首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amendment of the interpretation of recently published size‐exclusion chromatography data for Dishevelled‐3 on Superdex 200 and Sephacryl S‐400 has led to an increase in the estimated size of the supermolecular state from 2000 to 35 000 kDa, a value that essentially duplicates the redetermined and reported estimates obtained by fluorescence correlation spectroscopy on live cells. The earlier discrepancy between the sizes of the extensively aggregated form of this scaffold protein in vivo and in vitro is thereby eliminated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The cells of the red microalga Porphyridium sp. (UTEX 637) are encapsulated in a cell wall of a negatively charged mucilaginous polysaccharide complex composed of 10 different sugars, sulfate, and proteins. In this work, we studied the proteins associated with the cell‐wall polysaccharide. A number of noncovalently associated proteins were resolved by SDS‐PAGE, but no covalently bound proteins were detected. The most prominent protein detected was a 66‐kDa glycoprotein consisting of a polypeptide of approximately 58 kDa and a glycan moiety of approximately 8 kDa containing N‐linked terminal mannose. In size‐exclusion chromatography, the 66‐kDa protein was coeluted with the polysaccharide and could be separated from the polysaccharide only after denaturation of the protein, indicating that the 66‐kDa protein was tightly bound to the polysaccharide. Western blot analysis revealed that the 66‐kDa protein was specific to Porphyridium sp. and P. cruentum, because it was not detected in the other species of red microalgae examined. Indirect immunofluorescence assay confirmed the location of the protein in the algal cell wall. The sequence of cDNA clone encoding the 66‐kDa glycoprotein, detected in our in‐house expressed sequence tag database of Porphyridium sp., revealed that this is a novel protein with no similarity to any protein in the public domain databases and our in‐house expressed sequence tag database of the red microalga Rhodella reticulata. The 66‐kDa protein bound polysaccharides from red algae but not from those of other origins tested. Possible roles of the 66‐kDa protein in the biosynthesis of the polysaccharide are discussed.  相似文献   

3.
The human voltage‐gated proton channel (Hv1) is a membrane protein consisting of four transmembrane domains and intracellular amino‐ and carboxy‐termini. The protein is activated by membrane depolarization, similar to other voltage‐sensitive proteins. However, the Hv1 proton channel lacks a traditional ion pore. The human Hv1 proton channel has been implicated in mediating sperm capacitance, stroke, and most recently as a biomarker/mediator of cancer metastasis. Recently, the three‐dimensional structures for homologues of this voltage‐gated proton channel were reported. However, it is not clear what artificial environment is needed to facilitate the isolation and purification of the human Hv1 proton channel for structural study. In the present study, we generated a chimeric protein that placed an enhanced green fluorescent protein (EGFP) to the amino‐terminus of the human Hv1 proton channel (termed EGFP‐Hv1). The chimeric protein was expressed in a baculovirus expression system using Sf9 cells and subjected to detergent screening using fluorescence‐detection size‐exclusion chromatography. The EGFP‐Hv1 proton channel can be solubilized in the zwitterionic detergent Anzergent 3–12 and the nonionic n‐dodecyl‐β‐d ‐maltoside (DDM) with little protein aggregation and a prominent monomeric protein peak at 48 h postinfection. Furthermore, we demonstrate that the chimeric protein exhibits a monomeric protein peak, which is distinguishable from protein aggregates, at the final size‐exclusion chromatography purification step. Taken together, we can conclude that solubilization in DDM will provide a useable final product for further structural characterization of the full‐length human Hv1 proton channel.  相似文献   

4.
A unique feature of the symbiotic association between legume plants and rhizobia is the plant-derived membrane which separates the symbionts within root nodule; this membrane is termed the peribacteroid membrane (PBM). Although this membrane plays a vital role in facilitating transport and other processes in nodules, little is known about the proteins that are associated with and are an integral part of it. The objective of this work was to apply modern methods of protein purification to the characterisation of proteins of peribacteroid membrane from nodules of yellow lupine (Lupines luteus). The 17-kDa protein was isolated from purified peribacteroid membrane using size exclusion and ion exchange chromatography (FPLC). The N-terminal amino acid sequence of this protein was determined; the sequence does not match any of the previously reported lupine and other legume sequences. Following detergent solubilisation of purified peribacteroid membrane, integral proteins of 15 to 20 kDa were purified by size exclusion chromatography.  相似文献   

