首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prions are suspected as pathogen of the fatal transmissible spongiform encephalopathies. Strategies to access homogenous prion protein (PrP) are required to fully comprehend the molecular mechanism of prion diseases. However, the polypeptide fragments from PrP show a high tendency to form aggregates, which is a gigantic obstacle of protein synthesis and purification. In this study, murine prion sequence 90 to 230 that is the core three‐dimensional structure domain was constructed from three segments murine PrP (mPrP)(90–177), mPrP(178–212), and mPrP(213–230) by combining protein expression, chemical synthesis and chemical ligation. The protein sequence 90 to 177 was obtained from expression and finally converted into the polypeptide hydrazide by chemical activation of a cysteine in the tail. The other two polypeptide fragments of the C‐terminal were obtained by chemical synthesis, which utilized the strategies of isopeptide and pseudoproline building blocks to complete the synthesis of such difficult sequences. The three segments were finally assembled by sequentially using native chemical ligation. This strategy will allow more straightforward access to homogeneously modified PrP variants. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Orthogonal ligation strategies for peptide and protein   总被引:1,自引:0,他引:1  
Tam JP  Yu Q  Miao Z 《Biopolymers》1999,51(5):311-332
This review focuses on the concept, criteria, and methods of an orthogonal amide ligating strategy suitable for syntheses of peptides, peptide mimetics, and proteins. Utilizing unprotected peptides or proteins derived from chemical or biosynthetic sources, this ligation strategy has been shown to be general and exceptionally mild. Its orthogonality in ligating two unprotected segments with free N-terminal (NT)-amines at a specific NT-amine is achieved through a chemoselective capture step and then an intramolecular acyl transfer reaction. Both coupling reagents for enthalpic activation and protection schemes therefore become unnecessary. More than a dozen orthogonal ligation methods based on either imine or thioester captures have been developed to afford native and unusual amino acids at ligation sites of linear, branched, or cyclic peptides. Because unprotected peptides and proteins of different sizes and forms can be obtained from either chemical or recombinant sources, orthogonal ligation removes the size limitation imposed on the chemical synthesis of a protein with a native or non-native structure. Furthermore, by using building blocks from biosynthetic sources, orthogonal ligation provides a unifying operational concept for both total and semisynthesis of peptides and proteins.  相似文献   

3.
The synthesis of proteins by native chemical ligation greatly enhances the application of chemistry to complex molecules such as proteins. The essential building blocks for this approach traditionally have been peptide-thioester segments that are linked chemoselectively in consecutive reactions. By using peptide selenoesters instead of thioesters, the ligation rate can be significantly accelerated permitting couplings at difficult sites and potentially enabling new ligation strategies. To facilitate the routine synthesis of selenoester peptides, a general and straightforward procedure has been developed that generates a suitably functionalized resin from which the desired selenoester peptide can be readily synthesized. This simple approach utilizes readily available and cheap chemical agents and enables production of peptide selenoesters of excellent quality in short time and with high recovery. In addition, the stability of peptide selenoesters was examined under different native chemical ligation conditions and compared to thioesters. Selenoesters are slightly more reactive and more susceptible to hydrolysis and aminolysis than thioesters but sufficiently stable under mildly acidic conditions (pH 6.5). Under these conditions, rapid selenoester-mediated ligation is kinetically favoured.  相似文献   

4.
Aimoto S 《Biopolymers》1999,51(4):247-265
A novel method for polypeptide synthesis, in which partially protected peptide thioesters are used as building blocks, has been developed. Partially protected peptide thioesters are easily prepared by solid-phase methodology. The thioester moiety is converted to an active ester in the presence of a silver compound such as AgNO(3) or AgCl and an active ester component such as 1-hydroxybenzotriazole or 3,4-dihydro-3-hydro-4-oxo-1,2, 3-benzotriazine. Segment condensation can be accomplished using partially protected peptide segments. The consecutive condensation of the partially protected peptide segments is realized by the selective removal of the 9-flourenylmethoxycarbonyl group, for terminal amino protection, after segment condensation has been achieved. In this method, large peptide segments can easily be used. Thus, the products obtained by the thioester method can be separated from by-products by reverse phase high performance liquid chromatography, even when no purification process was performed during the prior segment condensation procedures. This indicates that proteins that have no specific features such as enzymatic or biological activities can be obtained after isolation, solely based on their chromatographic profiles. Thus, the thioester method will provide a new basis for protein studies including phosphorylated and glycosylated polypeptides.  相似文献   

