首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
BISWAL  B.  JOSHI  P.N.  KULANDAIVELU  G. 《Photosynthetica》1998,34(1):37-44
Senescence induced loss in pigments and proteins of detached maize (Zea mays L. cv. Col) leaves was significantly enhanced on the exposure of leaves to different ranges of ultraviolet (UV) radiation. Compared to UV-A (320-400 nm) and UV-B (280-320 nm), the UV-C (200-320 nm) was the most damaging for the pigments and macromolecules. A severe decline in photosystem (PS) 2 mediated photoreduction during senescence of detached leaves exposed to UV irradiation suggested a damage of the system. The PS1 mediated photoreduction of methylviologen with 2,6-dichlorophenol indophenol as electron donor was stimulated by UV-A and UV-B radiations, suggesting a reorganisation of the PS1 complex. These results were fortified by the values of fast and slow kinetics of chlorophyll (Chl) a fluorescence transients.  相似文献   

2.
Senescence induced loss in pigments and proteins of detached maize (Zea mays L. cv. Col) leaves was significantly enhanced on the exposure of leaves to different ranges of ultraviolet (UV) radiation. Compared to UV-A (320-400 nm) and UV-B (280-320 nm), the UV-C (200-320 nm) was the most damaging for the pigments and macromolecules. A severe decline in photosystem (PS) 2 mediated photoreduction during senescence of detached leaves exposed to UV irradiation suggested a damage of the system. The PS1 mediated photoreduction of methylviologen with 2,6-dichlorophenol indophenol as electron donor was stimulated by UV-A and UV-B radiations, suggesting a reorganisation of the PS1 complex. These results were fortified by the values of fast and slow kinetics of chlorophyll (Chl) a fluorescence transients. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
We examined the influence of short-term exposure of different UV wavebands on the fine-scale kinetics of hypocotyl growth of dim red light-grown cucumbers (Cucumis sativus L.) and other selected dicotyledonous seedlings to evaluate: (1) whether responses induced by UV-B radiation (280-320 nm) are qualitatively different from those induced by UV-A (320-400 nm) radiation, and (2) whether different wavebands within the UV-B elicit different responses. Responses to brief (30 min) irradiations with 3 different UV wavebands all included transient inhibition of elongation during irradiation followed by wavelength specific responses. Irradiations with proportionally greater short wavelength UV-B (37% of UV-B between 280 and 300 nm) induced inhibition of hypocotyl elongation within 20 min of onset of irradiation, while UV-B including only wavelengths longer than 290 nm (and only 8% of UV-B between 290 and 300 nm) induced inhibition of hypocotyl elongation with a lag of 1-2 h. The response to short wavelength UV-B was persistent for at least 24 h, while the response to long wavelength UV-B lasted only 2-3 h. The UV-A treatment induced reductions in elongation rates of approximately 6-9 h following exposure followed by a continued decline in rates for the following 15-18 h. Short wavelength UV-B also induced positive phototropic curvature in both cucumber and Arabidopsis seedlings, and this response was present in nph-1 mutant Arabidopsis seedlings defective in normal blue light phototropism. Reciprocity was not found for the response to short wavelength UV-B. The short wavelength and long wavelength UV-B responses differed in dose-response relationships and both short wavelength responses (phototropic curvature and elongation inhibition) increased sharply at wavelengths below 300 nm. These results indicate that different photosensory processes are involved in mediating growth and morphological responses to short wavelength UV-B (280-300 nm), long wavelength UV-B (essentially 300-320 nm) and UV-A. The existence of two separate types of hypocotyl inhibition responses to UV-B, with one that depends on the intensity of the light source, provides alternate interpretations to findings in other studies of UV-B induced photomorphogenesis and may explain inconsistencies between action spectra for inhibition of stem growth.  相似文献   

4.
The effect of low doses of UV-A (320–400 nm) and UV-B (280–320 nm) radiation on photosynthetic activities inPhaseolus mungo L. was investigated under field condition. Supplementation of UV-A enhanced the synthesis of chlorophyll and carotenoids than the UV-B supplemented plants. Significant increase was seen in the concentration of UV-B absorbing compounds of UV-B treated plants. Increase of PS 2 activity in UV-A treated plants was seen. Changes in photosynthetic activity were measured in terms of PS 2 mediated O2 evolution and Chl a fluorescence.  相似文献   

