首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Drosophila, Notch signaling regulates binary fate decisions at each asymmetric division in sensory organ lineages. Following division of the sensory organ precursor cell (pI), Notch is activated in one daughter cell (pIIa) and inhibited in the other (pIIb). We report that the E3 ubiquitin ligase Neuralized localizes asymmetrically in the dividing pI cell and unequally segregates into the pIIb cell, like the Notch inhibitor Numb. Furthermore, Neuralized upregulates endocytosis of the Notch ligand Delta in the pIIb cell and acts in the pIIb cell to promote activation of Notch in the pIIa cell. Thus, Neuralized is a conserved regulator of Notch signaling that acts as a cell fate determinant. Polarization of the pI cell directs the unequal segregation of both Neuralized and Numb. We propose that coordinated upregulation of ligand activity by Neuralized and inhibition of receptor activity by Numb results in a robust bias in Notch signaling.  相似文献   

2.
In Drosophila, asymmetric division occurs during proliferation of neural precursors of the central and peripheral nervous system (PNS), where a membrane-associated protein, Numb, is asymmetrically localized during cell division and is segregated to one of the two daughter cells (the pIIb cell) after mitosis. numb has been shown genetically to function as an antagonist of Notch signaling and also as a negative regulator of the membrane localization of Sanpodo, a four-pass transmembrane protein required for Notch signaling during asymmetric cell division in the CNS. Previously, we identified lethal giant larvae (lgl) as a gene required for numb-mediated inhibition of Notch in the adult PNS. In this study we show that Sanpodo is expressed in asymmetrically dividing precursor cells of the PNS and that Sanpodo internalization in the pIIb cell is dependent cytoskeletally associated Lgl. Lgl specifically regulates internalization of Sanpodo, likely through endocytosis, but is not required for the endocytosis Delta, which is a required step in the Notch-mediated cell fate decision during asymmetric cell division. Conversely, the E3 ubiquitin ligase neuralized is required for both Delta endocytosis and the internalization of Sanpodo. This study identifies a hitherto unreported role for Lgl as a regulator of Sanpodo during asymmetric cell division in the adult PNS.  相似文献   

3.
The Notch signaling pathway controls patterning and cell fate decisions during development in metazoans, and is associated with human diseases such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and certain cancers. Studies over the last several years have revealed sophisticated regulation of both the membrane-bound Notch receptor and its ligands by vesicle trafficking. This is perhaps most evident in neural progenitor cells in Drosophila, which divide asymmetrically to segregate Numb, an endocytic adaptor protein that acts as a Notch pathway inhibitor, to one daughter cell. Here, we discuss recent findings addressing how receptor and ligand trafficking to specific membrane compartments control activation of the Notch pathway in asymmetrically dividing cells and other tissues.  相似文献   

4.
In Drosophila melanogaster, external sensory organs develop from a single sensory organ precursor (SOP). The SOP divides asymmetrically to generate daughter cells, whose fates are governed by differential Notch activation. Here we show that the clathrin adaptor AP-1 complex, localized at the trans Golgi network and in recycling endosomes, acts as a negative regulator of Notch signaling. Inactivation of AP-1 causes ligand-dependent activation of Notch, leading to a fate transformation within sensory organs. Loss of AP-1 affects neither cell polarity nor the unequal segregation of the cell fate determinants Numb and Neuralized. Instead, it causes apical accumulation of the Notch activator Sanpodo and stabilization of both Sanpodo and Notch at the interface between SOP daughter cells, where DE-cadherin is localized. Endocytosis-recycling assays reveal that AP-1 acts in recycling endosomes to prevent internalized Spdo from recycling toward adherens junctions. Because AP-1 does not prevent endocytosis and recycling of the Notch ligand Delta, our data indicate that the DE-cadherin junctional domain may act as a launching pad through which endocytosed Notch ligand is trafficked for signaling.  相似文献   