5.
Tandem Peptide Ligation for Synthetic and Natural Biologicals   总被引:1,自引:0,他引:1  
J. P. Tam  Q. Yu  Y. -A. Lu 《Biologicals》2001,29(3-4):189-196
We describe the concept and methods of peptide ligation and tandem peptide ligation for preparing synthetic and natural biologicals. Peptide ligation is a segment coupling method for free peptides or proteins through an amide bond without the use of a coupling reagent or a protecting group scheme. Because unprotected peptides or proteins prepared from either a chemical or biochemical source are being used as building blocks, the ligation removes the size limitation for peptide and protein synthesis. A key feature of the peptide ligation is that the coupling reaction is orthogonal, i.e. it is specific to a particular alpha-amino terminus (NT). This NT-amino acid-specific feature permits the development of a tandem peptide ligation method employing three unprotected peptide segments containing different NT-amino acids to form consecutively two amide bonds, an Xaa-SPro (thiaproline) and then an Xaa-Cys. This strategy was tested in peptides ranging from 28 to 70 amino acid residues, including analogues of somatostatins and two CC-chemokines MIP-1alpha and MIP-1beta. The thiaproline replacements in these peptides and proteins did not result in altered biological activity. By eliminating the protecting group scheme and coupling reagents, tandem ligation of multiple free peptide segments in aqueous solutions enhances the scope of protein synthesis and may provide a useful approach for preparing protein biologicals and synthetic vaccines.  相似文献   

6.
Conformationally constrained amino acid analogs are widely used to probe the bioactive conformation of peptides. In this paper we report on the synthesis of hexafunctional allose-templated l- and d-hydroxyornithine and l- and d-hydroxyarginine analogs in which the allose-based polyol scaffold constrains the side chain of hydroxyornithine and hydroxyarginine in an extended conformation. The partially protected building blocks were selected for future use in solid-phase peptide synthesis using the Fmoc-strategy. The synthesis starts from a previously prepared C-glucosyl glycine analog. Multiple chemical protection-deprotection steps and an oxidation are used to prepare 3-keto-C-glucosyl analogs that serve as a precursor to install an amino function via reductive amination. Guanidinylation of the amino group provides access to allose-templated hydroxyarginine analogs. Both hexafunctional building blocks are further chemically modified to provide suitable protection for solid-phase peptide synthesis using the Fmoc-strategy.  相似文献   

7.
Chiral β-hydroxy α-amino acid structural motifs are interesting and common synthons present in multiple APIs and drug candidates. To access these chiral building blocks either multistep chemical syntheses are required or the application of threonine aldolases, which catalyze aldol reactions between an aldehyde and glycine. Bioinformatics tools have been utilized to identify the gene encoding threonine aldolase from Vanrija humicola and subsequent preparation of its recombinant version from E. coli fermentation. We planned to implement this enzyme as a key step to access the synthesis of our target API. Beyond this specific application, the aldolase was purified, characterized and the substrate scope of this enzyme further investigated. A number of enzymatic reactions were scaled-up and the products recovered to assess the diastereoselectivity and scalability of this asymmetric synthetic approach towards β-hydroxy α-amino acid chiral building blocks.  相似文献   

