  Lin WH  Lin SC  Kuo JH  Chu HY  Huang WC  Chuang YJ  Lee SC  Sue SC 《Glycobiology》2012,22(5):649-661
Hepatoma-derived growth factor (HDGF) recognizes cell surface heparan sulfate to promote its internalization though binding to its N-terminal HATH (homologous to amino terminus of HDGF) domain. HDGF-related proteins (HRPs) all have the HATH domain in their N terminus. In this study, we report on the commonality of heparin binding in all HRPs with a broad range of heparin-binding affinity: HRP-4 is the strongest binder, and the lens epithelium-derived growth factor shows a relatively weak binding, with binding affinities (K(D)) showing 30-fold difference in magnitude. With the HDGF HATH domain used as a model, residue K19 was the most critical basic residue in molecular recognition and protein internalization, and with its proximal proline-tryptophan-tryptophan-proline motif, coordinated a conformational change when binding to the heparin fragment. Other basic residues, K21, K61, K70, K72 and R79, confer added contribution in binding that the total ionic interaction from these residues represents more than 70% of the binding energy. Because the positive-charged residues are conserved in all HRP HATH domains, heparin binding outside of cells might be of equal importance for all HRPs in mediating downstream signaling; however, distinct effects and/or distribution might be associated with the varying affinities to heparin.  相似文献   

3.
Hepatoma-derived growth factor (HDGF)-related protein (HRP)-1, a member of the HDGF gene family, showed testis-specific expression in mice. HRP-1 expression in spermatogenesis was analyzed in the testis of normal and azoospermic mice by Northern blot and immunohistochemistry. HRP-1 gene message was not expressed in the ovary and its product was detected only in the nuclei of germ cells, not in somatic cells. The HRP-1 gene is expressed through pachytene spermatocyte to round spermatid. HRP-1 gene expression was not detected in the testis of cryptorchid mice or in some strains of mutant mice. These findings suggest that the testis-specific HRP-1 gene may play an important role in the phase around meiotic cell division.  相似文献   

4.
Among the many PWWP-containing proteins, the largest group of homologous proteins is related to hepatoma-derived growth factor (HDGF). Within a well-conserved region at the extreme N-terminus, HDGF and five HDGF-related proteins (HRPs) always have a PWWP domain, which is a module found in many chromatin-associated proteins. In this study, we determined the solution structure of the PWWP domain of HDGF-related protein-3 (HRP-3) by NMR spectroscopy. The structure consists of a five-stranded beta-barrel with a PWWP-specific long loop connecting beta2 and beta3 (PR-loop), followed by a helical region including two alpha-helices. Its structure was found to have a characteristic solvent-exposed hydrophobic cavity, which is composed of an abundance of aromatic residues in the beta1/beta2 loop (beta-beta arch) and the beta3/beta4 loop. A similar ligand binding cavity occurs at the corresponding position in the Tudor, chromo, and MBT domains, which have structural and probable evolutionary relationships with PWWP domains. These findings suggest that the PWWP domains of the HDGF family bind to some component of chromatin via the cavity.  相似文献   