5.
Spectral balance and UV-B sensitivity of soybean: a field experiment   总被引:12,自引:5,他引:7  
Soybean [Glycine max (L.) Merr.] cultivar Essex was grown and tested for sensitivity to UV-B radiation (280–320 nm) under different combinations of UV-A (320–400 nm) and PFD (400–700 nm) radiation in four simultaneous field experiments. The radiation conditions were effected with combinations of filtered solar radiation and UV-B and UV-A lamps electronically modulated to track ambient radiation. Significant UV-B-caused decreases in total aboveground production and growth were seen only when PFD and UV-A were reduced to less than half their flux in sunlight. When PFD was low, UV-A appeared to be particularly effective in mitigating UV-B damage. However, when PFD was high, substantial UV-A did not appear to be required for UV-B damage mitigation. Leaf chlorophyll fluorescence did not indicate photosynthetic damage under any radiation combination. With UV-B, leaves in all experiments exhibited increased UV-absorbing pigments and decreased whole-leaf UV transmittance. Results of these field experiments indicate difficulties in extrapolating from UV-B experiments conducted in glasshouse or growth cabinet conditions to plant UV-B sensitivity in the field. Implications for UV radiation weighting functions in evaluating atmospheric ozone reduction are also raised.  相似文献   

6.
Summary Cultures of unicellular algal flagellateEuglena gracilis grown in different conditions were subjected to action spectroscopy for step-down and step-up photophobic responses, respectively. The spectral region was extended into the UV-B/C as well as in the UV-A and visible regions with the Okazaki Large Spectrograph as the monochromatic light source. The photophobic responses of the cells were measured with an individual-cell assay method with the aid of a computerized video motion analyzer. In the UV-A and visible regions, the shapes of the action spectra were the so-called UV-A/blue type. In the newly studied UV-B/C region, new action peaks were found at 270 nm for the step-down response and at 280 nm for the step-up one. The absorption spectrum of flavin adenine dinucleotide (FAD) appeared to fit the action spectrum for the step-up response, whereas the shape of the step-down action spectrum, which has a UV-A peak (at 370 nm) higher than the blue peak (at 450 nm), appeared to be mimicked by the absorption spectrum of a mixed solution of 6-biopterin and FAD. These observations might also account for the fact that the UV-B/C peak wavelength at 270 nm of the action spectrum for the step-down response is shorter by 10 nm than the action spectrum for the step-up response at 280 nm.Abbreviations FAD flavin adenine dinucleotide - FWHM spectral full width at half maximum - NIBB National Institute for Basic Biology - OLS Okazaki Large Spectrograph - PFB paraflagellar body - UV-A ultraviolet light of spectral region between 320 and 400 nm - UV-B/C ultraviolet light of spectral region between 190 and 320 nm  相似文献   

7.
Abstract: The effects of solar ultraviolet radiation (UV) on carbon uptake, oxygen evolution and motility of marine phytoplankton were investigated in coastal waters at Kristineberg Marine Research Station on the west coast of Sweden (58° 30'N, 11° 30'E). The mean irradiances at noon above the water surface during the investigation period were: photosynthetic active radiation (PAR, 400–700 nm) 1670 μmol m−2 s−1; ultraviolet-A radiation (UV-A, 320–400 nm) 35.9 W m−2 and ultraviolet-B radiation (UV-B, 280–320 nm) 1.7 W m−2. UV-B radiation was much more attenuated with depth in the water column than were PAR and UV-A radiation. UV-B radiation could not be detected at depths greater than 100–150 cm. Inhibition of carbon uptake by UV-A and UV-B in natural phytoplankton populations was greatest at 50 cm depth and the effects of UV-B were greater than those of UV-A. At depths greater than 50 cm there was almost no effect of ultraviolet radiation on carbon uptake. PAR, UV-A and UV-B decreased oxygen evolution by the dinoflagellate Prorocentrum minimum . Inhibition of oxygen evolution was greater after 4 h than 2 h but it was not possible to distinguish the negative effects of the different light regimes. The motility of P. minimum was not affected by PAR, UV-A and UV-B. The importance of exposure of phytoplankton to different light regimes before being exposed to natural solar radiation is discussed.  相似文献   

