首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although it is known that (i) O6-alkylguanine-DNA alkyltransferase (AGT) confers tumor cell resistance to guanine O6-targeting drugs such as cloretazine, carmustine, and temozolomide and that (ii) AGT levels in tumors are highly variable, measurement of AGT activity in tumors before treatment is not a routine clinical practice. This derives in part from the lack of a reliable clinical AGT assay; therefore, a simple AGT assay was devised based on transfer of radioactive benzyl residues from [benzene-3H]O6-benzylguanine ([3H]BG) to AGT. The assay involves incubation of intact cells or cell homogenates with [3H]BG and measurement of radioactivity in a 70% methanol precipitable fraction. Approximately 85% of AGT in intact cells was recovered in cell homogenates. Accuracy of the AGT assay was confirmed by examination of AGT levels by Western blot analysis with the exception of false-positive results in melanin-containing cells due to [3H]BG binding to melanin. Second-order kinetic constants for human and murine AGT were 1100 and 380 M−1 s−1, respectively. AGT levels in various human cell lines ranged from less than 500 molecules/cell (detection limit) to 45,000 molecules/cell. Rodent cell lines frequently lacked AGT expression, and AGT levels in rodent cells were much lower than in human cells.  相似文献   

2.
Hepcidin is a peptide hormone that functions as a key regulator of mammalian iron metabolism. Serum and urine levels are increased in inflammation and suppressed in hemochromatosis, and they may have diagnostic importance. This study describes the development and validation of an analytical method for the quantitative determination of the concentration of hepcidin in clinical samples. A stable, isotopically labeled internal standard, [15N,13C2]Gly12,20-hepcidin, was synthesized and a standard quantity was added to urine samples. Extraction was performed using weak cation exchange magnetic nanoparticles. An ion trap mass spectrometer was used to quantify hepcidin in the samples. The hepcidin assay was validated, and good recovery of hepcidin was obtained. The assay is accurate and precise. Urinary hepcidin levels of 3 to 9 nmol/mmol creatinine−1 were found in healthy controls, with reduced levels in hemochromatosis (P < 0.00006) and elevated levels in inflammation (P < 0.00035). In sickle cell disease, a wide range was found, with the mean value not differing significantly from controls (P < 0.26). In summary, a validated method has been developed for the quantitation of hepcidin using a stable, isotopically labeled internal standard and applied to determine the concentrations of hepcidin in the low nanomolar range in urine samples from patients and controls.  相似文献   

3.
Tissue engineering in cardiovascular regenerative therapy requires the development of an efficient oxygen supply system for cell cultures. However, there are few studies which have examined human cardiomyocytes in terms of oxygen consumption and metabolism in culture. We developed an oxygen measurement system equipped with an oxygen microelectrode sensor and estimated the oxygen consumption rates (OCRs) by using the oxygen concentration profiles in culture medium. The heart is largely made up of cardiomyocytes, cardiac fibroblasts, and cardiac endothelial cells. Therefore, we measured the oxygen consumption of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), cardiac fibroblasts, human cardiac microvascular endothelial cell and aortic smooth muscle cells. Then we made correlations with their metabolisms. In hiPSC-CMs, the value of the OCR was 0.71 ± 0.38 pmol/h/cell, whereas the glucose consumption rate and lactate production rate were 0.77 ± 0.32 pmol/h/cell and 1.61 ± 0.70 pmol/h/cell, respectively. These values differed significantly from those of the other cells in human heart. The metabolism of the cells that constitute human heart showed the molar ratio of lactate production to glucose consumption (L/G ratio) that ranged between 1.97 and 2.2. Although the energy metabolism in adult heart in vivo is reported to be aerobic, our data demonstrated a dominance of anaerobic glycolysis in an in vitro environment. With our measuring system, we clearly showed the differences in the metabolism of cells between in vivo and in vitro monolayer culture. Our results regarding cell OCRs and metabolism may be useful for future tissue engineering of human heart.  相似文献   

4.

Aims

Morphine is extensively metabolized to neurotoxic morphine-3-glucuronide (M3G) and opioid agonist morphine-6-glucuronide (M6G). Due to these different roles, interindividual variability and co-administration of drugs that interfere with metabolism may affect analgesia. The aim of the study was to investigate the repercussions of administration of an inducer (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) and an inhibitor (ranitidine) of glucuronidation in morphine metabolism and consequent analgesia, using the Guinea pig as a suitable model.

