首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annexin A1 (ANXA1, lipocortin-1) is a glucocorticoid-regulated 37-kDa protein, so called since its main property is to bind (i.e. to annex) to cellular membranes in a Ca2+-dependent manner. Although ANXA1 has predominantly been studied in the context of immune responses and cancer, the protein can affect a larger variety of biological phenomena, including cell proliferation and migration. Our previous results show that endogenous ANXA1 positively modulates myoblast cell differentiation by promoting migration of satellite cells and, consequently, skeletal muscle differentiation. In this work, we have evaluated the hypothesis that ANXA1 is able to exert effects on myoblast cell migration acting through formyl peptide receptors (FPRs) following changes in its subcellular localization as in other cell types and tissues. The analysis of the subcellular localization of ANXA1 in C2C12 myoblasts during myogenic differentiation showed an interesting increase of extracellular ANXA1 starting from the initial phases of skeletal muscle cell differentiation. The investigation of intracellular Ca2+ perturbation following exogenous administration of the ANXA1 N-terminal derived peptide Ac2-26 established the engagement of the FPRs which expression in C2C12 cells was assessed by qualitative PCR. Wound healing assay experiments showed that Ac2-26 peptide is able to increase migration of C2C12 skeletal muscle cells and to induce cell surface translocation and secretion of ANXA1. Our results suggest a role for ANXA1 as a highly versatile component in the signaling chains triggered by the proper calcium perturbation that takes place during active migration and differentiation or membrane repair since the protein is strongly redistributed onto the plasma membranes after an rapid increase of intracellular levels of Ca2+. These properties indicate that ANXA1 may be involved in a novel repair mechanism for skeletal muscle and may have therapeutic implications with respect to the development of ANXA1 mimetics.  相似文献   

2.
Myogenesis in the embryo and the adult mammal consists of a highly organized and regulated sequence of cellular processes to form or repair muscle tissue that include cell proliferation, migration, and differentiation. Data from cell culture and in vivo experiments implicate both FGFs and HGF as critical regulators of these processes. Both factors require heparan sulfate glycosaminoglycans for signaling from their respective receptors. Since syndecans, a family of cell-surface transmembrane heparan sulfate proteoglycans (HSPGs) are implicated in FGF signaling and skeletal muscle differentiation, we examined the expression of syndecans 1-4 in embryonic, fetal, postnatal, and adult muscle tissue, as well as on primary adult muscle fiber cultures. We show that syndecan-1, -3, and -4 are expressed in developing skeletal muscle tissue and that syndecan-3 and -4 expression is highly restricted in adult skeletal muscle to cells retaining myogenic capacity. These two HSPGs appear to be expressed exclusively and universally on quiescent adult satellite cells in adult skeletal muscle tissue, suggesting a role for HSPGs in satellite cell maintenance or activation. Once activated, all satellite cells maintain expression of syndecan-3 and syndecan-4 for at least 96 h, also implicating these HSPGs in muscle regeneration. Inhibition of HSPG sulfation by treatment of intact myofibers with chlorate results in delayed proliferation and altered MyoD expression, demonstrating that heparan sulfate is required for proper progression of the early satellite cell myogenic program. These data suggest that, in addition to providing potentially useful new markers for satellite cells, syndecan-3 and syndecan-4 may play important regulatory roles in satellite cell maintenance, activation, proliferation, and differentiation during skeletal muscle regeneration.  相似文献   

