首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control analysis of the glycolytic flux was carried out in two fast-growth tumor cell types of human and rodent origin (HeLa and AS-30D, respectively). Determination of the maximal velocity (V(max)) of the 10 glycolytic enzymes from hexokinase to lactate dehydrogenase revealed that hexokinase (153-306 times) and phosphofructokinase-1 (PFK-1) (22-56 times) had higher over-expression in rat AS-30D hepatoma cells than in normal freshly isolated rat hepatocytes. Moreover, the steady-state concentrations of the glycolytic metabolites, particularly those of the products of hexokinase and PFK-1, were increased compared with hepatocytes. In HeLa cells, V(max) values and metabolite concentrations for the 10 glycolytic enzyme were also significantly increased, but to a much lesser extent (6-9 times for both hexokinase and PFK-1). Elasticity-based analysis of the glycolytic flux in AS-30D cells showed that the block of enzymes producing Fru(1,6)P2 (i.e. glucose transporter, hexokinase, hexosephosphate isomerase, PFK-1, and the Glc6P branches) exerted most of the flux control (70-75%), whereas the consuming block (from aldolase to lactate dehydrogenase) exhibited the remaining control. The Glc6P-producing block (glucose transporter and hexokinase) also showed high flux control (70%), which indicated low flux control by PFK-1. Kinetic analysis of PFK-1 showed low sensitivity towards its allosteric inhibitors citrate and ATP, at physiological concentrations of the activator Fru(2,6)P2. On the other hand, hexokinase activity was strongly inhibited by high, but physiological, concentrations of Glc6P. Therefore, the enhanced glycolytic flux in fast-growth tumor cells was still controlled by an over-produced, but Glc6P-inhibited hexokinase.  相似文献   

2.
《Insect Biochemistry》1990,20(5):443-449
The fine structure of the mid-gut of Poekilocerus bufonius has been examined and three types of epithelial cells were identified; normal epithelial cells with their apical part possessing well developed microvilli, goblet-like cells containing myelin-like figures and the small basal cells with small and round nuclei, nidi. The regulation of 6-phosphofructo-1-kinase (PFK-1) prepared from the mid-gut of the grasshopper, Poekilocerus bufonius, was studied. Mid-gut PFK-1 displayed cooperativity with respect to fructose-6-phosphate at pH 7.0, and the enzyme was inhibited by high concentrations of ATP. The affinity of the enzyme for fructose-6-phosphate was increased by fru-2,6-P2 whereas the inhibition of the enzyme by high concentrations of ATP was relieved by fru-2,6-P2. The activity of mid-gut PFK-1 was highly stimulated in a simultaneous presence of low concentrations of fru-2,6-P2 and AMP. ADP, AMP and c-AMP were all shown to be activators of the mid-gut PFK-1 with AMP being the greatest effector. The enzyme was not inhibited by citrate either in the presence of low or high concentrations of ATP. These results suggest that the PFK-1 of the mid-gut of the grasshopper is highly regulated with positive stimulators, specially fru-2,6-P2, whereas the enzyme is not regulated by citrate or glucose-1,6-bisphosphate.  相似文献   

