首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Salmonella typhimurium DA 361 bears an env D1 mutation with the following abnormal phenotypical and biochemical characteristics: a) it autolyses at stationary phase in nutrient broth; b) it grows in chains of short rods; c) it is a poor maltose fermenter and d) it has a diphosphatidylglycerol (DPG) content twice as high than its isogenic non-lytic pair DA 362 (env D+) and LT2, of which both are derivatives. Growth of DA 361 in the presence of 400 mM ethanol leads on a 50% decrease of DPG level, thereby equalling its PG/DPG ratio with those of the control strain. Consequently, a correction on the other phenotypical and biochemical anomalies are induced since the DA 361 strain decreases its autolytic activity, ferments normally maltose and appear as rods undifferentiated from DA 362.  相似文献   

2.
The peptidoglycan layer of a marine pseudomonad was observed by electron microscopy in thin sections of plasmolyzed intact cells and mureinoplasts but not in untreated intact cells. Only fragments of this layer could be isolated by sodium lauryl sulfate (SLS) treatment of mureinoplast envelopes. Sacculus-like peptidoglycan structures were obtained from growing cells by immediate heat inactivation of cellular autolytic enzymes and subsequent SLS, trypsin, and nuclease treatments. Recently, similar peptidoglycan sacculus-like structures have been obtained by adding SLS to the growing culture and treating the isolated particulate material with nucleases. Thin-sectioned and negatively stained preparations of whole cell peptidoglycan showed compressed profiles of cell-shaped sacculi. Peptidoglycan prepared by SLS treatment of mureinoplast envelopes had a similar composition to that prepared from whole cells. The major amino sugars and amino acids in the peptidoglycan component were glucosamine, muramic acid, alanine, glutamic acid and diaminopimelic acid in the molar ratios 1.18:1.24:1.77:1.00:0.79. Forty-five per cent of the epsilon-amino groups of diaminopimelic acid were cross-linked. The peptidoglycan was estimated to account for about 1% of the cell dry weight.  相似文献   

3.
Identification of the full complement of peptidoglycan hydrolases detected by zymogram in Enterococcus faecalis extracts led to the characterization of two novel hydrolases that we named AtlB and AtlC. Both enzymes have a similar modular organization comprising a central catalytic domain fused to two LysM peptidoglycan-binding modules. AtlB and AtlC displayed N-acetylmuramidase activity, as demonstrated by tandem mass spectrometry analyses of peptidoglycan fragments generated by the purified enzymes. The genes encoding AtlB and AtlC were deleted either alone or in combination with the gene encoding AtlA, a previously described N-acetylglucosaminidase. No autolytic activity was detected in the triple mutant indicating that AtlA, AtlB, and AtlC account for the major hydrolytic activities in E. faecalis. Analysis of cell size distribution by flow cytometry showed that deletion of atlA resulted in the formation of long chains. Thus, AtlA digests the septum and is required for cell separation after cell division. We found that AtlB could act as a surrogate for AtlA, although the enzyme was less efficient at septum digestion. Deletion of atlC had no impact on cell morphology. Labeling of the peptidoglycan with N-[14C]acetylglucosamine revealed an unusually slow turnover as compared with model organisms, almost completely dependent upon the combined activities of AtlA and AtlB. In contrast to atlA, the atlB and atlC genes are located in putative prophages. Because AtlB and AtlC were produced in the absence of cell lysis or production of phage progeny, these enzymes may have been hijacked by E. faecalis to contribute to peptidoglycan metabolism.  相似文献   