5.
Mitotic‐spindle organizing protein associated with a ring of γ‐tubulin 1 (MOZART1) is an 8.5 kDa protein linked to regulation of γ‐tubulin ring complexes (γTuRCs), which are involved in nucleation of microtubules. Despite its small size, MOZART1 represents a challenging target for detailed characterization in vitro. We described herein a protocol for efficient production of recombinant human MOZART1 in Escherichia coli and assessed the properties of the purified protein using a combination of size exclusion chromatography coupled with multiangle light scattering (SEC‐MALS), dynamic light scattering (DLS), and nuclear magnetic resonance (NMR) experiments. MOZART1 forms heterogeneous oligomers in solution. We identified optimal detergent and buffer conditions for recording well resolved NMR experiments allowing nearly full protein assignment and identification of three distinct alpha‐helical structured regions. Finally, using NMR, we showed that MOZART1 interacts with the N‐terminus (residues 1–250) of GCP3 (γ‐tubulin complex protein 3). Our data illustrate the capacity of MOZART1 to form oligomers, promoting multiple contacts with a subset of protein partners in the context of microtubule nucleation.  相似文献   

6.
Huntingtin interacting protein HYPK is intrinsically unstructured   总被引:1,自引:0,他引:1  
To characterize HYPK, originally identified as a novel huntingtin (Htt) interacting partner by yeast two hybrid assay, we used various biophysical and biochemical techniques. The molecular weight of the protein, determined by gel electrophoresis, was found to be about 1.3-folds ( approximately 22 kDa) higher than that obtained from mass spectrometric analysis (16.9 kDa). In size exclusion chromatography experiment, HYPK was eluted in three fractions, the hydrodynamic radii for which were calculated to be approximately 1.5-folds (23.06 A) higher than that expected for globular proteins of equivalent mass (17.3 A). The protein exhibited predominantly (63%) random coil characteristics in circular dichroism spectroscopy and was highly sensitive to limited proteolysis by trypsin and papain, indicating absence of any specific domain. Experimental evidences with theoretical analyses of amino acids composition of HYPK and comparison with available published data predicts that HYPK is an intrinsically unstructured protein (IUP) with premolten globule like conformation. In presence of increasing concentration of Ca(2+), HYPK showed conformational alterations as well as concomitant reduction of hydrodynamic radius. Even though any link between the natively unfolded nature of HYPK, its conformational sensitivity towards Ca(2+) and interaction with Htt is yet to be established, its possible involvement in Huntington's disease pathogenesis is discussed.  相似文献   

7.
As part of a study to purify the internal domain of HER2 (ICD) from recombinant expression, through metal immobilised affinity chromatography (IMAC), we encountered a contaminant, SlyD, a 29 kDa native E. coli protein. SlyD is a recurrent contaminant, with a histidine rich domain enabling binding to IMAC columns and thus co-elution with the target protein. Research has been carried out on this protein and its purification, however, no work mentions how to treat it as a true contaminant or describe procedures to isolate it from target proteins. In this report, we described a two-step chromatographic method for the purification of ICD, including IMAC as a capture step and size exclusion chromatography (SEC) as a polishing step. IMAC allowed us to purify ICD from bacterial crude with SlyD co-eluting. SEC then allowed us to resolve ICD from SlyD and achieve a purity greater than 95% for ICD. However, this method has been developed to accommodate any protein whose molecular weight is different enough from SlyD to be separated by SEC.  相似文献   

8.
A calcium-dependent lectin (chiletin) was isolated from oyster haemolymph by mannose elution from Sepharose CL-6B followed by anion exchange chromatography. Chiletin was predominantly composed of 12 and 24 kDa bands when examined with SDS-PAGE under reducing and non-reducing conditions, respectively. Larger molecular weight bands of 36 and 50 kDa were also variably present under reducing conditions. The NH2-terminal sequence of the 24 kDa band was determined and was not homologous to any known protein from the databases searched. Isolated chiletin was composed of multiple isomers approximately 12 kDa in size and ranging in pI from 5.2 to 6.0. Rabbit antiserum was raised to a synthetic peptide coupled to keyhole limpet hemocyanin and the size of the chiletin subunits was confirmed by Western blot. Two and five different conformational aggregates of chiletin were resolved in oyster haemolymph using size exclusion chromatography in 8 M urea and PBS, respectively. The largest aggregate obtained from size exclusion in 8 M urea was estimated to be greater than 640 kDa. The ability of whole haemolymph and isolated chiletin to agglutinate sheep red blood cells was inhibited by galactose and mannose. Chiletin was identified by immunohistochemistry to be most consistently present in the auricle, followed by the digestive gland, however staining was seen sporadically in haemocytes, gastrointestinal epithelium and interstitial connective tissue cells.  相似文献   