3.
The kinetic properties of phosphofructokinase from muscle of the giant cirripede Austromegabalanus psittacus were characterized, after partial purification by ion exchange chromatography on DEAE-cellulose. This enzyme showed differences regarding PFKs from other marine invertebrates: the affinity for fructose 6-phosphate (Fru 6-P) was very low, with an S(0.5) of 22.6+/-1.4 mM (mean+/-S.D., n=3), and a high cooperativity (n(H) of 2.90+/-0.21; mean+/-S.D., n=3). The barnacle PFK showed hyperbolic saturation kinetics for ATP (apparent K(m ATP)=70 microM, at 5 mM Fru 6-P, in the presence of 2 mM ammonium sulfate). ATP concentrations higher than 1 mM inhibited the enzyme. Ammonium sulfate activated the PFK several folds, increasing the affinity of the enzyme for Fru 6-P and V(max). 5'-AMP (0.2 mM) increased the affinity for Fru 6-P (S(0.5) of 6.2 mM). Fructose 2,6-bisphosphate activated the PFK, with a maximal activation at concentrations higher than 2 microM. Citrate reverted the activation of PFK produced by 0.2 mM 5'-AMP (IC(50 citrate)=2.0 mM), producing a higher inhibition than that exerted on other invertebrate PFKs. Barnacle muscular PFK was activated in vitro after exposure to exogenous cyclic-AMP (0.1 mM) as well as by phosphatidylserine (50 microg/ml), indicating a possible control by protein kinase A and a phospholipid dependent protein kinase (PKC). The results suggest a highly regulated enzyme in vivo, by allosteric mechanisms and also by protein phosphorylation.  相似文献   

4.
Fructose 2,6-bisphosphate is a powerful activator of yeast phosphofructokinase when assayed at pH levels of ≥7.0. Half maximal stimulation of enzyme activity occurs at 10?7 M levels of Fru 2,6-P2 concentration. This stimulating effect by Fru 2,6-P2 can be synergistic to that exerted by AMP in counteracting the inhibition of phosphofructokinase activity by ATP. The affinity (S0.5) of the yeast enzyme to fructose 6-phosphate changes from 1.5 mM in the absence of Fru 2,6-P2 to 40 μM in its presence.  相似文献   

5.
Summary The influence of fructose 2,6-bisphosphate on the activation of purified swine kidney phosphofructokinase as a function of the concentration of fructose 6P, ATP and citrate was investigated. The purified enzyme was nearly completely inhibited in the presence of 2 mM ATP. The addition of 20 nM fructose 2,6-P2 reversed the inhibition and restored more than 80% of the activity. In the absence of fructose 2,6-P2 the reaction showed a sigmoidal dependence on fructose 6-phosphate. The addition of 10 nM fructose 2,6-bisphosphate decreased the K0.5 for fructose 6-phosphate from 3 mM to 0.4 mM in the presence of 1.5 mM ATP. These results clearly show that fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate and decreases the inhibitory effect of ATP. The extent of inhibition by citrate was also significantly decreased in the presence of fructose 2,6-phosphate.The influence of various effectors of phosphofructokinase on the binding of ATP and fructose 6-P to the enzyme was examined in gel filtration studies. It was found that kidney phosphofructokinase binds 5.6 moles of fructose 6-P per mole of enzyme, which corresponds to about one site per subunit of tetrameric enzyme. The KD for fructose 6-P was 13 µM and in the presence of 0.5 mM ATP it increased to 27 µM. The addition of 0.3 mM citrate also increased the KD for fructose 6-P to about 40 µM. AMP, 10 µM, decreased the KD to 5 µM and the addition of fructose 2,6-phosphate decreased the KD for fructose 6-P to 0.9 µM. The addition of these compounds did not effect the maximal amount of fructose 6-P bound to the enzyme, which indicated that the binding site for these compounds might be near, but was not identical to the fructose 6-P binding site. The enzyme bound a maximum of about 12.5 moles of ATP per mole, which corresponds to 3 moles per subunit. The KD of the site with the highest affinity for ATP was 4 µM, and it increased to 15 µM in the presence of fructose 2,6-bisphosphate. The addition of 50 µM fructose 1,6-bisphosphate increased the KD for ATP to 5.9 µM. AMP increased the KD to 5.9 µM whereas 0.3 mM citrate decreased the KD for ATP to about 2 µM. The KD for AMP, was 2.0 µM; the KD for cyclic AMP was 1.0 µM; the KD for ADP was 0.9 µM; the KD for fructose 1,6-bisphosphate was 0.5 µM; the KD for citrate was 0.4 µM and the KD for fructose 2,6-bisphosphate was about 0.1 µM. A maximum of about 4 moles of AMP, ADP and cyclic AMP and fructose 2,6-bisphosphate were bound per mole of enzyme. Taken collectively, these and previous studies (9) indicate that fructose 2,6-phosphate is a very effective activator of swine kidney phosphofructokinase. This effector binds to the enzyme with a very high affinity, and significantly decreases the binding of ATP at the inhibitory site on the enzyme.  相似文献   