4.
It was shown that Tn551 inactivation of two chromosomal (so-called auxiliary) loci other than the mec gene result in a dramatic reduction of methicillin resistance and decreased cell wall turnover and autolytic capacity in a methicillin-resistant Staphylococcus aureus strain (de Jonge, B. L. M., de Lencastre, H., and Tomasz, A. (1990) J. Bacteriol. 173, 1105-1110). To understand the mechanistic basis of these phenomena we have examined the status of the autolytic enzymes and the muropeptide composition of peptidoglycan using reversed-phase high-performance liquid chromatography and mass spectral analyses. While no differences could be detected in the number of autolytic hydrolases, the mutants showed major changes in peptidoglycan composition. Nine prominent muropeptides of the parental strain each carrying a pentaglycyl substituent were missing from the cell wall of one group of mutants. The second mutant lacked four parental muropeptides which were composed of the unsubstituted disaccharide pentapeptide and its alanyl-tetraglycine derivative. The auxiliary genes are genetic determinants involved with the biosynthesis of peptidoglycan precursors, the presence of which in the cell wall may be needed for optimal cell wall turnover.  相似文献   

5.
Bacillus brevis 47 had two protein layers (the outer and middle walls) and a peptidoglycan layer (the inner wall) and contained two major proteins with approximate molecular weights of 130,000 and 150,000 in the cell wall. Both the total and Triton-insoluble envelopes revealed a hexagonal lattice array with a lattice constant of 14.5 nm. The proteins of 130,000 and 150,000 molecular weight isolated from the Triton-insoluble envelopes were serologically different from each other and assembled in vitro on the peptidoglycan layer. A mixture of 130,000- and 150,000-molecular-weight proteins led to the formation of a five-layered cell wall structure, two layers on each side of the peptidoglycan layer, which resembled closely the Triton-insoluble envelopes. A three-layered cell wall structure, one layer on each side of the peptidoglycan layer, was reconstituted when only the 150,000-molecular-weight protein was used. Both five- and three-layered cell walls reconstituted in vitro also contained hexagonally arranged arrays with the same lattice constant as that of the total and Triton-insoluble envelopes. A mutant, strain 47-57, which was isolated as a phage-resistant colony, had a two-layered cell wall consisting of the middle and inner wall layers and contained only 150,000-molecular-weight protein as the major cell wall protein. The cell envelopes of the mutant revealed the hexagonal arrays with the same lattice constant as that of the wild-type cell envelopes. We conclude that the outer and middle wall layers consist of proteins with approximate molecular weights of 130,000 and 150,000, respectively. Furthermore, the 150,000-molecular-weight protein formed the hexagonal arrays in the middle wall layer.  相似文献   

6.
The autolysis of lactic acid bacteria plays a major role during cheese ripening. The aim of this study was to evaluate the autolytic properties and peptidoglycan hydrolase content of dairy leuconostocs. Autolysis of 59 strains of dairy Leuconostoc was examined under starvation conditions in potassium phosphate buffer. The ability of dairy leuconostocs to lyse is strain dependant and not related to the species. The peptidoglycan hydrolase profile of Leuc. mesenteroides subsp. mesenteroides 10L was analysed by renaturing gel electrophoresis. Two major activity bands migrating at 41 and 52 kDa were observed. According to the specificity analysis, strain 10L seems to contain a glycosidase and an N-acetyl-muramyl-L-alanine amidase, or an endopeptidase. The peptidoglycan hydrolase profiles of various Leuconostoc species were also compared. Several peptidoglycan hydrolase activities could be detected in the different Leuconostoc species. Further characterization of the peptidoglycan hydrolases will help to control autolysis of leuconostocs in cheese.  相似文献   

7.
Protoplasts (autoplasts) of Streptococcus faecalis were produced by the action of native autolytic N-acetylmuramidase in the absence of added peptidoglycan hydrolases and were grown in osmotically stabilized medium containing L-[3H]lysine and D-[14C]alanine. To reduce the level of muralytic hydrolysis of glycan chains during growth, heat-inactivated cell walls were added to the medium to bind autolytic enzyme, and tetracycline (1 mug/ml) was added to inhibit further enzyme synthesis. Under these conditions, protoplasts synthesized newly labeled peptidoglycan in the form of soluble, infrequently peptide cross-linked glycan chains which were released into the supernatant medium. These relatively large glycan chains were not transferred to exogenously added cell walls.  相似文献   