8.
An efficient solid-phase synthesis of Fmoc (glyco)peptide thioesters is described. Fmoc x Ser x OAll and Fmoc x Thr x OAll bound to resin with a silyl ether linker were deallylated by Pd(0) catalysis and condensed with thiophenol, benzyl mercaptane, and ethyl 3-mercaptopropionate by activation with DCC/HOBt. The thioesters were released from the resin either by treatment with CsF-AcOH or by acidic hydrolysis. The effectiveness of this silyl linker strategy is further demonstrated by the synthesis of more complex (glyco)peptide thioesters 25, 26 and 27 involving N-->C and C-->N peptide elongation.  相似文献   

9.
Prions     
Prions were originally defined as infectious agents of protein nature, which caused neurodegenerative diseases in animals and humans. The prion concept implies that the infectious agent is a protein in special conformation that can be transmitted to the normal molecules of the same protein through protein-protein interactions. Until the 1990s, the prion phenomenon was associated with the single protein named PrP. Discovery of prions in lower eukaryotes, the yeast Saccharomyces cerevisiae and fungus Podospora anserina, suggests that prions have wider significance. Prions of lower eukaryotes are not related to diseases; their propagation caused by aggregation of prion-like proteins underlies the inheritance of phenotypic traits and most likely has adaptive significance. This review covers prions of mammals and lower eukaryotes, mechanisms of their appearance de novo and maintenance, structure of prion particles, and prospects for the treatment of prion diseases. Recent data concerning the search for new prion-like proteins is included. The paper focuses on the [PSI+] prion of S. cerevisiae, since at present it is the most investigated one. The biological significance of prions is discussed.  相似文献   

10.
Formation of amyloid fibrils is involved in a range of fatal human disorders including Alzheimer, Parkinson, and prion diseases. Yeast prions, despite differences in sequence from their mammalian counterparts, share similar features with mammalian prions including infectivity, prion strain phenomenon, and species barrier and thus are good model systems for human prion diseases. Yeast prions normally have long prion domains that presumably form multiple β strands in the fibril, and structural knowledge about the yeast prion fibrils has been limited. Here we use site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy to investigate the structures of amyloid fibrils of Ure2 prion domain. We show that 15 spin-labeled Ure2 mutants, with spin labels at every 5th residue from position 5 to position 75, show a single-line or nearly single-line feature in their EPR spectra as a result of strong spin exchange interactions. These results suggest that a parallel in-register β structure exists at these spin-labeled positions. More interestingly, we also show that residues in the segment 30-65 have stronger spin exchange interactions, higher local stability, and lower solvent accessibility than segments 5-25 and 70-75, suggesting different local environment at these segments. We propose a hierarchical organization in the amyloid core of Ure2, with the segment 30-65 forming an inner core and the segments 5-25 and 70-75 forming an outer core. The hierarchical organization in the amyloid core may be a structural origin for polymorphism in fibrils and prion strains.  相似文献   

11.
Scrapie and Creutzfeldt-Jakob disease are transmissible, degenerative neurological diseases caused by prions. Considerable evidence argues that prions contain protease-resistant sialoglycoproteins, designated PrPSc, encoded by a cellular gene. The prion protein (PrP) gene also encodes a normal cellular protein designated PrPC. We established clonal cell lines which support the replication of mouse scrapie or Creutzfeldt-Jakob disease prions. Mouse neuroblastoma N2a cells were exposed to mouse scrapie prions and subsequently cloned. After limited proteinase K digestion, three PrP-immunoreactive proteins with apparent molecular masses ranging between 20 and 30 kilodaltons were detected in extracts of scrapie-infected N2a cells by Western (immuno-) blotting. The authenticity of these PrPSc molecules was established by using monospecific antiserum raised against a synthetic peptide corresponding to a portion of the prion protein. Those clones synthesizing PrPSc molecules possessed scrapie prion infectivity as measured by bioassay; clones without PrPSc failed to demonstrate infectivity. Detection of PrPSc molecules in scrapie-infected N2a cells supports the contention that PrPSc is a component of the infectious scrapie particle and opens new approaches to the study of prion diseases.  相似文献   