Main methods

Thirty male Dunkin–Hartley guinea pigs were divided in six groups: control, morphine, ranitidine, ranitidine + morphine, TCDD and TCDD + morphine. After previous exposure to TCDD and ranitidine, morphine effect was assessed by an increasing temperature hotplate (35–52.5 °C), during 60 min after morphine administration. Then, blood was collected and plasma morphine and metabolites were quantified.

Key findings

Animals treated with TCDD presented faster analgesic effect and 75% reached the cut-off temperature of 52.5 °C, comparing with only 25% in morphine group. Animals treated with ranitidine presented a significantly lower analgesic effect, compared with morphine group (p < 0.05). Moreover, significant differences between groups were found in M3G levels and M3G/morphine ratio (p < 0.001 and p < 0.0001), with TCDD animals presenting the highest values for M3G, M6G, M3G/morphine and M6G/morphine, and the lowest value for morphine. The opposite was observed in the animals treated with ranitidine.

Significance

Our results indicate that modulation of morphine metabolism may result in variations in metabolite concentrations, leading to different analgesic responses to morphine, in an animal model that may be used to improve morphine effect in clinical practice.  相似文献   

5.
A method for the detection of trehalose-6-phosphate (T6P) in tissue of the model plant Arabidopsis thaliana is presented. Liquid-liquid extraction (LLE) and mixed mode solid-phase extraction (SPE) were used for sample pretreatment followed by anion exchange chromatography (AEC) coupled with electrospray ionization mass spectrometry (MS) for highly selective quantitative analysis. LLE of plant material was performed with chloroform/acetonitrile/water (3:7:16, v/v/v) followed by SPE with Oasis MAX material, which significantly reduced the complexity of the extracts. On-line coupling of MS with gradient AEC using a sodium hydroxide eluent was accomplished with a postcolumn ion suppressor. The method allows specific quantification of T6P with good linearity for spiked plant extracts, from 80 nM to 1.3 μM (r2 > 0.98). The limit of detection in plant extracts was 40 nM. The recovery of the method was above 80% for relevant T6P levels. The method was applied to the determination of T6P in seedlings from four mutant A. thaliana lines (TRR1-4) resisting growth arrest caused by external supply of trehalose. Results reveal that T6P accumulation differed substantially in the four mutant lines and wild type (WT). It is concluded that the mutants circumvent the growth arrest observed in WT seedlings on 100 mM trehalose by different mechanisms.  相似文献   

6.
A glutathione S-transferase (GST) from the mosquito Aedes aegypti (aagste2), selected in the field as a major metabolic resistance enzyme for this parasite vector, was employed to produce a highly specific assay for the determination of DDT [1,1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene]. Detection is based on the pH change occurring in an appropriate buffer system by the concomitant release of H+ during the aagste2-catalyzed dehydrochlorination reaction and is monitored potentiometrically or colorimetrically in the presence of a pH marker. The theoretical limit of detection (LOD) of the assay is 3.8 μg/ml, and the linear range of quantification is 12 to 250 μg/ml. The method does not recognize biologically inactive DDT analogues or major DDT photodegradants and breakdown molecules, and it is highly specific for the insecticidal p.p’DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane]. The biosensor was validated with a number of insecticide swabs from DDT-sprayed surfaces and found to be reproducible and reliable as compared with high-performance liquid chromatography (HPLC) (correlation coefficient R2 = 0.98). Given the current expansion of DDT residual sprayings in many regions of Africa as a key strategic intervention for malaria vector control, this simple assay to monitor DDT levels for vector control spraying programs could have an important impact on malaria control.  相似文献   

7.
Estrogenic activities of ethanol extract and its active components from Psoralea corylifolia L. were studied using various in vitro assays. The main components from ethanol extract were analyzed to be bakuchiol, psoralen, isobavachalcone, isobavachromene, and bavachinin. In a fractionation procedure, hexane and chloroform fractions showed estrogenic activity in yeast transactivation assay and E-screen assay. In yeast transactivation assay, ethanol extract, hexane, and chloroform fractions showed significantly higher activities at a concentration of 1.0 ng/ml, and bakuchiol at the concentration of 10−6 M was showed the highest activity, especially, which was higher than genistein at the same concentration. In E-screen assay, cell proliferation of bakuchiol (10−6 M) showed similar estrogenic activity with genistein (10−6 M). In ER binding assay, bakuchiol displayed the strongest ER-binding affinity (IC50 for ERα = 1.01 × 10−6 M, IC50 for ERβ = 1.20 × 10−6 M) and bakuchiol showed five times higher affinity for ERα than for ERβ.  相似文献   

