首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mice harboring a G12D activating Kras mutation are among the most heavily studied models in the field of pancreatic adenocarcinoma (PDAC) research. miRNAs are differentially expressed in PDAC from patients and mouse models of PDAC. To better understand the relationship that Kras activation has on miRNA expression, we profiled the expression of 629 miRNAs in RNA isolated from the pancreas of control, young, and old P48+/Cre;LSL-KRASG12D as well as PDX-1-Cre;LSL-KRASG12D mice. One hundred of the differentially expressed miRNAs had increased expression in the advanced disease (old) P48+/Cre;LSL-KRASG12D compared to wild-type mice. Interestingly, the expression of three miRNAs, miR-216a, miR-216b, and miR-217, located within a ~30-kbp region on 11qA3.3, decreased with age (and phenotype severity) in these mice. miR-216/-217 expression was also evaluated in another acinar-specific ELa-KrasG12D mouse model and was downregulated as well. As miR-216/-217 are acinar enriched, reduced in human PDAC and target KRAS, we hypothesized that they may maintain acinar differentiation or represent tumor suppressive miRNAs. To test this hypothesis, we deleted a 27.9-kbp region of 11qA3.3 containing the miR-216/-217 host gene in the mouse’s germ line. We report that germ line deletion of this cluster is embryonic lethal in the mouse. We estimate that lethality occurs shortly after E9.5. qPCR analysis of the miR-216b and miR-217 expression in the heterozygous animals showed no difference in expression, suggesting haplosufficiency by some type of compensatory mechanism. We present the differential miRNA expression in KrasG12D transgenic mice and report lethality from deletion of the miR-216/-217 host gene in the mouse’s germ line.  相似文献   

2.
Epidermal growth factor receptors (EGFR) contribute to colonic tumorigenesis in experimental models of colon cancer. We previously showed that EGFR was also required for colonic tumor promotion by Western diet. The goal of this study was to identify EGFR-regulated microRNAs that contribute to diet-promoted colonic tumorigenesis. Murine colonic tumors from Egfr(wt) and hypomorphic Egfr(wa2) mice were screened using micro RNA (miRNA) arrays and miR-143 and miR-145 changes confirmed by Northern, real-time PCR, and in situ analysis. Rodent and human sporadic and ulcerative colitis (UC)-associated colon cancers were examined for miR-143 and miR-145. Effects of EGFR on miR-143 and miR-145 expression were assessed in murine and human colonic cells and their putative targets examined in vitro and in vivo. miR-143 and miR-145 were readily detected in normal colonocytes and comparable in Egfr(wt) and Egfr(wa2) mice. These miRNAs were downregulated in azoxymethane and inflammation-associated colonic tumors from Egfr(wt) mice but upregulated in Egfr(wa2) tumors. They were also reduced in human sporadic and UC colon cancers. EGFR signals suppressed miR-143 and miR-145 in human and murine colonic cells. Transfected miR-143 and miR-145 inhibited HCT116 cell growth in vitro and in vivo and downregulated G(1) regulators, K-Ras, MYC, CCND2, cdk6, and E2F3, putative or established targets of these miRNAs. miRNA targets Ras and MYC were increased in colonic tumors from Egfr(wt) but not Egfr(wa2) mice fed a Western diet. EGFR suppresses miR-143 and miR-145 in murine models of colon cancer. Furthermore, Western diet unmasks the tumor suppressor roles of these EGFR-regulated miRNAs.  相似文献   