8.
The UV-A (320-400 nm) component of sunlight is a significant damaging factor of plant photosynthesis, which targets the photosystem II complex. Here we performed a detailed characterization of UV-A-induced damage in photosystem II membrane particles using EPR spectroscopy and chlorophyll fluorescence measurements. UV-A irradiation results in the rapid inhibition of oxygen evolution accompanied by the loss of the multiline EPR signal from the S(2) state of the water-oxidizing complex. Gradual decrease of EPR signals arising from the Q(A)(-)Fe(2+) acceptor complex, Tyr-D degrees, and the ferricyanide-induced oxidation of the non-heme Fe(2+) to Fe(3+) is also observed, but at a significantly slower rate than the inhibition of oxygen evolution and of the multiline signal. The amplitude of Signal II(fast), arising from Tyr-Z degrees in the absence of fast electron donation from the Mn cluster, was gradually increased during the course of UV-A treatment. However, the amount of functional Tyr-Z decreased to a similar extent as Tyr-D as shown by the loss of amplitude of Signal II(fast) that could be measured in the UV-A-treated particles after Tris washing. UV-A irradiation also affects the relaxation of flash-induced variable chlorophyll fluorescence. The amplitudes of the fast (600 micros) and slow (2 s) decaying components, assigned to reoxidation of Q(A)(-) by Q(B) and by recombination of (Q(A)Q(B))(-) with donor side components, respectively, decrease in favor of the 15-20 ms component, which reflects PQ binding to the Q(B) site. In the presence of DCMU, the fluorescence relaxation is dominated by a 1 s component due to recombination of Q(A)(-) with the S(2) state. After UV-A radiation, this is partially replaced by a much faster component (30-70 ms) arising from recombination of Q(A)(-) with a stabilized intermediate PSII donor, most likely Tyr-Z degrees. It is concluded that the primary damage site of UV-A irradiation is the catalytic manganese cluster of the water-oxidizing complex, where electron transfer to Tyr-Z degrees and P(680)(+) becomes inhibited. Modification and/or inactivation of the redox-active tyrosines and the Q(A)Fe(2+) acceptor complex are subsequent events. This damaging mechanism is very similar to that induced by the shorter wavelength UV-B (280-320) radiation, but different from that induced by the longer wavelength photosynthetically active light (400-700 nm).  相似文献   

9.
Stratospheric ozone depletion leads to enhanced UV-B radiation. Therefore, the capacity of reproductive cells to cope with different spectral irradiance was investigated in the laboratory. Zoospores of the upper sublittoral kelp Saccorhiza dermatodea were exposed to varying fluence of spectral irradiance consisting of photosynthetically active radiation (PAR, 400-700 nm; =P), PAR+UV-A radiation (UV-A, 320-400 nm; =PA), and PAR+UV-A+UV-B radiation (UV-B, 280-320 nm; =PAB). Structural changes, localization of phlorotannin-containing physodes, accumulation of UV-absorbing phlorotannins, and physiological responses of zoospores were measured after exposure treatments as well as after 2-6 d recovery in dim white light (8 mumol photon m(-2) s(-1)). Physodes increased in size under PAB treatment. Extrusion of phlorotannins into the medium and accumulation of physodes was induced not only under UVR treatment but also under PAR. UV-B radiation caused photodestruction indicated by a loss of pigmentation. Photosynthetic efficiency of spores was photoinhibited after 8 h exposure to 22 and 30 mumol photon m(-2) s(-1) of PAR, while supplement of UVR had a significant additional effect on photoinhibition. A relatively low recovery of photosystem II function was observed after 2 d recovery in spores exposed to 1.7 x 10(4) J m(-2) of UV-B, with a germination rate of only 49% of P treatment after 6 d recovery. The amount of UV-B-induced DNA damage measured as cyclobutane-pyrimidine dimers (CPDs) increased with the biologically effective UV-B dose (BED(DNA)). Significant removal of CPDs indicating repair of DNA damage was observed after 2 d in low white light. The protective function of phlorotannins has restricted efficiency for a single cell. Within a plume of zoospores, however, each cell can buffer each other and protect the lower layer of spores from excessive radiation. Exudation of phlorotannins into the water can also reduce the impact of UV-B radiation on UV-sensitive spores. The results of this study showed that the impact of UVR on reproductive cells can be mitigated by protective and repair mechanisms.  相似文献   