8.
The system KISS1-KISS1R is one of the main regulators of the hypothalamic-pituitary-gonadal axis and constitutes a link between metabolism and reproduction through its interaction with leptin. The aim of this study was to clarify the possible utility of kisspeptin as a pubertal marker and/or the possible influence of nutritional status in kisspeptin levels. To this end, we have studied kisspeptin plasma levels throughout sexual development and in prepubertal obese girls and girls affected by idiopathic central precocious puberty (CPP). Plasma kisspeptin concentrations were analyzed by RIA. An increase in kisspeptin levels was observed in adult females compared to healthy prepubertal and pubertal girls (p < 0.001) and to adult males (p < 0.001). Additionally, kisspeptin was increased in prepubertal obese girls compared to healthy prepubertal girls (p < 0.01) and girls with idiopathic CPP (p < 0.05). As revealed by the regression analysis, in prepubertal healthy and obese girls and girls with idiopathic CCP, the parameters that influenced kisspeptin levels were BMI (R2 = 0.10, p < 0.05) and leptin levels (R2 = 0.14, p < 0.01). In conclusion, kisspeptin levels do not seem to be a good pubertal marker. The results obtained in prepubertal and idiopathic CCP girls point to a relationship between leptin, BMI and kisspeptin at least in this group, and suggest a possible role for adipose tissue in the modulation kisspeptin synthesis.  相似文献   

9.
Biofilms are ubiquitous and play an essential role in both environmental processes and hospital infections. Standard methods are not capable of quantifying biomass concentration in dilute suspensions. Furthermore, standard techniques cannot differentiate biomass composition. In this study, a user-friendly technique was developed for measuring biomass cell and polymer content in detached biofilms using a standard coulter counter. The method was demonstrated for an environmentally relevant strain of Pseudomonas aeruginosa (Schroeter) Migula grown in a bioreactor and also for a medically relevant strain of P. aeruginosa (PAO1) grown on standard growth pegs. Results were compared and validated by standard assays, including EPA method 1684 for measuring biomass, microscopic direct counts, and a crystal violet staining assay. The minimum detection limit for the coulter counter method (0.07 mg-biomass L− 1) was significantly lower than the EPA method 1684 (1.9 ± 0.4 mg/L) and the crystal violet assay (1.1 ± 0.2 mg L− 1). However, the coulter counter method is limited to dilute biomass samples (below 204 ± 16 mg L− 1) due to clogging of the aperture tube. While biomass measurements are useful, the major advantage of the coulter counter method is the ability to directly determine EPS, cell, and aggregate fractions after mild chemical treatment. The rapid technique (4–5 min per sample) was used to measure biomass fractions in dispersed P. aeruginosa (Schroeter) and PAO1 biofilms. This technique will be critical for understanding biofilm formation/dispersal.  相似文献   

10.
Microband glucose biosensors were produced by insulating and sectioning through a screen-printed, water-based carbon electrode containing cobalt phthalocyanine redox mediator and glucose oxidase enzyme. Under quiescent conditions at 37 °C, at an operating potential of +0.4 V, they produced an amperometric response to glucose in buffer solutions with a sensitivity of 26.4 nA/mM and a linear range of 0.45 to 9.0 mM. An optimal pH value of 8.5 was obtained under these conditions, and a value for activation energy of 40.55 kJ mol−1 was calculated. In culture medium (pH 7.3), a sensitivity of 13 nA/mM was obtained and the response was linear up to 5 mM with a detection limit of 0.5 mM. The working concentration was up to 20 mM glucose with a precision of 11.3% for replicate biosensors (n = 4). The microband biosensors were applied to determine end-point glucose concentrations in culture medium by monitoring steady-state current responses 400 s after transfer of the biosensors into different sample solutions. In conjunction with cultures of HepG2 (human Caucasian hepatocyte carcinoma) cells, current responses obtained in 24-h supernatants showed an inverse correlation (R2 = 0.98) with cell number, indicating that the biosensors were applicable for monitoring glucose metabolism by cells and of quantifying cell number. Glucose concentrations determined using the biosensor assay were in good agreement, for concentrations up to 20 mM, with those determined spectrophotometrically (R2 = 0.99). This method of end-point glucose determination was used to provide an estimated rate of glucose uptake for HepG2 cells of 7.9 nmol/(106 cells min) based on a 24-h period in culture.  相似文献   

11.