5.
Hepatoma-derived growth factor-related proteins (HRP) comprise a family of 6 members, which the biological functions are still largely unclear. Here we show that during embryogenesis HRP-3 is strongly expressed in the developing nervous system. At early stages of development HRP-3 is located in the cytoplasm and neurites of cortical neurons. Upon maturation HRP-3 relocalizes continuously to the nuclei and in the majority of neurons of adult mice it is located exclusively in the nucleus. This redistribution from neurites to nuclei is also found in embryonic cortical neurons maturing in cell culture. We show that HRP-3 is necessary for proper neurite outgrowth in primary cortical neurons. To identify possible mechanisms of how HRP-3 modulate neuritogenesis we isolated HRP-3 interaction partners and demonstrate that it binds tubulin through the N-terminal so called HATH region, which is strongly conserved among members of the HRP family. It promotes tubulin polymerization, stabilizes and bundles microtubules. This activity depends on the extranuclear localization of HRP-3. HRP-3 thus could play an important role during neuronal development by its modulation of the neuronal cytoskeleton.Neuritogenesis is a key step in nervous system development in which neurons extend dendrites and axons and connect to different targets in and outside the nervous system. The proper regulation of this process is controlled by a number of extra- and intracellular molecules expressed by neurons themselves or non-neuronal cells in their surroundings. Multiple studies indicate that rearrangement of the neuronal cytoskeleton in response to extracellular signals is an important mechanism during neurite extension and pathfinding (1-3). Manipulation of the polymerization and depolymerization of microtubules has shown that regulation of microtubule assembly and maintenance is important for neuritogenesis (4). Microtubule dynamics are regulated by a huge number of regulatory proteins like tau or other microtubule-associated proteins (MAPs)4 (5). In addition, proteins like CRMP-2 that interact with tubulin dimers and accelerate the assembly of tubulin into microtubles have been shown to be involved in the regulation of neuronal polarity and neuritogenesis (6-10). Despite all advances, however, made in the understanding of the role of the cytoskeleton and its regulatory proteins during neuritic growth there are still many open questions regarding the regulation of these processes. Therefore identifying new molecules binding to and modulating the turnover of microtubules is of high interest for the understanding of how neurite outgrowth is regulated.Hepatoma-derived growth factor (HDGF) is a protein that was purified from secretions of hepatoma cells by virtue of its growth factor activity. Subsequently 5 additional proteins were identified in which the 97 N-terminal amino acid residues show strong similarity to HDGF. Accordingly this family of proteins has been termed HDGF-related proteins (HRP) (11-13). HDGF has neurotrophic activity for hippocampal, spinal, and facial motor neurons (14, 15). So far, however, no receptor or signal transduction pathway involved has been identified for any of the HRPs.Most HRPs are expressed in a variety of tissues. HRP-3, however, is the only family member in whose expression is restricted. It is only expressed in neurons and to a low extent in glial cells (16, 17). Like HDGF after transfection into human embryonic kidney cells HRP-3 exhibits proliferative activity (12). The strong and almost exclusive expression of HRP-3 in postmitotic neurons, however, suggests biological functions other than its growth factor activity (16).In the present study we examine the expression and function of HRP-3 protein during mouse embryonic neuronal development. We demonstrate that the protein locates to the cytoplasm and neurites during early nervous system development, whereas most of HRP-3 can be found in the nucleus in adult neurons. We show that HRP-3 promotes neurite growth and suggest that this is due to the interaction of HRP-3 with the tubulin component of the neuronal cytoskeleton.  相似文献   

6.
7.
8.
Hepatoma-derived growth factor (HDGF) is a nuclear protein homologous to the high-mobility group B1 family of proteins. It is known to be released from cells and to act as a trophic factor for dividing cells. In this study HDGF was increased in spinal motor neurons of a mouse model of motor neuron degeneration, polyglutamine-tract-binding protein-1 (PQBP-1) transgenic mice, before onset of degeneration. HDGF promoted neurite extension and survival of spinal motor neurons in primary culture. HDGF repressed cell death of motor neurons after facial nerve section in newborn rats in vivo. We also found a significant increase in p53 in spinal motor neurons of the transgenic mice. p53 bound to a sequence in the upstream of the HDGF gene in a gel mobility shift assay, and promoted gene expression through the cis-element in chloramphenicol acetyl transfer (CAT) assay. Finally, we found that HDGF was increased in CSF of PQBP-1 transgenic mice. Collectively, our results show that HDGF is a novel trophic factor for motor neurons and suggest that it might play a protective role against motor neuron degeneration in PQBP-1 transgenic mice.  相似文献   

9.
Hepatoma Derived Growth Factor (HDGF) is an endogenous nuclear-targeted mitogen that is linked with human disease. HDGF is a member of the weakly conserved PWWP domain family. This 70-amino acid motif, originally identified from the WHSC1 gene, has been found in more than 60 eukaryotic proteins. In addition to the PWWP domain, many proteins in this class contain known chromatin remodeling domains, suggesting a role for HDGF in chromatin remodeling. We have determined the NMR structure of the HDGF PWWP domain to high resolution using a combination of NOEs, J-couplings, and dipolar couplings. Comparison of this structure to a previously determined structure of the HDGF PWWP domain shows a significant difference in the C-terminal region. Comparison to structures of other PWWP domains shows a high degree of similarity to the PWWP domain structures from Dnmt3b and mHRP. The results of selected and amplified binding assay and NMR titrations with DNA suggest that the HDGF PWWP domain may function as a nonspecific DNA-binding domain. Based on the NMR titrations, we propose a model of the interaction of the PWWP domain with DNA.  相似文献   