3.
Pancreatic cancer (PC) is a lethal malignancy primarily driven by activated Kras mutations and characterized by the deregulation of several genes including mucins. Previous studies on mucins have identified their significant role in both benign and malignant human diseases including PC progression and metastasis. However, the initiation of MUC expression during PC remains unknown because of lack of early stage tumor tissues from PC patients. In the present study, we have evaluated stage specific expression patterns of mucins during mouse PC progression in (KrasG12D;Pdx1-Cre (KC)) murine PC model from pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma (PDAC) by immunohistochemistry and quantitative real-time PCR. In agreement with previous studies on human PC, we observed a progressive increase in the expression of mucins particularly Muc1, Muc4 and Muc5AC in the pancreas of KC (as early as PanIN I) mice with advancement of PanIN lesions and PDAC both at mRNA and protein levels. Additionally, mucin expression correlated with the increased expression of inflammatory cytokines IFN-γ (p?相似文献   

4.
To understand the role of microRNAs (miRNAs) in pituitary development, a group of pituitary-specific miRNAs were identified, and Dicer1 was then conditionally knocked out using the Pitx2-Cre mouse, resulting in the loss of mature miRNAs in the anterior pituitary. The Pitx2-Cre/Dicer1 mutant mice demonstrate growth retardation, and the pituitaries are hypoplastic with an abnormal branching of the anterior lobe, revealing a role for microRNAs in pituitary development. Growth hormone, prolactin, and thyroid-stimulating hormone β-subunit expression were decreased in the Dicer1 mutant mouse, whereas proopiomelanocortin and luteinizing hormone β-subunit expression were normal in the mutant pituitary. Further analyses revealed decreased Pit-1 and increased Lef-1 expression in the mutant mouse pituitary, consistent with the repression of the Pit-1 promoter by Lef-1. Lef-1 directly targets and represses the Pit-1 promoter. miRNA-26b (miR-26b) was identified as targeting Lef-1 expression, and miR-26b represses Lef-1 in pituitary and non-pituitary cell lines. Furthermore, miR-26b up-regulates Pit-1 and growth hormone expression by attenuating Lef-1 expression in GH3 cells. This study demonstrates that microRNAs are critical for anterior pituitary development and that miR-26b regulates Pit-1 expression by inhibiting Lef-1 expression and may promote Pit-1 lineage differentiation during pituitary development.  相似文献   

5.
6.
We have previously shown that microRNAs (miRNAs) miR-760, miR-186, miR-337-3p, and miR-216b stimulate premature senescence through protein kinase CK2 (CK2) down-regulation in human colon cancer cells. Here, we examined whether these four miRNAs are involved in the replicative senescence of human lung fibroblast IMR-90 cells. miR-760 and miR-186 were significantly upregulated in replicatively senescent IMR-90 cells, and their joint action with both miR-337-3p and miR-216b was necessary for efficient downregulation of the α subunit of CK2 (CK2α) in IMR-90 cells. A mutation in any of the four miRNA-binding sequences within the CK2α 3′-untranslated region (UTR) indicated that all four miRNAs should simultaneously bind to the target sites for CK2α downregulation. The four miRNAs increased senescence-associated β-galactosidase (SA-β-gal) staining, p53 and p21Cip1/WAF1 expression, and reactive oxygen species (ROS) production in proliferating IMR-90 cells. CK2α over-expression almost abolished this event. Taken together, the present results suggest that the upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells, and their cooperative action with miR-337-3p and miR-216b may induce replicative senescence through CK2α downregulation-dependent ROS generation.  相似文献   

7.
microRNAs (miRs) modulate the expression levels of mRNAs and proteins and can thus contribute to cancer initiation and progression. In addition to their intracelluar function, miRs are released from cells and shed into the circulation. We postulated that circulating miRs could provide insight into pathways altered during cancer progression and may indicate responses to treatment. Here we focus on pancreatic cancer malignant progression. We report that changes in miR expression patterns during progression of normal tissues to invasive pancreatic adenocarcinoma in the p48-Cre/LSL-Kras(G12D) mouse model mirrors the miR changes observed in human pancreatic cancer tissues. miR-148a/b and miR-375 expression were found decreased whereas miR-10, miR-21, miR-100 and miR-155 were increased when comparing normal tissues, premalignant lesions and invasive carcinoma in the mouse model. Predicted target mRNAs FGFR1 (miR-10) and MLH1 (miR-155) were found downregulated. Quantitation of nine microRNAs in plasma samples from patients distinguished pancreatic cancers from other cancers as well as non-cancerous pancreatic disease. Finally, gemcitabine treatment of control animals and p48-Cre/LSL-Kras(G12D) animals with pancreatic cancer caused distinct and up to 60-fold changes in circulating miRs that indicate differential drug effects on normal and cancer tissues. These findings support the significance of detecting miRs in the circulation and suggests that circulating miRs could serve as indicators of drug response.  相似文献   