Background

Hyaluronan (HA) a glycosaminoglycan, is capable of transmitting extracellular matrix derived signals to regulate cellular functions. In this study, we investigated whether the changes in HT1080 and B6FS fibrosarcoma cell lines HA metabolism induced by basic fibroblast growth factor (bFGF) are correlated to their migration.

Methods

Real-time PCR, in vitro wound healing assay, siRNA transfection, enzyme digestions, western blotting and immunofluorescence were utilized.

Results

bFGF inhibited the degradation of HA by decreasing hyaluronidase-2 expression in HT1080 cells (p = 0.0028), increased HA-synthase-1 and -2 expression as we previously found and enhanced high molecular weight HA deposition in the pericellular matrix. Increased endogenous HA production (p = 0.0022) and treatment with exogenous high molecular weight HA (p = 0.0268) correlated with a significant decrease of HT1080 cell migration capacity. Transfection with siHAS2 and siHAS1 showed that mainly HAS1 synthesized high molecular weight HA regulates HT1080 cell motility. Induced degradation of the HA content by hyaluronidase treatment and addition of low molecular weight HA, resulted in a significant stimulation of HT1080 cells' motility (p < 0.01). In contrast, no effects on B6FS fibrosarcoma cell motility were observed.

Conclusions

bFGF regulates, in a cell-specific manner the migration capability of fibrosarcoma cells by modulating their HA metabolism.HA metabolism is suggested to be a potential therapeutic target in fibrosarcoma.  相似文献   

12.
The action pattern of Bacillus licheniformis thermostable α-amylase (BLA) was analyzed using a series of 14C-labeled and non-labeled maltooligosaccharides from maltose (G2) to maltododecaose (G12). Maltononaose (G9) was the preferred substrate, and yielded the smallest Km = 0.36 mM, the highest kcat = 12.86 s−1, and a kcat/Km value of 35.72 s−1 mM−1, producing maltotriose (G3) and maltohexaose (G6) as the major product pair. Maltooctaose (G8) was hydrolyzed into two pairs of products: G3 and maltopentaose (G5), and G2 and G6 with cleavage frequencies of 0.45 and 0.30, respectively. Therefore, we propose a model with nine subsites: six in the terminal non-reducing end-binding site and three at the reducing end-binding site in the binding region of BLA.  相似文献   

13.
A novel assay method was investigated for urease (EC 3.5.1.5) from Pseudomonas aeruginosa and Canavalia ensiformis by Fourier transform infrared spectroscopy. This enzyme catalyzed the hydrolysis of urea in phosphate buffer in deuterium oxide (2H2O). The intensities of the bicarbonate bands maxima at 1625 and 1365 cm−1 and of the amide I band at 1605 cm−1 were measured as a function of time to study the kinetics of urea hydrolysis. The extinction coefficients ε of urea and bicarbonate were determined to be 0.72, 0.48, and 0.56 mM−1 cm−1 at 1625, 1605, and 1365 cm−1, respectively. The initial velocity is proportional to the enzyme concentration by using the ureases from both C.ensiformis and P. aeruginosa. The kinetic constants (Vmax, Km, and Kcat) determined by Lineweaver-Burk plot were 532.2  U mg−1 protein, 6.4 mM, and 806.36 s−1, respectively. These data are in agreement with the results obtained by a spectrophotometric method using a linked assay based on glutamate dehydrogenase in aqueous media. Therefore, this spectroscopic method is highly suited to assay for urease activity and its kinetic parameters by using either cell-free extracts or purified enzyme preparations with an additional advantage of performing a real-time measurement of urease activity.  相似文献   