3.
4.
Role of mitogen activated protein kinases (MAPK) in skeletal muscle differentiation is not fully understood. We investigated subtype-specific functions and their interactions, if any, in the regulation of myogenic differentiation in L6E9 skeletal muscle cells. We show inhibition of extracellular signal-regulated kinase-1 and -2 (ERK-1/-2) and activation of p38 MAP kinase during the differentiation of L6E9 rat skeletal muscle cells under low serum condition. Inhibition of ERK-1/-2 activity dramatically enhanced differentiation as was evident from cellular morphology, expression of muscle differentiation specific marker proteins, suggesting that ERK-1/-2 activation may be inhibitory to initiation and progression of differentiation. In contrast, inhibition of p38 MAP kinase completely prevented differentiation; meaning p38 activation is required from the initiation till terminal differentiation of L6E9 cells. Moreover, inhibition of ERK-1/-2 activities enhanced the activation of p38 MAP kinase that resulted in enhancement of differentiation; whereas inhibition of p38 MAP kinase activity enhanced the ERK-1/-2 activities culminating in abrogation of differentiation. We conclude that ERK-1/-2 and p38 MAP kinase cascades oppositely regulate each other's function(s) thereby regulating L6E9 skeletal muscle differentiation.  相似文献   

5.
Pannexins constitute a family of three glycoproteins (Panx1, -2, and -3) forming single membrane channels. Recent work demonstrated that Panx1 is expressed in skeletal muscle and involved in the potentiation of contraction. However, Panxs functions in skeletal muscle cell differentiation, and proliferation had yet to be assessed. We show here that Panx1 and Panx3, but not Panx2, are present in human and rodent skeletal muscle, and their various species are differentially expressed in fetal versus adult human skeletal muscle tissue. Panx1 levels were very low in undifferentiated human primary skeletal muscle cells and myoblasts (HSMM) but increased drastically during differentiation and became the main Panx expressed in differentiated cells. Using HSMM, we found that Panx1 expression promotes this process, whereas it was impaired in the presence of probenecid or carbenoxolone. As for Panx3, its lower molecular weight species were prominent in adult skeletal muscle but very low in the fetal tissue and in undifferentiated skeletal muscle cells and myoblasts. Its overexpression (∼43-kDa species) induced HSMM differentiation and also inhibited their proliferation. On the other hand, a ∼70-kDa immunoreactive species of Panx3, likely glycosylated, sialylated, and phosphorylated, was highly expressed in proliferative myoblasts but strikingly down-regulated during their differentiation. Reduction of its endogenous expression using two Panx3 shRNAs significantly inhibited HSMM proliferation without triggering their differentiation. In summary, our results demonstrate that Panx1 and Panx3 are co-expressed in human skeletal muscle myoblasts and play a pivotal role in dictating the proliferation and differentiation status of these cells.  相似文献   

6.
7.
8.
Annexin 1 (ANXA1), the first characterized member of the annexin superfamily, is known to bind or annex to cellular membranes in a calcium-dependent manner. Besides mediating inflammation, ANXA1 has also been reported to be involved in important physiopathological implications including cell proliferation, differentiation, apoptosis, cancer, and metastasis. However, with controversies in ANXA1 expression in breast carcinomas, its role in breast cancer initiation and progression remains unclear. To elucidate how ANXA1 plays a role in breast cancer initiation, we performed stable isotope labeling of amino acids in cell culture analysis on normal mammary gland epithelial cells from ANXA1-heterozygous (ANXA1(+/-)) and ANXA1-null (ANXA1(-/-)) mice. Among over 4000 quantified proteins, we observed 214 up-regulated and 169 down-regulated with ANXA1(-/-). Bioinformatics analysis of the down-regulated proteins revealed that ANXA1 is potentially implicated in DNA damage response, whereas the analysis of up-regulated proteins showed the possible roles of ANXA1 in cell adhesion and migration pathways. These observations were supported by relevant functional assays. The assays for DNA damage response demonstrated an accumulation of more DNA damage with slower recovery on heat stress and an impaired oxidative damage response in ANXA1(-/-) cells in comparison with ANXA1(+/-) cells. Overexpressing Yes-associated protein 1 or Yap1, the most down-regulated protein in DNA damage response pathway cluster, rescued the proliferative response in ANXA1(-/-) cells exposed to oxidative damage. Both migration and wound healing assays showed that ANXA1(+/-) cells possess higher motility with better wound closure capability than ANXA1(-/-) cells. Knocking down of β-parvin, the protein with the highest fold change in the cell adhesion protein cluster, indicated an increased cell migration in ANXA1(-/-) cells. Altogether our quantitative proteomics study on ANXA1 suggests that ANXA1 plays a protective role in DNA damage and modulates cell adhesion and motility, indicating its potential role in cancer initiation as well as progression in breast carcinoma.  相似文献   