6.
Activation of glycolysis by insulin in cultured rat hepatocytes is preceded by an activation of phosphofructokinase 2 (PFK 2) and subsequent rise of the fructose 2,6-bisphosphate [Fru(2,6)P2] level. Extracellular addition of ATP or puromycin prevented the hormonal effect on glycolysis. The mechanism through which the purines abolished glycolytic stimulation was investigated. 1. 50 microM ATP completely prevented the 3-5-fold insulin-dependent increase of glycolysis, irrespective of whether the cells initially possessed a low or a high Fru(2,6)P2 content. 50 microM puromycin prevented the stimulation of glycolysis by insulin only in cells whose initial Fru(2,6)P2 levels were low and had to be increased by insulin prior to the increase in glycolysis. It did not antagonize the action of insulin cells with initial high Fru(2,6)P2 content. 2. ATP exerted effects on its own; it decreased initially high Fru(2,6)P2 levels by 95% within 10 min and decreased the basal glycolytic rate by 60%. Half-maximal effects on the Fru(2,6)P2 level were obtained with about 25 microM ATP or 15 microM adenosine 5'[beta, gamma-methylene]triphosphate. ADP and adenosine-5-[gamma-thio]triphosphate were as effective as ATP, whereas 100 microM adenosine 5'[alpha, beta-methylene]triphosphate elicited no effect. Puromycin neither decreased high Fru(2,6)P2 levels nor inhibited basal glycolysis. 3. Extracellular ATP (100 microM) led to inhibition of the active form of PFK 2. Intracellular levels of Glc6P, citrate, ATP, ADP and AMP were increased by extracellular ATP, the phosphoenolpyruvate content was decreased, Fru6P and glycerol 3-phosphate levels stayed constant. Puromycin did not inhibit PFK 2. 4. Both puromycin and ATP prevented the insulin-dependent rise of the Fru(2,6)P2 level, they abolished the activation of PFK 2 by the hormone. Puromycin did not block the accumulation of Fru(2,6)P2 provoked by glucose addition; ATP also antagonized the glucose-dependent increase. 5. 100 microM ATP elevated the cAMP-dependent protein kinase activity ratio from 0.1 to 0.38 and increased the level of inositol trisphosphate by 16-fold within 5 min, whereas puromycin was without effect on either level. It is concluded that the two purines block the insulin effect on glycolysis by preventing the hormone increasing the Fru(2,6)P2 level. The mode of action, however, seems to be different: ATP antagonizes insulin action in that it leads to increased inhibition of PFK 2 whereas puromycin prevents the activation of PFK 2 by insulin.  相似文献   

7.
Rat hepatic 6-phosphofructo-1-kinase (ATP:d-fructose-6-phosphate 1-phosphotransferase) was purified to homogeneity and its phosphorylation by the catalytic subunit of the cyclic AMP-dependent protein kinase examined. Up to 4 mol of phosphate could be incorporated per mole of tetrameric enzyme, and the phosphate was incorporated into seryl residues. Phosphorylation did not alter the affinity of the enzyme for fructose 6-phosphate or fructose 2,6-bisphosphate. The rate of phosphorylation was enhanced by allosteric activators of 6-phosphofructo-1-kinase such as AMP and fructose 2,6-bisphosphate, and it was decreased by the allosteric inhibitors ATP and H+. The phosphopeptide region of the enzyme subunit was susceptible to limited proteolysis by trypsin. Removal of the phosphopeptide did not affect the subunit molecular weight nor the maximum activity of the enzyme, but it enhanced the apparent affinity of the enzyme for both fructose 6-phosphate and fructose 2,6-bisphosphate. It is concluded that the phosphopeptide region of the enzyme subunit is an important determinant of the affinity of the enzyme for its substrate as well as for the allosteric activator fructose 2,6-bisphosphate.  相似文献   