14.
In hemodialysis (HD) patients studies have shown that plasma ghrelin is increased and it has been speculated that ghrelin levels might be related to systemic inflammation. The present study attempted to correlate the serum levels of total ghrelin with serum TNF-α and IL-6, and with nutritional status and body composition in HD patients. Forty-seven HD patients from a single dialysis unit (18 women, mean age 55.3 ± 12.2 yr; BMI 24.4 ± 4.2 kg/m2; % body fat 29.4 ± 7.4%) were studied and compared to 21 healthy subjects (12 women, 50.7 ± 15.7 yr and BMI 25.6 ± 4.0 kg/m2; % body fat 30.0 ± 5.7%). Biochemical data, serum total ghrelin, TNF-α and IL-6 levels were measured. The body composition was evaluated by dual energy X-ray absortiometry (DEXA) and energy and protein intake were evaluated. Patients showed elevated plasma ghrelin levels when compared to healthy subjects (1.14 ± 1.0 ng/mL vs 0.58 ± 0.4; p < 0.001). There was a positive correlation between ghrelin levels and TNF-α (r = 0.25; p < 0.04), IL-6 (r = 0.42; p < 0.02), and a negative correlation between TNF-α and protein intake (r = −0.28; p < 0.03), and energy intake (r = −0.34; p < 0.01). No correlation was observed with any aspect of body composition. Plasma ghrelin levels are elevated in HD patients and associated with the state of systemic inflammation. We suggest that the inflammatory state may affect ghrelin bioactivity and metabolism in hemodialysis patients.  相似文献   

15.
In the present work, we demonstrate that adenine reduced Na+-ATPase activity in isolated basolateral membrane (BLM) of proximal tubule in a dose-dependent manner. Adenine metabolism was ruled out by TLC analysis of the potential [3H]adenine derived-metabolites. Specific binding of [3H]adenine to isolated BLM was observed in a dose-dependent manner with Kd and Bmax of 242.6 ± 27.6 nM and 2749.9 ± 104.9 fmol mg−1, respectively. Adenine increased the [35S]GTPγS specific binding and it was completely abolished by 10−6 M GDPβS (G protein inhibitor) but it was not modified by DPCPX, DMPX and MRS1523, selective antagonists for A1, A2 and A3 receptors, respectively. Furthermore, the inhibitory effect of adenine on the Na+-ATPase activity was blocked by 10−6 M GDPβS, 1 μg/ml pertussis toxin (Gi protein inhibitor), 10−6 M foskolin (adenylyl cyclase activator) and 10−8 M cAMP. These data demonstrate that adenine inhibits the proximal tubule Na+-ATPase activity through the Gi protein-coupled receptor.  相似文献   

16.
Cryptonemia seminervis biosynthesizes a family of d,l-hybrid galactans based on the classical 3-linked β-d-galactopyranosyl→4-linked α-d- and α-l-galactopyranosyl alternating sequence (A-units→B-units) with major amounts of α-d- and α-l-galactose and 3,6-anhydro-d- and l-galactose and lesser percentages of 3,6-anhydro-2-O-methyl-l-galactose, 2-O-methyl-, 4-O-methyl- and 6-O-methylgalactoses. The dispersion of structures in this family is based on five structural factors, namely: (a) the amount and position of substituent groups as sulfate (major), pyruvic acid ketals, methoxyl and glycosyl side-chain (4-O-methyl galactopyranosyl and/or xylosyl); (b) the ratio galactose/3,6-anhydrogalactose in the B-units; (c) the ratio d,l-galactoses and d,l-3,6-anhydrogalactoses also in the B-units, (d) the formation of diads and (e) the sequence of the diads in the linear backbone. Considering these variables it is not unexpected to find in the fractions studied at least 18 structural units producing highly complex structures. Structural studies carried out in two major fractions (S2S-3 and S2S-4) showed that these galactans were formed mainly by β-d-galactopyranosyl 2-sulfate (20 and 11.9 mol %), β-d-galactopyranosyl 2-sulfate 4,6-O-(1′-carboxyethylidene) (8.9 and 6.0 mol %) and β-d-galactopyranosyl 2,6-sulfate (5.4 and 18.6 mol %), together with 3,6-anhydro-α-l-galactopyranosyl (11.4 and 7.3 mol %) and 3,6-anhydro-α-l-galactopyranosyl 2-sulfate (4.9 and 15.4 mol %) and minor quantities of 12-15 other structural units.Preparative alkaline treatment carried out on fraction (S2S-3) produced a quantitative formation of 3,6-anhydro α-l-galactopyranosyl units from precursor units (α-l-galactose 6-sulfate and α-l-galactose 2,6-sulfate). Kinetic studies on this 3,6-anhydro cyclization show a rate constant of 5.2 × 104 s−1 indicating diads of the type G→L6S/2,6S. Data from chemical, spectroscopic and kinetic studies suggest that, in S2S-3, the agaran block in the d,l-hybrid galactan is composed of the following diads: G(6R)→L6S/2,6S and G2S(P)(2,6S)→LA(2S)(2R)(2M) and the carrageenan block of G2S(P)→D(2S)(2,3S)(3S)(3,6S) in a molar ratio of agaran to carrageenan structures of ∼2:1.  相似文献   