8.
摘要 目的:探讨miR-194-5p靶向下调 CD44 抑制胃癌肿瘤干细胞(CSCs)上皮间质转化(EMT)的相关分子机制。方法:采用 qRT-PCR检测胃腺癌细胞系(SGC-7901、MGC-803、SPAG-9和MNK-45) 和胃粘膜细胞(GES-1)中 miR-194-5p、CD44、Snail 和膜型基质金属蛋白酶-1(MT1-MMP) 表达量,Western blot检测CD44、Snail 和MT1-MMP蛋白表达量。体外构建miR-194-5p过表达和低表达质粒载体并进行慢病毒转染,实验分为过表达组、对照组和低表达组,qRT-PCR和Western blot检测miR-194-5p、CD44、Snail 和MT1-MMP的变化;CCK8法检测细胞增殖率,流式细胞术检测细胞凋亡率,Transwell实验检测细胞侵袭力,Western blot检测EMT标志物E-cadherin和N-cadherin蛋白表达量。结果:胃腺癌细胞系中miR-194-5p表达显著低于胃粘膜细胞,而CD44、Snail 和MT1-MMP表达量显著升高;SGC-7901和MGC-803与胃粘膜细胞的表达差异最明显(P<0.05)。与对照组相比,过表达组miR-194-5p表达量明显升高,CD44、Snail 和MT1-MMP表达量显著下降,细胞增殖率和侵袭力下降,凋亡率升高,E-cadherin上调,N-cadherin下调(P<0.05)。与对照组相比,低表达组miR-194-5p表达量明显下降,CD44、Snail 和MT1-MMP表达量显著增加,细胞增殖率和侵袭力升高,凋亡率下降,E-cadherin下调,N-cadherin上调(P<0.05)。结论:胃癌中miR-194-5p低表达可能发挥抑癌作用,通过下调CSCs中CD44表达进而抑制EMT的发生。  相似文献   

9.
MicroRNAs (miRNAs) are small noncoding RNAs, with a length of 19-23 nucleotides, which appear to be involved in the regulation of gene expression by inhibiting the translation of messenger RNAs carrying partially or nearly complementary sequences to the miRNAs in their 3' untranslated regions. Expression analysis of miRNAs is necessary to understand their complex role in the regulation of gene expression during the development, differentiation and proliferation of cells. Here we report on the expression profile analysis of miRNAs in human teratocarcinoma NTere2D1, mouse embryonic carcinoma P19, mouse neuroblastoma Neuro2a and rat pheochromocytoma PC12D cells, which can be induced into differentiated cells with long neuritic processes, i.e., after cell differentiation, such that the resultant cells look similar to neuronal cells. The data presented here indicate marked changes in the expression of miRNAs, as well as genes related to neuronal development, occurred in the differentiation of NTera2D1 and P19 cells. Significant changes in miRNA expression were not observed in Neuro2a and PC12D cells, although they showed apparent morphologic change between undifferentiated and differentiated cells. Of the miRNAs investigated, the expression of miRNAs belonging to the miR-302 cluster, which is known to be specifically expressed in embryonic stem cells, and of miR-124a specific to the brain, appeared to be markedly changed. The miR-302 cluster was potently expressed in undifferentiated NTera2D1 and P19 cells, but hardly in differentiated cells, such that miR-124a showed an opposite expression pattern to the miR-302 cluster. Based on these observations, it is suggested that the miR-302 cluster and miR-124a may be useful molecular indicators in the assessment of degree of undifferentiation and/or differentiation in the course of neuronal differentiation.  相似文献   