8.
A cDNA encoding fructose(1,6)bisphosphatase was isolated from total human lung RNA. The cDNA contained an open reading frame encoding 337 amino acids. The determined nucleotide sequence of the lung cDNA was significantly different from muscle cDNA and slightly differed from human liver cDNA in a single mutation (Gly-336 for Ala-336) and a T for C substitution in position 648. The human lung fructose(1, 6)bisphosphatase [Fru(1,6)Pase] was isolated and its kinetic parameters were compared with liver and muscle isoenzymes. Values of kcat for the lung Fru(1,6)Pase were lower than for the liver and muscle enzyme. Like the liver isoenzyme, lung Fru(1,6)Pase is significantly less inhibited by AMP than the muscle enzyme. The values of I0.5 were 9.5, 9.8, and 0.3 microM for the liver, lung, and muscle enzyme, respectively. The lung enzyme was slightly more sensitive to fructose(2,6)bisphosphate [Fru(2,6)P2] inhibition than the liver enzyme. Ki was 75 microM for the lung and 96 microM for the liver enzyme. The synergistic effect of AMP and Fru(2,6)P2 on the lung and liver Fru(1,6)Pase was also observed. In the presence of AMP the corresponding values of Ki for Fru(2,6)P2 were 16 microM for the lung and 10 microM for the liver enzyme.  相似文献   

9.
To clarify the physiological role of fructose 2,6-bisphosphate in the perinatal switching of myocardial fuels from carbohydrate to fatty acids, the kinetic effects of fructose 2,6-bisphosphate on phosphofructokinase purified from fetal and adult rat hearts were compared. For both enzymes at physiological pH and ATP concentrations, 1 microM fructose 2,6-bisphosphate induced a greater than 10-fold reduction in S0.5 for fructose 6-phosphate and it completely eliminated subunit cooperativity. Fructose 2,6-bisphosphate may thereby reduce the influence of changes in fructose 6-phosphate concentration on phosphofructokinase activity. Based on double-reciprocal plots and ATP inhibition studies, adult heart phosphofructokinase activity is more sensitive to physiological changes in ATP and citrate concentrations than to changes in fructose 2,6-bisphosphate concentrations. Fetal heart phosphofructokinase is less sensitive to ATP concentration above 5 mM and equally sensitive to citrate inhibition. The fetal enzyme has up to a 15-fold lower affinity for fructose 2,6-bisphosphate, rendering it more sensitive to changes in fructose 2,6-bisphosphate concentration than adult heart phosphofructokinase. Together, these factors allow greater phosphofructokinase activity in fetal heart while retaining sensitive metabolic control. In both fetal and adult heart, fructose 2,6-bisphosphate is primarily permissive: it abolishes subunit cooperativity and in its presence phosphofructokinase activity is extraordinarily sensitive to both the energy balance of the cell as reflected in ATP concentration and the availability of other fuels as reflected in cytosolic citrate concentration.  相似文献   