17.
Real-time PCR detection of environmental mycobacteria in house dust   总被引:1,自引:0,他引:1  
Analysing the number and species of microbes in indoor dust is needed for assessment of human exposure to microbes in dwellings. Environmental mycobacteria are common heterotrophic bacteria in both natural and man-made environments and potential inducers of human immune system. Culture of mycobacteria from samples rich with other microbes is difficult due to the slow growth rate of mycobacteria and this has hampered the studies on their role in indoor human exposure. A quantitative, real-time 5'-nuclease (TaqMan) PCR assay was developed to detect environmental mycobacteria in indoor dust samples. The specificity of the primers and the probe targeting the 16S rDNA of mycobacteria, tested with 26 mycobacterial and 10 non-mycobacterial but related species, proved to be high. When tested on 20 indoor dust samples collected from five homes, the assay gave counts varying between 4.8 × 104 and 7.2 × 106 cell/g, being on average 1.1 × 103 times higher than culture. Seasonal variation in the dust counts of mycobacteria was observed by both culture and qPCR. Total of 140 isolates considered as mycobacteria by Ziehl-Neelsen staining and GLC-analyses were subjected to PCR analysis with the mycobacterial primers, and 39 isolates to partial 16S rDNA sequencing. All proved to be mycobacteria and revealed high diversity of mycobacterial species in the dust samples. Majority of the sequences were related to M. terrae and M. avium complexes.  相似文献   

18.
A novel method using metastatic breast cancer cell lines was established for producing monoclonal antibodies (mAbs) against multi-span membrane proteins. Grafting of metastatic cells (MCF7-14) into the mammary gland of BALB/cJ/nu/nu mice induced splenic hypertrophy (1.6–3.0 × 108 cells/spleen [n = 6]). More than half of the mAbs against MCF7-14 cells reacted with the cell membrane. Inducing production of antibodies against the extracellular domain of multi-pass membrane proteins is difficult. Because the protein structure becomes more complex as the number of transmembrane domains increases, preparing antigens for immunization in which the original structure is maintained is challenging. Using highly metastatic MDA-MB231 cells as the host cell line, we produced mAbs against a 12 transmembrane protein, solute carrier family 6 member 6 (SLC6A6), as a model antigen. When SLC6A6-overexpressing MDA-MB231 cells were grafted into nude mice, the number of splenocytes increased to 2.7–11.4 × 108 cells/spleen (n = 10). Seven mAb-producing clones that not only recognized the extracellular domain of SLC6A6 but also were of the IgG subclass were obtained. Immunocytochemistry and flow cytometry analyses revealed that these mAbs recognized the native form of the extracellular domain of SLC6A6 on the cell surface. Our novel immunization method involving highly metastatic cells could be used to develop therapeutic mAbs against other multi-pass membrane proteins.  相似文献   

19.
There are large inter-individual differences in the metabolism of vitamin C (VC), which is composed of both ascorbic acid (AsA) and dehydroascorbic acid (DAsA). AsA is oxidized to DAsA in a series of xenobiotic reactions. Thus, the effects of polymorphism A313G (Ile105Val) in the gene for glutathione S-transferases P1 (GSTP1), one of the most active xenobiotic enzymes, on human VC metabolism were studied. The variant frequency of GSTP1 among the present subjects (n = 210) was AA 71.0%; GA 27.0% and GG 1.9%. At 24 h after administration of 1 mmol of VC to young women (n = 17; age, 21.0 ± 1.1 y), total VC excretion (46.7 ± 18.1 mg) by AA homozygotes of GSTP1 was greater (p < 0.0069) than that (28.2 ± 14.0 mg) by GA heterozygotes. One hour after administration of VC, blood total VC levels were also significantly different (p < 0.0036) between the homozygotes and heterozygotes. The effects of other polymorphisms in xenobiotic enzymes on VC metabolism were small.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号