10.
K-Ras mutations are frequent in colorectal cancer (CRC), albeit K-Ras is the only Ras isoform that can elicit apoptosis. Here, we show that mutant K-Ras directly binds to the tumor suppressor RASSF1A to activate the apoptotic MST2-LATS1 pathway. In this pathway LATS1 binds to and sequesters the ubiquitin ligase Mdm2 causing stabilization of the tumor suppressor p53 and apoptosis. However, mutant Ras also stimulates autocrine activation of the EGF receptor (EGFR) which counteracts mutant K-Ras-induced apoptosis. Interestingly, this protection requires the wild-type K-Ras allele, which inhibits the MST2 pathway in part via AKT activation. Confirming the pathophysiological relevance of the molecular findings, we find a negative correlation between K-Ras mutation and MST2 expression in human CRC patients and CRC mouse models. The small number of tumors with co-expression of mutant K-Ras and MST2 has elevated apoptosis rates. Thus, in CRC, mutant K-Ras transformation is supported by the wild-type allele.  相似文献   

11.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is the most ubiquitous and widely studied of the membrane-type metalloproteinases (MT-MMPs). It was thus surprising to find no published data on chicken MT1-MMP. We report here the characterization of the chicken gene. Its low sequence identity with the MT1-MMP genes of other species, high GC content, and divergent catalytic domain explains the absence of data and our difficulties in characterizing the gene. The absence of structural features in the chicken gene that have been suggested to be critical for the activation of MMP-2 by MT1-MMP; for the effect of MT1-MMP on cell migration and for the recycling of MT1-MMP suggest these features are either not essential or that MT1-MMP does not perform these functions in chickens. Comparison of the expression of chicken MT1-MMP with MT3-MMP and with MMP-2 and MMP-13 has confirmed the previously recognized co-expression of MT1-MMP with MMP-2 and MMP-13 in fibrous and vascular tissues, particularly those surrounding the developing long bones in other species. By contrast, MT3-MMP expression differs markedly from that of MT1-MMP and of both MMP-2 and MMP-13. MT3-MMP is expressed by chondrocytes of the developing articular surface. Similar expression patterns of this group of MT-MMPs and MMPs have been observed in mouse embryos and suggest distinct and specific functions for MT1-MMP and MT3-MMP in skeletal development.  相似文献   

12.
13.
14.
15.
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that remodel and degrade the extracellular matrix. Of various MMPs, MMP-2 plays an important role in tumor metastasis. Recently, microRNAs with pro- or anti-metastatic effects were collectively referred to as metastamiRs. We screened 215 human miRNA mimics for modulators of MMP-2 activities in HT-1080 cells, and found that miR-105 and miR-128 promote MMP-2 activities. Bioinformatics analysis predicted that miR-105 and miR-128 both bind to the 3′ untranslated region (UTR) of TIMP-2, an inhibitor of MMP-2 activities. This prediction was verified by reduced luciferase activity in HT-1080 cells co-transfected with miR-105 or miR-128 mimics and plasmids encoding luciferase fused to 3′ UTR of TIMP2. In addition, Western blotting showed that transfection of HT-1080 cells with miR-105 or miR-128 suppressed TIMP-2 levels and enhanced levels of MT1-MMP, an activator of MMP-2 activities. The mechanism by which miR-128 upregulates MT1-MMP was determined to be downregulation of PRKD1, an inhibitor of MT1-MMP, at least in part. Cell invasion assays using Matrigel demonstrated that HT-1080 cells transfected with miR-105 or miR-128 are more invasive as compared to control cells. Taken together, these findings show that miR-105 and miR-128 are metastamir promoting MMP-2 activities via simultaneously downregulating TIMP-2 and upregulating MT1-MMP, and may provide a platform for the development of therapeutics against metastasis.  相似文献   