9.
10.
Egg and sperm binding and correct recognition is the first stage for successful fertilization. In red algae, spermatial attachment to female trichogynes is mediated by a specific binding between the lectin(s) distributed on the surface of trichogyne and the complementary carbohydrates on the spermatial surface. A female‐specific lectin was isolated from Aglaothamnion callophyllidicola by agarose‐bound fetuin affinity chromatography. Two proteins, 50 and 14 kDa, eluted from the fetuin column were separated using a native‐polyacrylamide gel electrophoresis method and subjected to a gamete binding assay. The 50 kDa protein, which blocked spermatial binding to female trichogynes, was used for further analysis. Internal amino acid sequence of the 50 kDa protein was analyzed using matrix‐assisted laser desorption/ionization‐mass spectrometry and degenerated primers were designed based on the information. A full‐length cDNA encoding the lectin was obtained using rapid amplification of cDNA ends polymerase chain reaction (PCR). The cDNA was 1552 bp in length and coded for a protein of 450 amino acids with a deduced molecular mass of 50.7 kDa, which agreed well with the protein data. Real‐time PCR analysis showed that this protein was up‐regulated about 10‐fold in female thalli. As the protein was novel and showed no significant homology to any known proteins, it was designated Rhodobindin.  相似文献   

11.
We describe a simple and effective procedure to isolate antifreeze proteins (AFPs) from the hemolymph of larvae of the longhorn beetle Rhagium inquisitor, and present some characteristics of their structures. Several AFPs were isolated from the hemolymph of this species by heat and acid extraction followed by cation exchange. The hemolymph contains at least six AFPs ranging in size from 12.5 to 12.8 kDa. Of these, three were separated to purity by the ion exchange step, as indicated by mass spectrometry. The remaining three forms were further separated by size exclusion chromatography, but could not be isolated to purity. All AFPs in the hemolymph of this species appears to have isoelectric points above 8.00. The dominant form, RiAFP(H4), was purified by the ion exchange step. Its amino acid composition reveals a lower level of cysteine and a higher level of threonine, arginine, alanine and glycine than seen in other insect AFPs. Its trypsin fingerprint does not match that of any known protein. It interacts with ice both in the anionic and cationic state.  相似文献   

12.
The use of blue native polyacrylamide gel electrophoresis (BN-PAGE) has been reported in the literature to retain both water-soluble and membrane protein complexes in their native hetero-oligomeric state and to determine the molecular weight of membrane proteins. However, membrane proteins show abnormal mobility when compared with water-soluble markers. Although one could use membrane proteins as markers or apply a conversion factor to the observed molecular weight to account for the bound Coomassie blue dye, when one just wants to assess homo-oligomeric size, these methods appear to be too time-consuming or might not be generally applicable. Here, during detergent screening studies to identify the best detergent for achieving a monodisperse sample, we observed that under certain conditions membrane proteins tend to form ladders of increasing oligomeric size. Although the ladders themselves contain no indication of which band represents the correct oligomeric size, they provide a scale that can be compared with a single band, representing the native homo-oligomeric size, obtained in other conditions of the screen. We show that this approach works for three membrane proteins: CorA (42 kDa), aquaporin Z (25 kDa), and small hydrophobic (SH) protein from respiratory syncytial virus (8 kDa). In addition, polydispersity results and identification of the most suitable detergent correlate optimally not only with size exclusion chromatography (SEC) but also with results from sedimentation velocity and equilibrium experiments. Because it involves minute quantities of sample and detergent, this method can be used in high-throughput approaches as a low-cost technique.  相似文献   

13.
14.
We have recently described a 16 kDa steroid binding core (Thr537-Arg673) of the rat glucocorticoid receptor [Simons et al. (1989) J. Biol. Chem. 264, 14493-14497]. Sedimentation analysis and size exclusion and anion exchange chromatography now suggest that other proteins are associated with the 16 kDa receptor, just as has been seen for the intact 98 kDa receptor. The 16 kDa fragment was also immunoprecipitable with anti-heat shock protein 90 (hsp90) antibody. These results argue that hsp90 binds to the 16 kDa core fragment and directly position the site of hsp90 association between Thr537 and Arg673 of the rat glucocorticoid receptor.  相似文献   