10.
Liquid cultures of the terrestrial cyanobacterium Nostoc commune derived from field material were treated with artificial UV-B and UV-A irradiation. We studied the induction of various pigments which are though to provide protection against damaging UV-B irradiation. First, UV-B irradiation induced an increase in carotenoids, especially echinenone and myxoxanthophyll, but did not influence production of chlorophyll a. Second, an increase of an extracellular, water-soluble UV-A/B-absorbing mycosporine occurred, which was associated with extracellular glycan synthesis. Finally, synthesis of scytonemin, a lipid-soluble, extracellular pigment known to function as a UV-A sunscreen, was observed. After long-time exposure, the UV-B effect on carotenoid and scytonemin synthesis ceased whereas the mycosporine content remained constantly high. The UV-B sunscreen mycosporine is exclusively induced by UV-B (< 315 nm). The UV-A sunscreen scytonemin is induced only slightly by UV-B (< 315 nm), very strongly by near UV-A (350 to 400 nm), and not at all by far UV-A (320 to 350 nm). These results may indicate that the syntheses of these UV sunscreens are triggered by different UV photoreceptors.  相似文献   

11.
The regulation of oxyradicals and PSII activity by UV-B (280-315 nm) and UV-A (315-400 nm) components were investigated in the leaves of maize [Zea mays L. var: HQPM.1]. The impact of ambient UV radiation on the production of superoxide (O2-) and hydroxyl (.OH) radicals were analysed in the leaves of 20-day-old plants. The amount of O2.- and .OH radicals and the radical scavenging activity were significantly higher in the leaves exposed to ambient UV radiation as compared to the leaves of the plants grown under UV exclusion filters. Smaller amount of oxyradicals in the leaves of UV excluded plants was accompanied by a substantial increase in quantum yield of electron transport (phi Eo), rate of electron transport (psi o) and performance index (PIABS), as indicated by chlorophyll a fluorescence transient. Although higher amounts of oxyradicals invoked higher activity of antioxidant enzymes like superoxide dismutase and peroxidase under ambient UV, they also imposed limitation on the photosynthetic efficiency of PSII. Exclusion of UV components (UV-B 280-315 nm; UV-A 315-400 nm) translated to enhanced photosynthesis, growth and biomass. Thus, solar UV components, especially in the tropical region, could be a major limiting factor in the photosynthetic efficiency of the crop plants.  相似文献   

12.
Antonelli  F.  Grifoni  D.  Sabatini  F.  Zipoli  G. 《Plant Ecology》1997,128(1-2):127-136
During the last few decades many experiments have been performed to evaluate the responses of plants to enhanced solar UV-B radiation (280–320 nm) that may occur because of stratospheric ozone depletion; most of them were performed in controlled environment conditions where plants were exposed to low photosynthetically active radiation (PAR) levels and high UV-B irradiance. Since environmental radiative regimes can play a role in the response of plants to UV-B enhancement, it appears doubtful whether it is valid to extrapolate the results from these experiments to plants grown in natural conditions. The objective of this work was to evaluate the effects on physiology and morphology of a bean (Phaseolus vulgaris L.) cultivar Nano Bobis, exposed to supplemental UV radiation in the open-air. UV-B radiation was supplied by fluorescent lamps to simulate a 20% stratospheric ozone reduction. Three groups of plants were grown: control (no supplemental UV), UV-A treatment (supplementation in the UV-A band) and UV-B treatment (supplemental UV-B and UV-A radiation). Each group was replicated three times. After 33 days of treatment plants grown under UV-B treatment had lower biomass, leaf area and reduced leaf elongation compared to UV-A treatment. No significant differences were detected in photosynthetic parameters, photosynthetic pigments and UV-B absorbing compounds among the three groups of plants. However, plants exposed to UV-A treatment showed a sort of 'stimulation' of their growth when compared to the control. The results of this experiment showed that plants may be sensitive to UV-A radiation, thus it is difficult to evaluate the specific effects of UV-B (280–320 nm) radiation from fluorescent lamps and it is important to choose the appropriate control. Environmental conditions strongly affect plant response to UV radiation so further field studies are necessary to assess the interaction between UV-B exposure and meteorological variability.  相似文献   