8.
A highly vancomycin-resistant mutant (MIC = 100 microg/ml) of Staphylococcus aureus, mutant VM, which was isolated in the laboratory by a step-pressure procedure, continued to grow and synthesize peptidoglycan in the presence of vancomycin (50 microg/ml) in the medium, but the antibiotic completely inhibited cell wall turnover and autolysis, resulting in the accumulation of cell wall material at the cell surface and inhibition of daughter cell separation. Cultures of mutant VM removed vancomycin from the growth medium through binding the antibiotic to the cell walls, from which the antibiotic could be quantitatively recovered in biologically active form. Vancomycin blocked the in vitro hydrolysis of cell walls by autolytic enzyme extracts, lysostaphin and mutanolysin. Analysis of UDP-linked peptidoglycan precursors showed no evidence for the presence of D-lactate-terminating muropeptides. While there was no significant difference in the composition of muropeptide units of mutant and parental cell walls, the peptidoglycan of VM had a significantly lower degree of cross-linkage. These observations and the results of vancomycin-binding studies suggest alterations in the structural organization of the mutant cell walls such that access of the vancomycin molecules to the sites of wall biosynthesis is blocked.  相似文献   

9.
Bacterial cell wall peptidoglycan is a dynamic structure requiring hydrolysis to allow cell wall growth and division. Staphylococcus aureus has many known and putative peptidoglycan hydrolases, including two likely lytic transglycosylases. These two proteins, IsaA and SceD, were both found to have autolytic activity. Regulatory studies showed that the isaA and sceD genes are partially mutually compensatory and that the production of SceD is upregulated in an isaA mutant. The expression of sceD is also greatly upregulated by the presence of NaCl. Several regulators of isaA and sceD expression were identified. Inactivation of sceD resulted in impaired cell separation, as shown by light microscopy, and "clumping" of bacterial cultures. An isaA sceD mutant is attenuated for virulence, while SceD is essential for nasal colonization in cotton rats, thus demonstrating the importance of cell wall dynamics in host-pathogen interactions.  相似文献   

10.
11.
atl is a gene encoding a bifunctional peptidoglycan hydrolase of Staphylococcus aureus. The gene product of atl is a 138 kDa protein that has an amidase domain and a glucosaminidase domain, and undergoes processing to generate two major peptidoglycan hydrolases, a 51 kDa glucosaminidase and a 62 kDa amidase in culture supernatant. An atl null mutant was isolated by allelic replacement and characterized. The mutant grew in clusters and sedimented when grown in broth culture. Analysis of peptidoglycan prepared from the wild type and the mutant revealed that there were no differences in muropeptide composition or in glycan chain length distribution. On the other hand, the atl mutation resulted in pleiotropic effects on cell surface nature. The mutant cells showed complete inhibition of metabolic turnover of cell wall peptidoglycan and revealed a rough outer cell wall surface. The mutation also decreased the amount of protein non-covalently bound to the cell surface and altered the protein profile, but did not affect proteins covalently associated with the cell wall. Lysis of growing cells treated with otherwise lytic concentration of penicillin G was completely inhibited in the mutant, but that of non-growing cells was not affected by the mutation. The atl mutation did not significantly affect the ability of S. aureus to provoke an acute infection when inoculated intraperitoneally in a mouse sepsis model. These results further support the supposition that atl gene products are involved in cell separation, cell wall turnover and penicillin-induced lysis of the cells.  相似文献   