10.
We found an endogenous growth factor, referred to here as heart-derived growth factor (HDGF), that stimulates the proliferation of vascular endothelial cells. HDGF was purified from bovine myocardium using a procedure that involves denaturation of undesired proteins with methanol and chloroform. Soluble HDGF was purified essentially to homogeneity in a single step by heparin affinity chromatography. The purified HDGF was identified to be acidic fibroblast growth factor based on the following properties: molecular weight of 18,000, isoelectric point of 5.2, amino acid composition and sequence, its dissociation from a heparin affinity column at 0.9 M NaCl, potentiation of activity in the presence of heparin, and antigenicity. Our yield of HDGF was 500 micrograms/kg of tissue. Antiserum raised to HDGF localized HDGF in the cardiac myocytes in culture. These data indicate that a large amount of acidic fibroblast growth factor is present in the heart, and the cardiac myocytes are likely to be a major source of it.  相似文献   

11.
Hepatoma-derived growth factor (HDGF) is highly expressed in human cancer and its expression is correlated with poor prognosis of cancer. The growth factor is known to stimulate cell growth while the underlying mechanism is however not clear. Transfection with HDGF cDNA stimulated while its specific antisense oligonucleotides repressed the growth of human hepatocellular carcinoma HepG2 cells. Furthermore, knock-down of HDGF by antisense oligos also induced apoptosis in HepG2 cells and in other human cancer cells, e.g. human squamous carcinoma A431 cells. HDGF knock-down was found to induce the expression of the pro-apoptotic protein Bad and also inactivate ERK and Akt, which in turn led to dephosphorylation of Bad at Ser-112, Ser-136, and activation of the intrinsic apoptotic pathway, i.e. depolarization of the mitochondrial membrane, release of mitochondrial cytochrome c, increase in the processing of caspase 9 and 3. As HDGF knock-down not only suppresses the growth but also induces apoptosis in human cancer cells, HDGF may therefore serve as a survival factor for human cancer cells and a potential target for cancer therapy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The HMGN proteins are a group of non-histone nuclear proteins that associate with the core nucleosome and alter the structure of the chromatin fiber. We investigated the distribution of the three best characterized HMGN family members, HMGN1, HMGN2 and HMGN3 during mouse eye development. HMGN1 protein is evenly distributed in all ocular structures of 10.5 days post-coitum (dpc) mouse embryos however, by 13.5dpc, relatively less HMGN1 is detected in the newly formed lens fiber cells compared to other cell types. In the adult, HMGN1 is detected throughout the retina and lens, although in the cornea, HMGN1 protein is predominately located in the epithelium. HMGN2 is also abundant in all ocular structures of mouse embryos, however, unlike HMGN1, intense immunolabeling is maintained in the lens fiber cells at 13.5dpc. In the adult eye, HMGN2 protein is still found in all lens nuclei while in the cornea, HMGN2 protein is mostly restricted to the epithelium. In contrast, the first detection of HMGN3 in the eye is in the presumptive corneal epithelium and lens fiber cells at 13.5dpc. In the lens, HMGN3 remained lens fiber cell preferred into adulthood. In the cornea, HMGN3 is transiently upregulated in the stroma and endothelium at birth while its expression is restricted to the corneal epithelium in adulthood. In the retina, HMGN3 upregulates around 2 weeks of age and is found at relatively high levels in the inner nuclear and ganglion cell layers of the adult retina. RT-PCR analysis determined that the predominant HMGN3 splice form found in ocular tissues is HMGN3b which lacks the chromatin unfolding domain although HMGN3a mRNA is also detected. These results demonstrate that the HMGN class of chromatin proteins has a dynamic expression pattern in the developing eye.  相似文献   

13.
Hepatoma-derived growth factor (HDGF) related protein 2 (HRP2) and lens epithelium-derived growth factor (LEDGF)/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E) 13.5. Histological examination revealed ventricular septal defect (VSD) associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s), RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf) β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality of Psip1/Hdgfrp2 double-deficient mice.  相似文献   