13.
Seasonal reproduction in some Arctic Laminariales coincides with increased UV-B radiation due to stratospheric ozone depletion and relatively high water temperatures during polar spring. To find out the capacity to cope with different spectral irradiance, the kinetics of photosynthetic recovery was investigated in zoospores of four Arctic species of the order Laminariales, the kelps Saccorhiza dermatodea, Alaria esculenta, Laminaria digitata, and Laminaria saccharina. The physiology of light harvesting, changes in photosynthetic efficiency and kinetics of photosynthetic recovery were measured by in vivo fluorescence changes of Photosystem II (PSII). Saturation irradiance of freshly released spores showed minimal I k values (photon fluence rate where initial slope intersects horizontal asymptote of the curve) values ranging from 13 to 18 μmol photons m−2 s−1 among species collected at different depths, confirming that spores are low-light adapted. Exposure to different radiation spectra consisting of photosynthetically active radiation (PAR; 400–700 nm), PAR+UV-A radiation (UV-A; 320–400 nm), and PAR+ UV-A+UV-B radiation (UV-B; 280–320 nm) showed that the cumulative effects of increasing PAR fluence and the additional effect of UV-A and UV-B radiations on photoinhibition of photosynthesis are species specific. After long exposures, Laminaria saccharina was more sensitive to the different light treatments than the other three species investigated. Kinetics of recovery in zoospores showed a fast phase in S. dermatodea, which indicates a reduction of the photoprotective process while a slow phase in L. saccharina indicates recovery from severe photodamage. This first attempt to study photoinhibition and kinetics of recovery in zoospores showed that zoospores are the stage in the life history of seaweeds most susceptible to light stress and that ultraviolet radiation (UVR) effectively delays photosynthetic recovery. The viability of spores is important on the recruitment of the gametophytic and sporophytic life stages. The impact of UVR on the zoospores is related to the vertical depth distribution of the large sporophytes in the field.  相似文献   

14.
In higher plants one of the important functions of the leaf epidermis is the effective screening of ultraviolet-B (280–320 nm, UV-B) radiation, due mostly to phenolic compounds. The assessment of the contribution of this function is necessary for an evaluation of the impact of increasing UV-B radiation. A method is proposed to estimate epidermal transmittance on the basis of chlorophyll fluorescence measurements. Fluorescence of chlorophyll induced by UV-A (320–400 nm, measuring beam centered at 366 nm, half band width 32 nm) or UV-B (measuring beam centered at 314 nm, half band width 18 nm) is compared to that induced by a blue-green measuring light (475 nm, half band width 140 nm). It is shown that the ratios of UV-and blue-green (BG)-induced fluorescence, F(UV-A)/F(BG) and F(UV-B)/F(BG), are relatively constant among leaf samples of various species ( Vicia faba, Spinacia oleracea, Rumex scutatus ) from which the epidermis was removed. In epidermis-free leaves no significant differences were found between adaxial and abaxial leaf sides, suggesting that leaf structure has negligible influence on the F(UV)/F(BG) ratios. On the other hand, fluorescence excitation ratios varied over a vast range when intact leaves from different species and habitats were investigated. Ratios were low in sun leaves and relatively high in shade- and greenhouse-grown leaves. By relating these results to those obtained with epidermis-free leaves, epidermal transmittances for UV-B radiation could be estimated, with values ranging between 1 and 45%. The data demonstrate a large adaptability of epidermal UV-A and UV-B transmittance in higher plants. The proposed method may prove a versatile and relatively simple tool for investigating epidermal UV transmittance complementing established methods.  相似文献   