10.
Yeast fructose-2,6-bisphosphate 6-phosphatase has been purified 7000-fold by heat treatment, poly(ethylene glycol) precipitation, ion-exchange chromatography with Q-Sepharose Fast Flow and Mono Q followed by affinity chromatography with concanavalin-A-Sepharose and gel filtration with Superose 12. The purified dimeric enzyme contains 1.5 mol zinc and 1.3 mol copper/mol subunit. It reacts with fructose 2,6-bisphosphate [Fru(2,6)P2] as well as with p-nitrophenyl phosphate (NpP) showing a pH optimum at pH 6-6.5 with Fru(2,6)P2 [Plankert, U., Purwin, C. & Holzer, H. (1988) FEBS Lett. 239, 69-72] and above pH 9.0 with NpP. The following observations suggest that activity with both substrates depends on the same protein. (a) During 7000-fold purification, the ratio of activity with NpP to that with Fru(2,6)P2 remained constant. (b) The time course of inactivation of enzyme activity in dilute solution at 30 degrees C is similar for both substrates. (c) At increasing temperatures, inactivation of enzyme activity measured with both substrates proceeds at nearly identical rates. (d) Activity with both substrates is found preferentially in the vacuoles. (e) Mutants defective in the nonspecific alkaline phosphatase coded by the PHO8 gene are also defective in Fru(2,6)P2 6-phosphatase activity. (f) A proteinase A mutant, defective in processing and activation of nonspecific alkaline phosphatase coded by the PHO8 gene, also fails to activate Fru(2,6)P2 6-phosphatase.  相似文献   

11.
在果糖1,6—二磷酸酯酶中果糖2,6—二磷酸可能与底物抑制的作用方式不同,因为蛇肌果糖1,6-二磷酸酯酶pH9.2的活性受到果糖2,6-二磷酸的抑制,而不受高浓度底物的影响。K+能增强果糖2,6—二磷酸对酶活性抑制,并能较大程度地解除过量底物的抑制。快反应流基修饰酶不再受较低浓度果糖2,6—二磷酸的抑制,但高浓度果糖2,6—二磷酸仍能抑制酶活性,其IC50增大40倍。修饰酶受底物抑制的阈值不变。为胰蛋白酶或枯草杆菌蛋白酶限制性酶解的果糖1,6—二磷酸酯酶受过量底物和果糖2,6—二磷酸抑制的行为也不相同。以上结果可能提示在蛇肌果糖1,6—二磷酸酯酸中存在既有别于AMP,又有别于过量底物的结合部位。  相似文献   

12.
Kinetic data have been collected suggesting that heterotropic activation by fructose 2,6-bisphosphate and AMP is a result not only of the relief of allosteric inhibition by ATP but is also the result of an increase in the affinity of phosphofructokinase for fructose 6-phosphate. Modification of the Ascaris suum phosphofructokinase at the ATP inhibitory site produces a form of the enzyme that no longer has hysteretic time courses or homotropic positive (fructose 6-phosphate) cooperativity or substrate inhibition (ATP) (Rao, G.S. J., Wariso, B.A., Cook, P.F., Hofer, H.W., and Harris, B.G. (1987a) J. Biol. Chem. 262, 14068-14073). This form of phosphofructokinase is Michaelis-Menten in its kinetic behavior but is still activated by fructose 2,6-bisphosphate and AMP and by phosphorylation using the catalytic subunit of cyclic AMP-dependent protein kinase (cAPK). Fructose 2,6-bisphosphate activates by decreasing KF-6-P by about 15-fold and has an activation constant of 92 nM, while AMP decreases KF-6-P about 6-fold and has an activation constant of 93 microM. Double activation experiments suggest that fructose 2,6-bisphosphate and AMP are synergistic in their activation. The desensitized form of the enzyme is phosphorylated by cAPK and has an increased affinity for fructose 6-phosphate in the absence of MgATP. The increased affinity results in a change in the order of addition of reactants from that with MgATP adding first for the nonphosphorylated enzyme to addition of fructose 6-phosphate first for the phosphorylated enzyme. The phosphorylated form of the enzyme is also still activated by fructose 2,6-bisphosphate and AMP.  相似文献   