16.
17.
18.
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) such as gefitinib are clinically effective treatments for non-small cell lung cancer (NSCLC) patients with EGFR activating mutations. However, therapeutic effect is ultimately limited by the development of acquired TKI resistance. MicroRNAs (miRNAs) represent a category of small non-coding RNAs commonly deregulated in human malignancies. The aim of this study was to investigate the role of miRNAs in gefitinib resistance. We established a gefitinib-resistant cell model (PC9GR) by continually exposing PC9 NSCLC cells to gefitinib for 6 months. MiRNA microarray screening revealed miR-138-5p showed the greatest downregulation in PC9GR cells. Re-expression of miR-138-5p was sufficient to sensitize PC9GR cells and another gefitinib-resistant NSCLC cell line, H1975, to gefitinib. Bioinformatics analysis and luciferase reporter assay showed that G protein-coupled receptor124 (GPR124) was a direct target of miR-138-5p. Experimental validation demonstrated that expression of GPR124 was suppressed by miR-138-5p on protein and mRNA levels in NSCLC cells. Furthermore, we observed an inverse correlation between the expression of miR-138-5p and GPR124 in lung adenocarcinoma specimens. Knockdown of GPR124 mimicked the effects of miR-138-5p on the sensitivity to gefitinib. Collectively, our results suggest that downregulation of miR-138-5p contributes to gefitinib resistance and that restoration of miR-138-5p or inhibition GPR124 might serve as potential therapeutic approach for overcoming NSCLC gefitinib resistance.  相似文献   

19.
Expression of membrane-type (MT) 5 matrix metalloproteinase (MMP) in the mouse brain was examined. MT5-MMP was expressed in the cerebrum in embryos, but it declined after birth. In contrast, expression in the cerebellum started to increase postnatally and continued thereafter. The cells expressing MT5-MMP were postmitotic neurons that showed gelatinolytic activities. Specific expression of MT5-MMP was observed in the neurons but not in the glial cells when embryonal mouse carcinoma P19 cells were differentiated in vitro by retinoic acid treatment. Neurons isolated from dorsal root ganglia also expressed MT5-MMP, and it was localized at the edge of growth cone. Proteoglycans inhibit neurite extension and regulate synaptogenesis. The inhibitory effect of the proteoglycans on neurite extension of dorsal root ganglia neurons was effectively eliminated by recombinant MT5-MMP. Thus, MT5-MMP expressed in neurons may play a role in axonal growth that contributes to the regulation of neural network formation.  相似文献   

20.
Accumulating data have shown the involvement of microRNAs (miRNAs) in endometriosis pathogenesis. In this study, we used a novel approach to determine the endometriotic lesion-specific miRNAs by high-throughput small RNA sequencing of paired samples of peritoneal endometriotic lesions and matched healthy surrounding tissues together with eutopic endometria of the same patients. We found five miRNAs specific to epithelial cells – miR-34c, miR-449a, miR-200a, miR-200b and miR-141 showing significantly higher expression in peritoneal endometriotic lesions compared to healthy peritoneal tissues. We also determined the expression levels of miR-200 family target genes E-cadherin, ZEB1 and ZEB2 and found that the expression level of E-cadherin was significantly higher in endometriotic lesions compared to healthy tissues. Further evaluation verified that studied miRNAs could be used as diagnostic markers for confirming the presence of endometrial cells in endometriotic lesion biopsy samples. Furthermore, we demonstrated that the miRNA profile of peritoneal endometriotic lesion biopsies is largely masked by the surrounding peritoneal tissue, challenging the discovery of an accurate lesion-specific miRNA profile. Taken together, our findings indicate that only particular miRNAs with a significantly higher expression in endometriotic cells can be detected from lesion biopsies, and can serve as diagnostic markers for endometriosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号