12.
The prion protein (PrP) can adopt multiple membrane topologies, including a fully translocated form (SecPrP), two transmembrane forms (NtmPrP and CtmPrP), and a cytosolic form. It is important to understand the factors that influence production of these species, because two of them, CtmPrP and cytosolic PrP, have been proposed to be key neurotoxic intermediates in certain prion diseases. In this paper, we perform a mutational analysis of PrP synthesized using an in vitro translation system in order to further define sequence elements that influence the formation of CtmPrP. We find that substitution of charged residues in the hydrophobic core of the signal peptide increases synthesis of CtmPrP and also reduces the efficiency of translocation into microsomes. Combining these mutations with substitutions in the transmembrane domain causes the protein to be synthesized exclusively with the CtmPrP topology. Reducing the spacing between the signal peptide and the transmembrane domain also increases CtmPrP. In contrast, topology is not altered by mutations that prevent signal peptide cleavage or by deletion of the C-terminal signal for glycosylphosphatidylinositol anchor addition. Removal of the signal peptide completely blocks translocation. Taken together, our results are consistent with a model in which the signal peptide and transmembrane domain function in distinct ways as determinants of PrP topology. We also present characterization of an antibody that selectively recognizes CtmPrP and cytosolic PrP by virtue of their uncleaved signal peptides. By using this antibody, as well as the distinctive gel mobility of CtmPrP and cytosolic PrP, we show that the amounts of these two forms in cultured cells and rodent brain are not altered by infection with scrapie prions. We conclude that CtmPrP and cytosolic PrP are unlikely to be obligate neurotoxic intermediates in familial or infectiously acquired prion diseases.  相似文献   

13.
Ziegler T  Schips C 《Nature protocols》2006,1(4):1987-1994
Complex glycosylation patterns on cell surfaces are involved in many fundamental biological processes like specific cell-cell interactions and signal transduction. Furthermore, the glycon part of glycopeptides and glycosylated proteins play a crucial role in numerous ligand-receptor interactions of biological significance. However, the distinct function of complex carbohydrate structures associated with cell surfaces and proteins is still only poorly understood at a molecular level with regard to specific carbohydrate-protein interaction. Here, we present an efficient Mitsunobu protocol for the convenient chemical one-pot preparation of S-glycosyl amino-acid building blocks suitable for automated combinatorial syntheses of highly glycosylated beta-peptides, which, in turn, can serve as potential mimics for complex oligosaccharides or for studying carbohydrate-protein interactions. The protocol also describes the use of the S-glycosyl amino-acid building blocks for combinatorial spot syntheses of glycopeptide libraries and can be used for the construction of other combinatorial peptide libraries as well. This is a procedure that can be completed in approximately 7 days.  相似文献   

14.
The CC chemokine CCL14/HCC-1(9-74), a 66-residue polypeptide containing two disulfide bonds, was recently discovered from a human hemofiltrate peptide library as a high-affinity ligand of the chemokine receptors CCR1 and CCR5. It has been shown to inhibit HIV infection by blocking CCR5. Using Fmoc methodology, we report the chemical synthesis of CCL14/HCC-1 by conventional stepwise solid-phase peptide synthesis (SPPS) and, alternatively, native chemical ligation. To optimize SPPS of CCL14/HCC-1, difficult sequence regions were identified by mass spectrometry, in order to obtain a crude tetrathiol precursor suitable for oxidative disulfide formation. For synthesis of CCL14/HCC-1 by native chemical ligation, the peptide was divided into two segments, CCL14/HCC-1(9-39) and CCL14/HCC-1(40-74), the latter containing a cysteine residue at the amino-terminus. The synthesis of the thioester segment was carried out comparing a thiol linker with a sulfonamide safety-catch linker. While the use of the thiol linker led to very low overall yields of the desired thioester, the sulfonamide linker was efficient in obtaining the 31-residue thioester of CCL14/HCC-1(9-39), suggesting a superior suitability of this linker in generating larger thioesters using Fmoc chemistry. The thioester of CCL14/HCC-1 was subsequently ligated with the cysteinyl segment to the full-length chemokine. Disulfides were introduced in the presence of the redox buffer cysteine/cystine. The products of both SPPS and native chemical ligation were identical. The use of a sulfonamide safety-catch linker enables the Fmoc synthesis of larger peptide thioesters, and is thus useful to generate arrays of larger polypeptides.  相似文献   