9.
10.
p57(Kip2) and p21(Cip1/Waf1) are members of cyclin-dependent kinase (Cdk) inhibitors which play critical roles in the terminal differentiation of skeletal muscle and lung. We investigated mRNA levels of p57(Kip2) and p21(Cip1/Waf1) in skeletal muscle and lung of mice during maturation and aging using Northern hybridization. The mRNA levels of p57(Kip2) and p21(Cip1/Waf1) decreased in skeletal muscle and lung of mice during maturation and aging except that the level of p21(Cip1/Waf1) mRNA in skeletal muscle of mice showed an increase only during maturation. The decrease of the p57(Kip2) mRNA level involved neither a change of DNA methylation at the promoter region nor an alteration of the imprinting status in aged mice. The decreases of p57(Kip2) and p21(Cip1/Waf1) mRNA levels during aging suggest that the process of tissue-specific terminal differentiation may be gradually downregulated with senescence in tissues where p57(Kip2) and p21(Cip1/Waf1) play key roles in differentiation. The downregulation of p57(Kip2) and p21(Cip1/Waf1) during aging is contrary to the upregulation of Cdk inhibitors during cellular replicative senescence, indicating that aging in an organismal level is mediated by mechanisms different from replicative senescence of cultured cells.  相似文献   

11.
Static magnetic field (SMF) interacts with mammal skeletal muscle; however, SMF effects on skeletal muscle cells are poorly investigated. The myogenic cell line L6, an in vitro model of muscle development, was used to investigate the effect of a 80 +/- mT SMF generated by a custom-made magnet. SMF promoted myogenic cell differentiation and hypertrophy, i.e., increased accumulation of actin and myosin and formation of large multinucleated myotubes. The elevated number of nuclei per myotube was derived from increased cell fusion efficiency, with no changes in cell proliferation upon SMF exposure. No alterations in myogenin expression, a modulator of myogenesis, occurred upon SMF exposure. SMF induced cells to align in parallel bundles, an orientation conserved throughout differentiation. SMF stimulated formation of actin stress-fiber like structures. SMF rescued muscle differentiation in the presence of TNF, a muscle differentiation inhibitor. We believe this is the first report showing that SMF promotes myogenic differentiation and cell alignment, in the absence of any invasive manipulation. SMF-enhanced parallel orientation of myotubes is relevant to tissue engineering of a highly organized tissue such as skeletal muscle. SMF rescue of muscle differentiation in the presence of TNF may have important therapeutic implications.  相似文献   

12.
13.
14.
The injury of adult skeletal muscle initiates series of well‐coordinated events that lead to the efficient repair of the damaged tissue. Any disturbances during muscle myolysis or reconstruction may result in the unsuccessful regeneration, characterised by strong inflammatory response and formation of connective tissue, that is, fibrosis. The switch between proper regeneration of skeletal muscle and development of fibrosis is controlled by various factors. Amongst them are those belonging to the transforming growth factor β family. One of the TGF‐β family members is TGF‐β1, a multifunctional cytokine involved in the regulation of muscle repair via satellite cells activation, connective tissue formation, as well as regulation of the immune response intensity. Here, we present the role of TGF‐β1 in myogenic differentiation and muscle repair. The understanding of the mechanisms controlling these processes can contribute to the better understanding of skeletal muscle atrophy and diseases which consequence is fibrosis disrupting muscle function.  相似文献   