15.
The effect of salicylic acid (SA) counteracting the UV-A, UV-B, and UV-C-induced action on pepper (Capsicum annuum L.) plants was studied. For this purpose, the activities of antioxidant enzymes (peroxidase, polyphenol oxidase, ascorbate peroxidase, catalase, and glutathione reductase) were measured. Plants were sprayed with SA and treated with UV-A (320–390 nm), UV-B (312 nm), and UV-C (254 nm) radiation with a density of 6.1, 5.8, and 5.7 W/m2. The activities of antioxidant enzymes were enhanced in leaves in response to UV-B and UV-C radiation. SA treatment moderated an increase in the activities of some antioxidant enzymes (peroxidase, ascorbate peroxidase, catalase, and glutathione reductase) in plants that were treated with UV radiation. The activity of antioxidant enzyme polyphenol oxidase in plants that were treated with UV-B, UV-C, and SA was significantly increased. The aim of the present study was to investigate the possible protective effect of SA treatment on UV-A, UV-B, and UV-C stress.  相似文献   

16.
Döhler  G. 《Photosynthetica》1998,35(3):473-476
Impact of UV-A and UV-B radiation on pattern of pigments of the Antarctic macroalga Leptosomia simplex L. was studied during the Polarstern cruise (ANT XII/2) 1994/95 under controlled laboratory conditions. An 8 h exposure to UV-A of 17.6 W m-2 led usually to an increase of carotenoid contents, but to a decrease in contents of chlorophyllide (Chlide) a and chlorophyll (Chl) a. UV-B irradiation (300-320 nm) caused a decrease in contents of Chlide a, lutein, and zeaxanthin, but an increase in contents of Chl a and carotenes. Enhancement of carotenoid contents was attributed to a protection of the photosynthetic apparatus. UV effects on the 15N-ammonium uptake were correlated with the changes in pigment contents.  相似文献   

17.
Plants exposed to natural solar radiation usually show acclimation responses on a daily and seasonal basis. Many of these responses are complex and modified by interactions with acclimation responses to other climatic factors. While changes in photosynthetically active radiation (PAR, 400-700 nm) are the driving force for many acclimation responses in plants, radiation outside the PAR range is also important. Recently, interest has increased in the potential role of UV-A (320-400 nm) and UV-B (280-320 nm) components of sunlight in plant developmental, physiological and daily acclimation processes. In order to explore the role of UV-B further, Brassica napus L. cv Paroll plants were grown to maturity under 13 kJ d(-1) of biologically effective ultraviolet-B radiation (UV-B(BE), 280-320 nm) plus 800 micromol photons m(-2) s(-1) photosynthetically active radiation (PAR, 400-700 nm) or PAR alone. Leaf anatomy and palisade cell structure were quantified using stereological techniques. The leaves of plants grown under UV-B radiation exhibited an increase in overall leaf width, although no change in leaf anatomy was discerned. Palisade cells in UV-B exposed leaves showed a significant decrease in chloroplast, mitochondrial, starch, and microbody volume density (Vv), while the vacuolar Vv increased compared to cells exposed to PAR only. In UV-B exposed leaves, there was an increase in the appressed and non-appressed thylakoid surface area density (Sv) within the chloroplasts. Since the relative proportion of appressed to non-appressed thylakoid surface area did not change, both thylakoid systems changed in concert with each other. Thylakoid stacks were broader and shorter in leaves subjected to UV-B. In general these responses were similar to those which occurred in plants moved from a high to low PAR environment and similar to mature plants exposed to 13 kJ d(-1) UV-B(BE) for only a short period of time. Although UV absorbing pigments increased by 21% in UV-B exposed leaves, there was no significant difference in chlorophyll a,b or carotenoid content compared to plants exposed to only PAR.  相似文献   