14.
15.
16.
Hepatoma-derived growth factor (HDGF) has proliferative, angiogenic, and neurotrophic activity. It plays a putative role in the development and progression of cancer. When expressed in cells, the mitogenic activity of HDGF depends on its nuclear localization, but it also stimulates proliferation when added to the cell culture medium. A cell surface receptor for HDGF has not been identified so far. We investigated the interaction of various purified recombinant HDGF fusion proteins with the cell surface of NIH 3T3 fibroblasts. We showed that binding of a HDGF-beta-galactosidase fusion protein to the cell surface of NIH 3T3 fibroblasts was saturable, occurred with high affinity (K(D) = 14 nm), and had a proliferative effect. We identified a peptide comprising amino acid residues 81-100 within the amino-terminal part of HDGF that bound to the cell surface of NIH 3T3 cells with saturation and affinity values similar to those of HDGF. When added to primary human fibroblasts, this peptide stimulated proliferation. Substitution of a single amino acid (K96A) within this peptide was sufficient to abolish its binding to the cell surface and its proliferative activity. In contrast, when expressed transiently in NIH 3T3 cells, a HDGF-beta-galactosidase fusion protein in which amino acid residues 81-100 were deleted still had proliferative activity, whereas a fusion protein containing only the 81-100 peptide did not. Our results suggest the existence of a plasma membrane-located HDGF receptor for which signaling depends on amino acid residues 81-100 of HDGF. This region differs from the one that has been recently identified to be essential for mitogenic activity depending on the nuclear localization of HDGF. Thus, HDGF exerts its proliferative activity via two different pathways.  相似文献   

17.
Hepatoma-derived growth factor (HDGF) was first purified as a growth factor secreted by hepatoma cells. It promotes angiogenesis and has been related to tumorigenesis. To date, little is known about the molecular mechanisms of HDGF functions and especially its routes or regulation of secretion. Here we show that secretion of HDGF requires the N-terminal 10 amino acids and that this peptide can mediate secretion of other proteins, such as enhanced green fluorescent protein, if fused to their N-terminus. Our results further demonstrate that cysteine residues at positions 12 and 108 are linked via an intramolecular disulfide bridge. Surprisingly, phosphorylation of serine 165 in the C-terminal part of HDGF plays a critical role in the secretion process. If this serine is replaced by alanine, the N-terminus is truncated, the intramolecular disulfide bridge is not formed and the protein is not secreted. In summary, these observations provide a model of how phosphorylation, a disulfide bridge and proteolytic cleavage are involved in HDGF secretion.  相似文献   

18.
19.
The five members of the human epidermal growth factor (EGF) family (EGF, transforming growth factor alpha [TGF-alpha], heparin-binding EGF-like growth factor [HB-EGF], betacellulin, and amphiregulin [AR]) are synthesized as transmembrane proteins whose extracellular domains are proteolytically processed to release the biologically active mature growth factors. These factors all activate the EGF receptor, but in contrast to EGF and TGF-alpha, the mature forms of HB-EGF and AR are also glycosylated, heparin-binding proteins. We have constructed a series of mutants to examine the influence of the distinct precursor domains in the biosynthesis of AR. The transmembrane and cytoplasmic domains of the precursor are not required for secretion of bioactive AR from either COS or mammary epithelium-derived cells, although proteolytic removal of the N-terminal pro-region is less efficient in the absence of the membrane anchor. Deletion of the N-terminal pro-region, however, results in rapid intracellular degradation of the molecule with no detectable secretion of active growth factor. AR secretion is preserved by replacing the native pro-region with the corresponding domain of the HB-EGF precursor but not with that of the TGF-alpha precursor. In the absence of any N-terminal pro-region, secretion of the molecule is restored by deleting the N-terminal heparin-binding domain of mature AR. Both EGF and TGF-alpha, in contrast, can be secreted without their pro-regions. However, if the protein is fused with the AR heparin-binding domain, TGF-alpha secretion is inhibited unless the AR pro-region is also present. We propose that the heparin-binding domain of mature AR necessitates the presence of a specific structural motif in an N-terminal pro-region to permit proper folding, and thus secretion, of a bioactive molecule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号