15.
Summary The CC chemokine CCL14/HCC-1(9–74), a 66-residue polypeptide containing two disulfide bonds, was recently discovered from a human hemofiltrate peptide library as a high-affinity ligand of the chemokine receptors CCR1 and CCR5. It has been shown to inhibit HIV infection by blocking CCR5. Using Fmoc methodology, we, report the chemical synthesis of CCL14/HCC-1 by conventional stepwise solid-phase peptide synthesis (SPPS) and, alternatively, native chemical ligation. To optimize SPPS of CCL14/HCC-1, difficult sequence regions were identified by mass spectrometry, in order to obtain a crude tetrathiol precursor suitable for oxidative disulfide formation. For synthesis of CCL14/HCC-1 by native chemical ligation, the peptide was divided into two segments, CCL14/HCC-1(9–39) and CCL14/HCC-1(40–74), the latter containing a cysteine residue at the amino-terminus. The synthesis of the thioester segment was carried out comparing a thiol linker with a sulfonamide safety-catch linker. While the use of the thiol linker led to very low overall yields of the desired thioester, the sulfonamide linker was efficient in obtaining the 31-residue thioester of CCL14/HCC-1(9–39), suggesting a superior suitability of this linker in generating larger thioesters using Fmoc chemistry. The thioester of CCL14/HCC-1 was subsequently ligated with the cysteinyl segment to the full-length chemokine. Disulfides were introduced in the presence of the redox buffer cysteine/cystine. The products of both SPPS and native chemical ligation were identical. The use of a sulfonamide safety-catch linker enables the Fmoc synthesis of larger peptide thioesters, and is thus useful to generate arrays of larger polypeptides.  相似文献   

16.
Functionalized compounds, which are difficult to produce by classical chemical synthesis, are of special interest as biotechnologically available targets. They represent useful building blocks for subsequent organic syntheses, wherein they can undergo stereoselective or regioselective reactions. "White Biotechnology" (as defined by the European Chemical Industry [ http://www.europabio.org/white_biotech.htm ], as part of a sustainable "Green Chemistry,") supports new applications of chemicals produced via biotechnology. Environmental aspects of this interdisciplinary combination include: Use of renewable feedstock Optimization of biotechnological processes by means of: New "high performance" microorganisms On-line measurement of substrates and products in bioreactors Alternative product isolation, resulting in higher yields, and lower energy demand In this overview we describe biotechnologically produced pyruvic, 2-oxopentaric and 2-oxohexaric acids as promising new building blocks for synthetic chemistry. In the first part, the microbial formation of 2-oxocarboxylic acids (2-OCAs) in general, and optimization of the fermentation steps required to form pyruvic acid, 2-oxoglutaric acid, and 2-oxo-D-gluconic acid are described, highlighting the fundamental advantages in comparison to chemical syntheses. In the second part, a set of chemical formula schemes demonstrate that 2-OCAs are applicable as building blocks in the chemical synthesis of, e.g., hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. Finally, some perspectives are discussed.  相似文献   

17.
Mammalian prions are infectious agents of proteinaceous nature that cause several incurable neurodegenerative diseases. Interspecies transmission of prions is usually impeded or impossible. Barriers in prion transmission are caused by small interspecies differences in the primary structure of prion proteins. The barriers can also depend on the strain (variant) of a transmitted prion. Interspecies barriers were also shown for yeast prions, which define some heritable phenotypes. Yeast prions reproduce all the main traits of prion transmission barriers observed for mammals. This allowed to show that the barrier in prion transmission can be observed even upon copolymerization of two prionogenic proteins. Available data allow elucidation of the mechanisms that impede prion transmission or make it impossible.  相似文献   