18.
About 95% of the ultraviolet (UV) photons reaching the Earth’s surface are UV-A (315–400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280–315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR). Consequently, results from these studies are difficult to interpret from an ecological perspective, leaving an important gap in our understanding of the perception of solar UV radiation by plants. Previously, it was assumed UV-A/blue photoreceptors, cryptochromes and phototropins mediated photomorphogenic responses to UV-A radiation and “UV-B photoreceptor” UV RESISTANCE LOCUS 8 (UVR8) to UV-B radiation. However, our understanding of how UV-A radiation is perceived by plants has recently improved. Experiments using a realistic balance between UV-B, UV-A, and PAR have demonstrated that UVR8 can play a major role in the perception of both UV-B and short-wavelength UV-A (UV-Asw, 315 to ∼350 nm) radiation. These experiments also showed that UVR8 and cryptochromes jointly regulate gene expression through interactions that alter the relative sensitivity to UV-B, UV-A, and blue wavelengths. Negative feedback loops on the action of these photoreceptors can arise from gene expression, signaling crosstalk, and absorption of UV photons by phenolic metabolites. These interactions explain why exposure to blue light modulates photomorphogenic responses to UV-B and UV-Asw radiation. Future studies will need to distinguish between short and long wavelengths of UV-A radiation and to consider UVR8’s role as a UV-B/UV-Asw photoreceptor in sunlight.

In sunlight, UVR8 mediates the perception of both UV-B and short-wavelength UV-A radiation with its sensitivity moderated by blue light perceived through cryptochromes.  相似文献   

19.
Proteins lacking prosthetic groups and/or cofactors are known to undergo electronic excitation transitions only upon exposure to UV-C (< 280 nm) and UV-B (280-320 nm), but not UV-A (320-400 nm) photons. Here, we report the discovery of a novel excitation that peaks at approximately 340 nm and yields visible violet-blue radiation with apparent band maxima at approximately 425, 445, 470, and 500 nm. All proteins and large polypeptides examined in solid form, and in solutions, display this quenchable and photobleachable radiation which can be established not owing to aromatic sidechains. As a note of caution, we wish to state that we have not been able to completely eliminate the possibility that the radiation may be an artifact owing to second order effects such as, e.g., Raman scattering of Raman-scattered photons; however, we assert that all our experiments indicate that the radiation actually owes to some form of fluorescence. We propose that peptide electrons that have been delocalized through intramolecular or intermolecular hydrogen bond formation display these long-wavelength electronic transitions. If confirmed by future studies, this preliminary discovery may turn out to have important implications for biomolecular spectroscopy, protein crystallography, and materials science.  相似文献   

20.
 Growth patterns and nitrogen economy were studied in pot-grown seedlings of mountain birch subjected to different ultraviolet radiation under both laboratory and outdoor conditions at Abisko in northern Sweden. In the laboratory, nutrient supply, temperature, humidity, ultraviolet radiation-A (UV-A, 320–400 nm) and B (UV-B, 280–320 nm) were controlled, while photosynthetically active radiation (PAR, 400–700 nm) and photoperiod varied naturally. Under outdoor conditions nutrient supply was controlled, and the irradiation treatments were ambient and above-ambient UV-B using additional fluorescent lamps. Mountain birch nitrogen economy was affected by increased ultraviolet radiation, as reflected by a changed relationship between plant growth and plant nitrogen both in the laboratory and outdoors. In the laboratory enhanced UV-A decreased leaf area per unit plant biomass (leaf area ratio) but increased biomass productivity, both per unit leaf area (leaf area productivity) and per unit leaf nitrogen (leaf nitrogen productivity). Low levels of UV-B affected growth patterns and nitrogen economy in a similar way to enhanced UV-A. High levels of UV-B clearly decreased relative growth rate and nitrogen productivity, as leaf area ratio, leaf area productivity and leaf nitrogen productivity were all decreased. Under outdoor conditions above-ambient levels of UV-B did not alter growth or biomass allocation traits of the seedlings, whilst nitrogen productivity was increased. Mountain birch seedlings originating from different mother trees varied significantly in their responses to different ultraviolet radiation. Received: 10 April 1997 / Accepted: 19 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号