13.
Fructose 2,6-bisphosphate (F-2,6-P2) stimulated glycolysis in cell-free extracts of both normal and ras-transfected rat-1 fibroblasts. The extract of the transformed cell glycolyzed more rapidly in both the absence and the presence of F-2,6-P2 than the extract of the parent fibroblast. Addition of mitochondrial ATPase (F1) or inorganic phosphate (Pi) further stimulated lactate production in both cell lines. F-2,6-P2 stimulated the 6-phosphofructo-1-kinase (PFK-1) activity in extracts of normal and transfected cells. The activity in extracts of transformed cells tested with a fructose 6-phosphate regenerating system was considerably higher than in the extract of normal cells. Stimulation of PFK-1 activity by cAMP of both cell lines was not as pronounced as that by F-2,6-P2. In the absence of F-2,6-P2 the PFK-1 activity was strongly inhibited in the transformed cell by ATP concentrations higher than 1 mM, whereas in the normal cell only a marginal inhibition was noted even at 2 or 3 mM ATP. F-2,6-P2 reversed the inhibition of PFK-1 by ATP. Nicotinamide adenine dinucleotide (NAD) at 100 microM (in the presence of 2 mM ATP and 1 microM F-2,6-P2) stimulated PFK-1 activity only in the transformed cell, whereas nicotinamide adenine dinucleotide phosphate (NADP) inhibited PFK-1 activity (in the presence or absence of 1 microM F-2,6-P2) in extracts of both cell lines. No previous observations of stimulation or inhibition by NAD or NADP on PFK-1 activity appear to have been reported. A threefold increase in the intracellular concentration of F-2,6-P2 was observed after transfection of rat-1 fibroblast by the ras oncogene. We conclude from these data that the PFK-1 activity of ras-transfected rat-1 fibroblasts shows a greater response to certain stimulating and inhibitory regulating factors than that of the parent cell.  相似文献   

14.
15.
To obtain information on the biological significance of yeast fructose-2,6-bisphosphate 6-phosphatase, kinetic data of the purified enzyme [(1987) Eur. J. Biochem. 164, 27-30] have been measured. Maximal activity was found between pH 6 and 7, the apparent Michaelis constant with fructose 2,6-bisphosphate was 7.2 microM at pH 6.0 and 79 microM at pH 7.0. Concentrations required for 50% inhibition of the enzyme at pH 6.0 were 8 microM Fru2P, 45 microM G1c6P, 80 microM Fru6P and 200 microM inorganic phosphate. The known intracellular steady-state level of about 10 microM fructose 2,6-bisphosphate in the presence of glucose is likely to be the result of a balance between the rapid synthesis of fructose 2,6-bisphosphate catalyzed by 6-phosphofructose 2-kinase and a fructose 2,6-bisphosphate degrading activity. The biological function of fructose-2,6-bisphosphate 6-phosphatase with an apparent Michaelis constant between 7 and 79 microM fructose 2,6-bisphosphate at pH 6-7 is therefore suggested to participate in the maintenance of a steady-state level of fructose 2,6-bisphosphate in a concentration range that fits well with the Michaelis constant of the enzyme.  相似文献   

16.
1. The fructose-2,6-bisphosphate (Fru-2,6-P2) content of mesenteric lymph nodes was measured in rats. 2. The effects of Fru-2,6-P2 on the activity of 6-phosphofructo-1-kinase (PFK-1) from rat mesenteric lymph nodes were also studied. 3. The affinity of the enzyme for fructose-6-phosphate was increased by Fru-2,6-P2 whereas the inhibition of the enzyme with high concentrations of ATP was released by Fru-2,6-P2. 4. The activity of lymphocyte PFK-1 was highly stimulated in a simultaneous presence of low concentrations of AMP and Fru-2,6-P2. 5. These results show that rat lymphocyte PFK-1 is highly regulated with Fru-2,6-P2 which means that glycolysis in rat lymphocytes is controlled by Fru-2,6-P2.  相似文献   