15.
The construction of novel functional proteins has been a key area of protein engineering. However, there are few reports of functional proteins constructed from artificial scaffolds. Here, we have constructed a genetic library encoding α3β3 de novo proteins to generate novel scaffolds in smaller size using a binary combination of simplified hydrophobic and hydrophilic amino acid sets. To screen for folded de novo proteins, we used a GFP‐based screening system and successfully obtained the proteins from the colonies emitting the very bright fluorescence as a similar intensity of GFP. Proteins isolated from the very bright colonies (vTAJ) and bright colonies (wTAJ) were analyzed by circular dichroism (CD), 8‐anilino‐1‐naphthalenesulfonate (ANS) binding assay, and analytical size‐exclusion chromatography (SEC). CD studies revealed that vTAJ and wTAJ proteins had both α‐helix and β‐sheet structures with thermal stabilities. Moreover, the selected proteins demonstrated a variety of association states existing as monomer, dimer, and oligomer formation. The SEC and ANS binding assays revealed that vTAJ proteins tend to be a characteristic of the folded protein, but not in a molten‐globule state. A vTAJ protein, vTAJ13, which has a packed globular structure and exists as a monomer, was further analyzed by nuclear magnetic resonance. NOE connectivities between backbone signals of vTAJ13 suggested that the protein contains three α‐helices and three β‐strands as intended by its design. Thus, it would appear that artificially generated α3β3 de novo proteins isolated from very bright colonies using the GFP fusion system exhibit excellent properties similar to folded proteins and would be available as artificial scaffolds to generate functional proteins with catalytic and ligand binding properties.  相似文献   

16.
The mouse monoclonal antibody SMP has previously been demonstrated to react immunohistochemically with neurofibrillary tangles, argyrophilic plaques, and leptomeningeal vascular amyloid deposits in the brain tissue of individuals dying from pathologically diagnosed Alzheimer's disease. In preliminary studies the antibody was shown, by size exclusion chromatography, to bind to a protein with an apparent molecular mass of 260 kDa present in the CSF and serum of demented individuals. Chromatographic separation of a 40% ammonium sulphate precipitate of CSF and serum yielded immunoreactive fractions that were subjected to 9% sodium dodecyl sulphate-polyacrylamide gel electrophoresis followed by western blotting. Probing the nitrocellulose blot with the antibody revealed that the antibody selectively binds to a protein chain with an apparent molecular mass of 100 kDa. By using a combination of affinity chromatography and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, coupled with western blotting, the serum component with which the antibody reacts has been identified as complement factor 4. In addition, the antibody has been shown to react specifically with an epitope on the alpha-chain of this protein.  相似文献   

17.
Numerous cell types require a surface for attachment to grow and proliferate. Certain cells, particularly primary and stem cells, necessitate the use of specialized growth matrices along with specific culture media conditions to maintain the cells in an undifferentiated state. A gelatinous protein mixture derived from mouse tumor cells and commercialized as Matrigel is commonly used as a basement membrane matrix for stem cells because it retains the stem cells in an undifferentiated state. However, Matrigel is not a well‐defined matrix, and therefore can produce a source of variability in experimental results. In this study, we present an in‐depth proteomic analysis of Matrigel using a dynamic iterative exclusion method coupled with fractionation protocols that involve ammonium sulfate precipitation, size exclusion chromatography, and one‐dimensional SDS‐PAGE. The ability to identify the low mass and abundance components of Matrigel illustrates the utility of this method for the analysis of the extracellular matrix, as well as the complexity of the matrix itself.  相似文献   

18.
Human tumor necrosis factor-alpha (TNF-alpha) is a trimeric protein consisting primarily of beta-sheet. GdnHCl-induced unfolding of TNF-alpha was investigated at room temperature by circular dichroism (CD) and size exclusion chromatography. The secondary and tertiary structure of TNF-alpha persisted up to 0.9N GdnHCl regardless of incubation time, but, in the range of 1.2 N to 2.1 N GdnHCl, there was loss of tertiary structure accompanied by the formation of an alpha-helix, as revealed by far- and near-UV CD spectra. The structural changes occurred gradually in 1.2 and 2.1 N GdnHCl, but were rapid in 1.5 and 1.8 N GdnHCl. The GdnHCl-induced state of TNF-alpha is an unfolded, alpha-helical aggregate of about 130 monomers, as shown by size exclusion chromatography. We suggest the most likely pathway for the transition from beta-sheet to alpha-helix.  相似文献   

19.
20.
A heterodimeric xylosidase (E.C. 3.2.1.37) with robust activity is secreted among the plant cell wall degrading enzymes produced by the saprophytic fungus Humicola insolens. The xylosidase has been purified to homogeneity by gel filtration and cation exchange chromatography, and demonstrated to be composed of two protein subunits of 68 and 17 kDa with a molecular mass in solution of approximately 85 kDa based on a combination of SDS-PAGE, size exclusion chromatography and analytical ultracentrifugation. Peptide sequence identities from the subunits indicate the 68 kDa subunit contains a catalytic protein domain and the 17 kDa subunit a carbohydrate binding module. The xylosidase has wide biotechnological potential with maximum activity exhibited at 70 °C and kinetic constants with p-nitrophenol xylopyranoside substrate that suggest it has the highest catalytic efficiency recorded to date (Vmax 22.17 μmoles/min/mg, Km 1.74 mM and Kcat 6787/s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号