5.
The stem cells of the small intestine are multipotent: they give rise, via transit-amplifying cell divisions, to large numbers of columnar absorptive cells mixed with much smaller numbers of three different classes of secretory cells - mucus-secreting goblet cells, hormone-secreting enteroendocrine cells, and bactericide-secreting Paneth cells. Notch signaling is known to control commitment to a secretory fate, but why are the secretory cells such a small fraction of the population, and how does the diversity of secretory cell types arise? Using the mouse as our model organism, we find that secretory cells, and only secretory cells, pass through a phase of strong expression of the Notch ligand Delta1 (Dll1). Onset of this Dll1 expression coincides with a block to further cell division and is followed in much less than a cell cycle time by expression of Neurog3 – a marker of enteroendocrine fate – or Gfi1 – a marker of goblet or Paneth cell fate. By conditional knock-out of Dll1, we confirm that Delta-Notch signaling controls secretory commitment through lateral inhibition. We infer that cells stop dividing as they become committed to a secretory fate, while their neighbors continue dividing, explaining the final excess of absorptive over secretory cells. Our data rule out schemes in which cells first become committed to be secretory, and then diversify through subsequent cell divisions. A simple mathematical model shows how, instead, Notch signaling may simultaneously govern the commitment to be secretory and the choice between alternative modes of secretory differentiation.  相似文献   

6.
The tumor suppressor genes lethal giant larvae (lgl) and discs large (dlg) act together to maintain the apical basal polarity of epithelial cells in the Drosophila embryo. Neuroblasts that delaminate from the embryonic epithelium require lgl to promote formation of a basal Numb and Prospero crescent, which will be asymmetrically segregated to the basal daughter cell upon division to specify cell fate. Sensory organ precursors (SOPs) also segregate Numb asymmetrically at cell division. Numb functions to inhibit Notch signaling and to specify the fates of progenies of the SOP that constitute the cellular components of the adult sensory organ. We report here that, in contrast to the embryonic neuroblast, lgl is not required for asymmetric localization of Numb in the dividing SOP. Nevertheless, mosaic analysis reveals that lgl is required for cell fate specification within the SOP lineage; SOPs lacking Lgl fail to specify internal neurons and glia. Epistasis studies suggest that Lgl acts to inhibit Notch signaling by functioning downstream or in parallel with Numb. These findings uncover a previously unknown function of Lgl in the inhibition of Notch and reveal different modes of action by which Lgl can influence cell fate in the neuroblast and SOP lineages.  相似文献   

7.
In Drosophila, mitotic neural progenitor cells asymmetrically segregate the cell fate determinant Numb in order to block Notch signaling in only one of the two daughter cells. Sanpodo, a membrane protein required for Notch signaling in asymmetrically dividing cells, is sequestered from the plasma membrane to intracellular vesicles in a Numb-dependent way after neural progenitor cell mitosis. However, the significance of Numb-dependent Sanpodo regulation is unclear. In this study, we conducted a structure–function analysis to identify the determinants of Sanpodo targeting in vivo. We identified an NPAF motif in the amino-terminal cytoplasmic tail of Sanpodo, which is conserved among insect Sanpodo homologues. The Sanpodo NPAF motif is predicted to bind directly to the Numb phosphotyrosine-binding domain and is critical for Numb binding in vitro. Deletion or mutation of the NPAF motif results in accumulation of Sanpodo at the plasma membrane in Numb-positive cells in vivo. Genetic analysis of Sanpodo NPAF mutants shows that Numb-dependent Sanpodo endocytic targeting can be uncoupled from Notch signaling regulation. Our findings demonstrate that Sanpodo contains an evolutionarily conserved motif that has been linked to Numb-dependent regulation in vertebrates and further support the model that Numb regulates Notch signaling independently of Sanpodo membrane trafficking in neural progenitor cells.  相似文献   