18.
A new method was developed for the synthesis of peptide thioesters from free amino acids and thiols in water. This one-pot simple method involves two steps: (1) activation in water of an amino acid presumably as its N-carboxyanhydride (NCA) using 1,1′-carbonyldiimidazole (CDI), and (2) subsequent condensation of the activated amino acid-NCA in the presence of a thiol. With this method citrulline peptide thioesters containing up to 10 amino acid residues were prepared in a single reaction. This aqueous synthetic method provides a simple way to prepare peptide thioesters for studies of peptide replication involving ligation of peptide thioesters on peptide templates. The relevance of peptide replication to the origin-of-life process is supported by previous studies showing that amino acid thioesters (peptide thioester precursors) can be synthesized under prebiotic conditions by reaction of small sugars with ammonia and a thiol.  相似文献   

19.
Engineering the prion protein using chemical synthesis.   总被引:2,自引:0,他引:2  
In recent years, the technology of solid-phase peptide synthesis (SPPS) has improved to the extent that chemical synthesis of small proteins may be a viable complementary strategy to recombinant expression. We have prepared several modified and wild-type prion protein (PrP) polypeptides, of up to 112 residues, that demonstrate the flexibility of a chemical approach to protein synthesis. The principal event in prion disease is the conformational change of the normal, alpha-helical cellular protein (PrPc) into a beta-sheet-rich pathogenic isoform (PrP(Sc)). The ability to form PrP(Sc) in transgenic mice is retained by a 106 residue 'mini-prion' (PrP106), with the deletions 23-88 and 141-176. Synthetic PrP106 (sPrP106) and a His-tagged analog (sPrP106HT) have been prepared successfully using a highly optimized Fmoc chemical methodology involving DCC/HOBt activation and an efficient capping procedure with N-(2-chlorobenzyloxycarbonyloxy) succinimide. A single reversed-phase purification step gave homogeneous protein, in excellent yield. With respect to its conformational and aggregational properties and its response to proteinase digestion, sPrP106 was indistinguishable from its recombinant analog (rPrP106). Certain sequences that proved to be more difficult to synthesize using the Fmoc approach, such as bovine (Bo) PrP(90-200), were successfully prepared using a combination of the highly activated coupling reagent HATU and t-Boc chemistry. To mimic the glycosylphosphatidyl inositol (GPI) anchor and target sPrP to cholesterol-rich domains on the cell surface, where the conversion of PrPc is believed to occur, a lipophilic group or biotin, was added to an orthogonally side-chain-protected Lys residue at the C-terminus of sPrP sequences. These groups enabled sPrP to be immobilized on either the cell surface or a streptavidin-coated ELISA plate, respectively, in an orientation analogous to that of membrane-bound, GPI-anchored PrPc. The chemical manipulation of such biologically relevant forms of PrP by the introduction of point mutations or groups that mimic post-translational modifications should enhance our understanding of the processes that cause prion diseases and may lead to the chemical synthesis of an infectious agent.  相似文献   

20.
More than 20 human diseases are related to protein misfolding which causes formation of amyloids, fibrillar aggregates of normally soluble proteins. Such diseases are called amyloid diseases or amyloidoses. Of them only prion diseases are transmissible. Amyloids of the prion type are described in lower eukaryotes. However, in contrast to mammalian prions, which cause incurable neurodegenerative diseases, prions of lower eukaryotes are related to some non-chromosomally inherited phenotypic traits. Here we summarize the results of studies of prions of the yeast Saccharomyces cerevisiae and of the use of yeast model for investigation of some human amyloidoses, such as prion diseases, Alzheimer's, Parkinson's, and Huntington's diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号