12.
For fluorescence labelling intact cells and isolated cell envelopes (membranes) from Salmonella typhimurium and Acholeplasma laidlawii were treated with mixed dansylchloride-lecithin-cholesterol vesicles. This kind of dansylation, which has been supposed to be specific for cell surface proteins, produced fluorescent protein pattern after SDS-polyacrylamide gel electrophoresis only when isolated envelopes were dansylated. Acid hydrolysis of fluorescent cell envelopes of Salmonella typhimurium yielded O-dansyltryosine and epsilon-N-dansyl-lysine besides the free sulfonic acid and unidentified compounds. However, no fluorescent proteins were detectable in cell envelopes isolated from dansylated intact bacteria from Salmonella typhimurium. In accord Acholeplasma laidlawii showed only fluorescence from proteins with a molecular weight higher than 100000.  相似文献   

13.
Synchronized, slowly growing (TD = 70 to 80 min) cultures were used to study several wall-associated parameters during the cell cycle: rate of peptidoglycan synthesis, septation, and cellular autolytic activity. The rate of peptidoglycan synthesis per cell declined during most of the period of chromosome replication (C), but increased during the latter part of C and into the period between chromosome termination and cell division (D). An increase in cellular septation was correlated with the increased rate of peptidoglycan synthesis. Cellular autolytic capacity increased during the early portion of C, reached a maximum late in C or early in D, and declined during D. Inhibition of DNA synthesis during C prevented the decline in autolytic capacity at the end of the cell cycle, caused a slight reduction in the rate of peptidoglycan synthesis, delayed but did not prevent septation, and prevented the impending cell division by inhibiting cell separation. Inhibition of DNA synthesis during D did not prevent the increase in autolytic capacity during the next C phase, but, once again, prevented the decline at the end of the subsequent cycle. Thus, increased autolytic capacity at the beginning of the cell cycle did not seem to be related to chromosome initiation, whereas decreased autolytic capacity at the end of the cell cycle seemed to be related to chromosome termination. The data presented are consistent with the role of autolytic enzyme activity in the previously proposed model for cell division of S. faecium (G.D. Shockman et al., Ann. N.Y Acad. Sci. 235:161-197, 1974).  相似文献   

14.
AIMS: To evaluate the autolytic phenotype of Bacillus thuringiensis. METHODS AND RESULTS: The autolytic rate of 87 strains belonging to different subsp. of B. thuringiensis was examined at pH 6, 6.5 and 8.5 in different buffers under starvation conditions. At pH 6 the extent of autolysis (average in the strain collection 38.3 +/- 21.1) was strain-dependent with wide variability, while at pH 6.5 and 8.5 (averages 72.0 +/- 9.0 and 63.1 +/- 8.2, respectively) it was much more uniform with only a few strains showing low autolytic rates. Forty-one per cent of the strains showed high resistance (>/=80%) to mutanolysin, a commercial muramidase from Streptomyces. The peptidoglycan hydrolase pattern was evaluated by renaturing SDS-PAGE using cells of B. thuringiensis subsp. tolworthi HD125 as indicator. The strain collection showed seven major lytic bands of about 90, 63, 46, 38, 32, 28 and 25 kDa, and in the stationary growth phase (72 h) there was a more intense 25 kDa band in the autolytic pattern. Using Micrococcus lysodeicticus and Listeria monocytogenes as the indicators lytic activity was retained, as seen by the bands of 63, 46, 38, 32 and 25 kDa. Growth in the different media did not affect the autolytic pattern. NaCl abolished the activity of all the peptidoglycan hydrolases in the gel, but in the presence of KCl, MgCl(2), MnCl(2) and EDTA some activity was retained. At basic pH the lytic activity increased. CONCLUSIONS: The autolytic phenotype of B. thuringiensis was found to be strain-dependent, and different proteins exibited peptidoglycan hydrolase activity, particularly at alkaline pH. Several of these proteins retained lytic activity against other bacterial species. SIGNIFICANCE AND IMPACT OF THE STUDY: The characterisation of the autolytic phenotype of B. thuringiensis should expand the prospects of using this species in bacterial bio-control and field applications.  相似文献   