15.
16.
17.
Recent studies have established specific cellular functions for different bioactive sphingolipids in skeletal muscle cells. Ceramide 1-phosphate (C1P) is an important bioactive sphingolipid that has been involved in cell growth and survival. However its possible role in the regulation of muscle cell homeostasis has not been so far investigated. In this study, we show that C1P stimulates myoblast proliferation, as determined by measuring the incorporation of tritiated thymidine into DNA, and progression of the myoblasts through the cell cycle. C1P induced phosphorylation of glycogen synthase kinase-3β and the product of retinoblastoma gene, and enhanced cyclin D1 protein levels. The mitogenic action of C1P also involved activation of phosphatidylinositol 3-kinase/Akt, ERK1/2 and the mammalian target of rapamycin. These effects of C1P were independent of interaction with a putative G(i)-coupled C1P receptor as pertussis toxin, which maintains G(i) protein in the inactive form, did not affect C1P-stimulated myoblast proliferation. By contrast, C1P was unable to inhibit serum starvation- or staurosporine-induced apoptosis in the myoblasts, and did not affect myogenic differentiation. Collectively, these results add up to the current knowledge on cell types targeted by C1P, which so far has been mainly confined to fibroblasts and macrophages, and extend on the mechanisms by which C1P exerts its mitogenic effects. Moreover, the biological activities of C1P described in this report establish that this phosphosphingolipid may be a relevant cue in the regulation of skeletal muscle regeneration, and that C1P-metabolizing enzymes might be important targets for developing cellular therapies for treatment of skeletal muscle degenerative diseases, or tissue injury.  相似文献   

18.
Immediately after birth, skeletal muscle must undergo an enormous period of growth and differentiation that is coordinated by several intertwined growth signaling pathways. How these pathways are integrated remains unclear but is likely to involve skeletal muscle contractile activity and calcium (Ca(2+)) signaling. Here, we show that Ca(2+) signaling governed by stromal interaction molecule 1 (STIM1) plays a central role in the integration of signaling and, therefore, muscle growth and differentiation. Conditional deletion of STIM1 from the skeletal muscle of mice (mSTIM1(-/-) mice) leads to profound growth delay, reduced myonuclear proliferation, and perinatal lethality. We show that muscle fibers of neonatal mSTIM1(-/-) mice cannot support the activity-dependent Ca(2+) transients evoked by tonic neurostimulation, even though excitation contraction coupling (ECC) remains unperturbed. In addition, disruption of tonic Ca(2+) signaling in muscle fibers attenuates downstream muscle growth signaling, such as that of calcineurin, mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase 1 and 2 (ERK1/2), and AKT. Based on our findings, we propose a model wherein STIM1-mediated store-operated calcium entry (SOCE) governs the Ca(2+) signaling required for cellular processes that are necessary for neonatal muscle growth and differentiation.  相似文献   

19.
20.
Lysophospholipids are bioactive molecules that are implicated in the control of fundamental biological processes such as proliferation, differentiation, survival and motility in different cell types. Here we review the role of sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) in the regulation of skeletal muscle biology. Indeed, a wealth of experimental data indicate that these molecules are crucial players in the skeletal muscle regeneration process, acting by controllers of activation, proliferation and differentiation not only of muscle-resident satellite cells but also of mesenchymal progenitors that originate outside the skeletal muscle. Moreover, S1P and LPA are clearly involved in the regulation of skeletal muscle metabolism, muscle adaptation to different physiological needs and resistance to muscle fatigue. Notably, studies accomplished so far, have highlighted the complexity of S1P and LPA signaling in skeletal muscle cells that appears to be further complicated by their close dependence on functional cross-talks with growth factors, hormones and cytokines. Our increasing understanding of bioactive lipid signaling can individuate novel molecular targets aimed at enhancing skeletal muscle regeneration and reducing the fibrotic process that impairs full functional recovery of the tissue during aging, after a trauma or skeletal muscle diseases. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号