8.
9.
10.
Asymmetric cell division is a conserved mechanism for partitioning information during mitosis. Over the past several years, significant progress has been made in our understanding of how cells establish polarity during asymmetric cell division and how determinants, in the form of localized proteins and mRNAs, are segregated. In particular, genetic studies in Drosophila and Caenorhabditis elegans have linked cell polarity, G protein signaling and regulation of the cytoskeleton to coordination of mitotic spindle orientation and localization of determinants. Also, several new studies have furthered our understanding of how asymmetrically localized cell fate determinants, such as the Numb, a negative regulator Notch signaling, functions in biasing cell fates in the developing nervous system in Drosophila. In vertebrates, analysis of dividing neural progenitor cells by in vivo imaging has raised questions about the role of asymmetric cell divisions during neurogenesis.  相似文献   

11.
12.
Yang Y  Zhu R  Bai J  Zhang X  Tian Y  Li X  Peng Z  He Y  Chen L  Ji Q  Chen W  Fang D  Wang R 《Experimental cell research》2011,(11):1640-1648
Numb was originally identified as an important cell fate determinant that is asymmetrically inherited during mitosis and controls the fate of sibling cells by inhibiting the Notch signaling pathway in neural tissue. The small intestinal epithelium originates from the division of stem cells that reside in the crypt, which further differentiate into goblet cells, absorptive cells, paneth cells, and enteroendocrine cells. However, Numb's involvement in the differentiation process of intestinal epithelium is largely unknown. In the present study, we confirm that both the Numb mRNA and protein isoforms are expressed in adult mouse intestinal mucosa. Numb protein is ubiquitously expressed throughout the crypt–villus axis of the small intestinal epithelium and is mainly localized to the cytoplasmic membrane. Down-regulation of endogenous Numb using RNA interference in cultured intestinal LS174T cells increased Notch signaling, leading to the up-regulation of Hes1 and the down-regulation of Hath1. Knockdown of Numb alleviated MUC2 protein expression and led to loss of the goblet cell phenotype in LS174Tl cells. Our results provide the first evidence that Numb, an important cell fate determinant, modulates intestinal epithelial cells towards the goblet cell phenotype by inhibiting the Notch signaling pathway.  相似文献   

13.
14.
Notch signaling regulates cell fate decisions during development through local cell interactions. Signaling is triggered by the interaction of the Notch receptor with its transmembrane ligands expressed on adjacent cells. Recent studies suggest that Delta is cleaved to release an extracellular fragment, DlEC, by a mechanism that involves the activity of the metalloprotease Kuzbanian; however, the functional significance of that cleavage remains controversial. Using independent functional assays in vitro and in vivo, we examined the biological activity of purified soluble Delta forms and conclude that Delta cleavage is an important down-regulating event in Notch signaling. The data support a model whereby Delta inactivation is essential for providing the critical ligand/receptor expression differential between neighboring cells in order to distinguish the signaling versus the receiving partner.  相似文献   

15.
The evolutionarily conserved Notch-mediated intercellular signaling pathway is essential for proper embryonic development of many tissues and organs. Recent data suggest that Notch receptors and their membrane-bound ligands Delta and Serrate are involved in both patterning and cell fate determination during odontogenesis. It remains, however, uncertain if Notch signaling is important for tooth homeostasis and regeneration. Here we report on the expression of Notch receptors and the Delta1 ligand in dental pulp of normal and injured adult rat teeth. Notch receptors were absent from normal adult dental tissues, whereas expression was upregulated after injury. In injured teeth, Notch2 was expressed in mesenchymal cells of the pulp both close to the site of injury (i.e., in the dental crown) and at a distance from it (i.e., in the dental roots), Notch3 expression was mainly associated with vascular structures, while Notch1 expression was restricted to few pulpal cells close to the lesion. None of them was expressed in odontoblasts. Expression of Delta1 was upregulated in odontoblasts of the injured teeth, as well as in vascular structures. These results demonstrate the reactivation of the Notch signaling pathway during wound healing and, furthermore, highlight the similarity between developmental and regenerative processes.  相似文献   