15.
AIMS: To evaluate the autolytic phenotype of Pediococcus acidilactici and P. pentosaceus, the peptidoglycan hydrolases content and the effect of pediocin AcH/PA-1 and autolysins on cell lysis. METHODS AND RESULTS: The autolytic phenotype of Pediococcus strains was evaluated under starvation conditions in potassium phosphate buffer. The strains tested showed an extent of autolysis ranging between 40 and 90% after 48 h of starvation at 37 degrees C. Peptidoglycan hydrolase content was evaluated by renaturing sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) using cells of Micrococcus lysodeikticus as a target for the enzymatic activity and a major activity band migrating at about 116 kDa was detected. Additional secondary lytic bands migrating in a range of molecular weight between 45 and 110 kDa were also detected. The lytic activity, evaluated in the presence of different chemicals, was retained in 15 mM CaCl2 and in a range of pH between 5 and 9.5 but was strongly reduced in presence of 8% NaCl and in the presence of protease inhibitors. The substrate specificity of peptidoglycan hydrolases of Pediococcus strains was evaluated in renaturing SDS-PAGE incorporating cells of different bacterial species. Lytic activity was detected against cells of Lactococcus lactis subsp. lactis, L. delbrueckii subsp. bulgaricus, Lactobacillus helveticus and Listeria monocytogenes. The interaction between pediocin AcH/PA-1 and autolysis was evaluated and a relevant effect of bacteriocin in cell-induced lysis was observed. CONCLUSIONS: The autolytic phenotype is widely distributed among P. acidilactici and P. pentosaceus and the rate of autolysis is high in the majority of the analysed strains. Several autolytic bands, detected by renaturing SDS-PAGE, retained their activity against several lactic acid bacteria and L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY: The characterization of the autolytic phenotype of Pediococcus acidilactici and P. pentosaceus strains should expand the knowledge of their role in fermentation processes where these species occur as primary or secondary bacterial population.  相似文献   

16.
We have identified a gene encoding an autolysin (atlA) from Neisseria gonorrhoeae . The deduced amino acid sequence of AtlA shows significant similarity to the peptidoglycan degrading transglycosylases (endolysins) of bacteriophages lambda and P2, suggesting that the encoded protein also functions in peptidoglycan hydrolysis. An atlA mutant was identical to the wild-type strain in exponential growth rate, but demonstrated reduced lysis and peptidoglycan turnover in the stationary phase of growth. When transferred into a buffer solution, at a pH non-permissive for other gonococcal autolysins, an autolytic activity was detectable in the wild-type strain that was not present in the mutant. The most dramatic phenotype of the mutant occurred after extended time in stationary phase. After approximately 16 h in stationary phase, both strains underwent an apparent replication event, after which the wild-type strain died rapidly whereas the atlA mutant survived considerably longer. Even after both the wild-type and mutant cells were dead, many of the mutant cells maintained intact morphology, whereas the wild-type cells were lysed. These results suggest that AtlA is a peptidoglycan transglycosylase related to bacteriophage endolysins and acts as an autolysin in the stationary phase.  相似文献   

17.
A mutant of Bacillus subtilis 6160 that had been isolated by its hyperproduction of alpha-amylase and protease lacked flagella and motility, and its content of autolytic enzyme(s) was reduced to one-third to one-fourth that of the parent. These phenotypic differences were completely co-transferred by the deoxyribonucleic acid (DNA) of the mutant when five DNA recipient strains of B. subtilis were transformed. The revertants, isolated by motility with a frequency of approximately 10(-7), recovered a normal level of autolytic activity and showed reduced productivity of alpha-amylase and protease. This point mutation allowed normal flagellin synthesis, spore formation, and rate of growth. The comparison of cell envelope of the mutant with that of the parent indicated that there was no significant difference except loss of flagella. Therefore the association at the cell surface of a group of extracellular proteins consisting of alpha-amylase, proteases, flagellin, and autolytic enzymes(s) seem to be coordinately regulated by the gene or seem to be affected coordinately by certain undetected alterations of the cell envelope.  相似文献   