17.
腺苷-磷酸(AMP)对4个快反应巯基被修饰的蛇肌果糖1,6-二磷酸酯酶活性的抑制作用增强,而该修饰的酶受果糖2,6-二磷酸的抑制脱敏。AMP对酶抑制为半部位反应,酶受果糖2,6-二磷酸抑制的脱敏则表现为全部位反应。经枯草杆菌蛋白酶限制性酶解的果糖1,6-二磷酸酯酶的Ki(AMP)增大10倍,但受果糖2,6-二磷酸抑制的性质不变。经胰蛋白酶限制性酶解的果糖1,6-二磷酸酯酶的活性不再为AMP抑制,但果糖2,6-二磷酸对该形式酶的抑制作用则明显增强,由于该酶失去受AMP的抑制作用,因此AMP促进果糖2,6-二磷酸抑制的性质亦随之丧失。据此提出在蛇肌果糖1,6-二磷酸酯酶中果糖2,6-二磷酸不是结合在AMP结合部位上的看法。  相似文献   

18.
R Bustos  F Sobrino 《FEBS letters》1989,251(1-2):143-146
The presence of fructose 2,6-bisphosphate (Fru 2,6-P2) in elicited peritoneal macrophages of rat was examined. These cells possess an active phosphofructokinase-2 which is diminished by citrate and only slightly inhibited by glycerol 3-phosphate. Phosphofructokinase-1 submaximal activity was increased 26-fold by the addition of 1 microM Fru 2,6-P2. Incubation of cells without glucose decreased the amount of Fru 2,6-P2 to zero, but further addition of 5 mM glucose increased the levels of the sugar ester 20-fold. In addition, the presence of phorbol ester potentiated the synthesis of Fru 2,6-P2. By contrast phenylisopropyladenosine or prostaglandin F2 alpha inhibited the production of Fru 2,6-P2.  相似文献   

19.
Chick embryo hepatocytes were maintained in monolayer culture in a serum-free chemically defined medium for periods of up to 2 days. Over this time period, insulin provoked selective increases (up to 5-fold) in factors relevant to the control of glycolysis: the activities of phosphofructokinase-1 (PFK-1), phosphofructokinase-2 (PFK-2) and hexokinase isoenzymes and the content of fructose 2,6-bisphosphate (F26BP). Half-maximal effects of insulin on pFK-1 activity were in the physiological range (0.1 nM). Changes in enzyme activities and F26BP content in response to insulin were correlated with stimulation of glycolytic flux as estimated by radioisotopic flux. These data are discussed in relation to known changes which occur in hepatic glycolytic activity and PFK-1 activity in the intact chick around hatching. The effects of insulin on F26BP content, PFK-1 activity and glycolytic flux were mimicked by epidermal growth factor (EGF). In contrast, phorbol esters produced minimal actions on any of the above parameters. Our data indicate that protein kinase C is not involved in the actions of insulin or EGF in control of F26BP content or PFK-1 activity. This work indicates that the related tyrosyl kinase receptors of insulin and EGF may provoke identical responses within hepatocytes, but through the utilization of different transduction systems which merge to common control points.  相似文献   

20.
S A Berger  P R Evans 《Biochemistry》1991,30(34):8477-8480
We have investigated the effects of ligands and effectors on the intrinsic fluorescence of Escherichia coli phosphofructokinase (PFK). We have found that the substrate fructose 6-phosphate (Fru6P) or the allosteric activator ADP can quench the fluorescence up to 35%. The response is hyperbolic with Ks[Fru6P] of 20 microM and Ks[ADP] of 13 microM. The allosteric inhibitor phosphoenolpyruvate (PEP) converts the hyperbolic response with respect to Fru6P to a sigmoidal response. AMP-PNP, a nonhydrolyzable analogue of ATP, also inhibits the Fru6P fluorescence response. PFK mutant KA213, which is insensitive to effectors, has a decreased fluorescence response with respect to ADP, and PEP does not convert the Fru6P response to sigmoidicity. However, its fluorescence response with respect to Fru6P is decreased by ATP or AMP-PNP. Taken together, these results suggest that, in the absence of effectors or ligands, E. coli PFK exists in a state with high affinity for Fru6P ("R" state). This state can be altered to a low affinity ("T" state) by PEP binding to the allosteric site or by ATP binding to the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号