16.
Delta1 acts as a membrane-bound ligand that interacts with the Notch receptor and plays a critical role in cell fate specification. By using peptide affinity chromatography followed by mass spectrometry, we have identified Dlg1 as a partner of the Delta1 C-terminal region. Dlg1 is a human homolog of the Drosophila Discs large tumor suppressor, a member of the membrane-associated guanylate kinase family of molecular scaffolds. We confirmed this interaction by co-immunoprecipitation experiments between endogenous Dlg1 and transduced Delta1 in a 3T3 cell line stably expressing Delta1. Moreover, we showed that deletion of a canonical C-terminal PDZ-binding motif (ATEV) in Delta1 abrogated this interaction. Delta4 also interacted with Dlg1, whereas Jagged1, another Notch ligand, did not. In HeLa cells, transfected Delta1 triggered the accumulation of endogenous Dlg1 at sites of cell-cell contact. Expression of Delta1 also reduced the motility of 3T3 cells. Finally, deletion of the ATEV motif totally abolished these effects but did not interfere with the ability of Delta1 to induce Notch signaling and T cell differentiation in co-culture experiments. These results point to a new, probably cell-autonomous function of Delta1, which is independent of its activity as a Notch ligand.  相似文献   

17.
18.
Asymmetric division of sensory organ precursors (SOPs) in Drosophila generates different cell types of the mature sensory organ. In a genetic screen designed to identify novel players in this process, we have isolated a mutation in Drosophila sec15, which encodes a component of the exocyst, an evolutionarily conserved complex implicated in intracellular vesicle transport. sec15(-) sensory organs contain extra neurons at the expense of support cells, a phenotype consistent with loss of Notch signaling. A vesicular compartment containing Notch, Sanpodo, and endocytosed Delta accumulates in basal areas of mutant SOPs. Based on the dynamic traffic of Sec15, its colocalization with the recycling endosomal marker Rab11, and the aberrant distribution of Rab11 in sec15 clones, we propose that a defect in Delta recycling causes cell fate transformation in sec15(-) sensory lineages. Our data indicate that Sec15 mediates a specific vesicle trafficking event to ensure proper neuronal fate specification in Drosophila.  相似文献   

19.
The first step in the development of the Drosophila optic medullar primordia is the expansion of symmetrically dividing neuroepithelial cells (NEs); this step is then followed by the appearance of asymmetrically dividing neuroblasts (NBs). However, the mechanisms responsible for the change from NEs to NBs remain unclear. Here, we performed detailed analyses demonstrating that individual NEs are converted into NBs. We also showed that this transition occurs during an elongated G1 phase. During this G1 phase, the morphological features and gene expressions of each columnar NE changed dynamically. Once the NE-to-NB transition was completed, the former NE changed its cell-cycling behavior, commencing asymmetric division. We also found that Notch signaling pathway was activated just before the transition and was rapidly downregulated. Furthermore, the clonal loss of the Notch wild copy in the NE region near the medial edge caused the ectopic accumulation of Delta, leading to the precocious onset of transition. Taken together, these findings indicate that the activation of Notch signaling during a finite window coordinates the proper timing of the NE-to-NB transition.  相似文献   

20.
Drosophila sensory organ precursor (SOP) cells are a well-studied model system for asymmetric cell division. During SOP division, the determinants Numb and Neuralized segregate into the pIIb daughter cell and establish a distinct cell fate by regulating Notch/Delta signaling. Here, we describe a Numb- and Neuralized-independent mechanism that acts redundantly in cell-fate specification. We show that trafficking of the Notch ligand Delta is different in the two daughter cells. In pIIb, Delta passes through the recycling endosome which is marked by Rab 11. In pIIa, however, the recycling endosome does not form because the centrosome fails to recruit Nuclear fallout, a Rab 11 binding partner that is essential for recycling endosome formation. Using a mammalian cell culture system, we demonstrate that recycling endosomes are essential for Delta activity. Our results suggest that cells can regulate signaling pathways and influence their developmental fate by inhibiting the formation of individual endocytic compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号