18.
Aims: To elucidate the roles of the β‐1,3‐endoglucanase EngA in autolysis of the filamentous fungus Aspergillus nidulans and to identify the common regulatory elements of autolytic hydrolases. Methods and Results: A β‐1,3‐endoglucanase was purified from carbon‐starving cultures of A. nidulans. This enzyme is found to be encoded by the engA gene (locus ID: AN0472.3). Functional and gene‐expression studies demonstrated that EngA is involved in the autolytic cell wall degradation resulting from carbon starvation of the fungus. Moreover, regulation of engA is found to be dependent on the FluG/BrlA asexual sporulation signalling pathway in submerged culture. The deletion of either engA or chiB (encoding an endochitinase) caused highly reduced production of hydrolases in general. Conclusions: The β‐1,3‐endoglucanase EngA plays a pivotal role in fungal autolysis, and activities of both EngA and ChiB are necessary to orchestrate the expression of autolytic hydrolases. The production of cell wall–degrading enzymes was coordinately controlled in a highly sophisticated and complex manner. Significance and Impact of the Study: No information was available on the autolytic glucanase(s) of the euascomycete A. nidulans. This study demonstrates that EngA is a key element in fungal autolysis, and normal activities of both EngA and ChiB are crucial for balanced production of hydrolases.  相似文献   

19.
AIMS: To evaluate the autolytic properties of Lactococcus lactis strains isolated from artisan Tunisian dairy products, their peptidoglycan hydrolase content and their activity spectrum. METHODS AND RESULTS: The autolytic phenotype of Lactococcus strains was evaluated under starvation conditions in potassium phosphate buffer. The results obtained highlighted a high degree of diversity among the strains analysed, allowing the identification of high and low autolytic Lactococcus lactis strains. Peptidoglycan hydrolase content was evaluated by renaturing SDS-PAGE using cells of Micrococcus lysodeikticus as a target for the enzymatic activity. A major activity band migrating at about 45 kDa was observed. The lytic activity, evaluated in the presence of different chemicals, was retained in 8% NaCl, 15 mmol l(-1) CaCl2, and in a pH range between 5 and 9.5. The substrate specificity of peptidoglycan hydrolase from Lactococcus strains was evaluated in renaturing SDS-PAGE incorporating cells of different bacterial species. The major autolysin of Lactococcus lactis was active against cells of Lactococcus lactis subsp. lactis, Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus helveticus and Listeria monocytogenes. CONCLUSIONS: Autolytic activity is widely distributed in Lactococcus lactis and the rate of autolysis is strain-dependent. The major peptidoglycan hydrolase showed a wide spectrum of activity against several lactic acid bacteria and bacterial species involved in food-related infection. SIGNIFICANCE AND IMPACT OF THE STUDY: The autolytic phenotype of Lactococcus lactis strains isolated from Tunisian artisan dairy products has been determined, and the data obtained should allow the selection of strains of technological interest in the cheese-ripening process.  相似文献   

20.
An autolytic glycosidase from a lysozyme-resistant strain of Bacillus cereus capable of cleaving the glycosidic linkages of N-unsubstituted glucosamine in the cell wall peptidoglycan was studied. This glycosidase activity, together with N-acetylmuramyl-L-alanine amidase activity, was found in an autolytic enzyme preparation obtained from the 20,000 x g precipitate fraction by means of autolysis followed by ammonium sulfate fractionation. The major saccharide fragments resulting from digestion of the untreated, non-N-acetylated, cell wall peptidoglycan of B. cereus with the autolytic enzyme preparation were identified as N-acetylmuramyl-glucosamine and its dimer. The peptidoglycan N-acetylated with acetic anhydride could also be digested with the same enzyme preparation, giving N-acetylmuramyl-N-acetylglucosamine and its dimer as the major saccharide fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号