首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigation of protein unfolding kinetics of proteins in crude samples may provide many exciting opportunities to study protein energetics under unconventional conditions. As an effort to develop a method with this capability, we employed “pulse proteolysis” to investigate protein unfolding kinetics. Pulse proteolysis has been shown to be an effective and facile method to determine global stability of proteins by exploiting the difference in proteolytic susceptibilities between folded and unfolded proteins. Electrophoretic separation after proteolysis allows monitoring protein unfolding without protein purification. We employed pulse proteolysis to determine unfolding kinetics of E. coli maltose binding protein (MBP) and E. coli ribonuclease H (RNase H). The unfolding kinetic constants determined by pulse proteolysis are in good agreement with those determined by circular dichroism. We then determined an unfolding kinetic constant of overexpressed MBP in a cell lysate. An accurate unfolding kinetic constant was successfully determined with the unpurified MBP. Also, we investigated the effect of ligand binding on unfolding kinetics of MBP using pulse proteolysis. On the basis of a kinetic model for unfolding of MBP•maltose complex, we have determined the dissociation equilibrium constant (Kd) of the complex from unfolding kinetic constants, which is also in good agreement with known Kd values of the complex. These results clearly demonstrate the feasibility and the accuracy of pulse proteolysis as a quantitative probe to investigate protein unfolding kinetics.  相似文献   

2.
Technical challenges have greatly impeded the investigation of membrane protein folding and unfolding. To develop a new tool that facilitates the study of membrane proteins, we tested pulse proteolysis as a probe for membrane protein unfolding. Pulse proteolysis is a method to monitor protein folding and unfolding, which exploits the significant difference in proteolytic susceptibility between folded and unfolded proteins. This method requires only a small amount of protein and, in many cases, may be used with unpurified proteins in cell lysates. To evaluate the effectiveness of pulse proteolysis as a probe for membrane protein unfolding, we chose Halobacterium halobium bacteriorhodopsin (bR) as a model system. The denaturation of bR in SDS has been investigated extensively by monitoring the change in the absorbance at 560 nm (A560). In this work, we demonstrate that denaturation of bR by SDS results in a significant increase in its susceptibility to proteolysis by subtilisin. When pulse proteolysis was applied to bR incubated in varying concentrations of SDS, the remaining intact protein determined by electrophoresis shows a cooperative transition. The midpoint of the cooperative transition (Cm) shows excellent agreement with that determined by A560. The Cm values determined by pulse proteolysis for M56A and Y57A bRs are also consistent with the measurements made by A560. Our results suggest that pulse proteolysis is a quantitative tool to probe membrane protein unfolding. Combining pulse proteolysis with Western blotting may allow the investigation of membrane protein unfolding in situ without overexpression or purification.  相似文献   

3.
We present the first single-molecule atomic force microscopy study on the effect of chemical denaturants on the mechanical folding/unfolding kinetics of a small protein GB1 (the B1 immunoglobulin-binding domain of protein G from Streptococcus). Upon increasing the concentration of the chemical denaturant guanidinium chloride (GdmCl), we observed a systematic decrease in the mechanical stability of GB1, indicating the softening effect of the chemical denaturant on the mechanical stability of proteins. This mechanical softening effect originates from the reduced free-energy barrier between the folded state and the unfolding transition state, which decreases linearly as a function of the denaturant concentration. Chemical denaturants, however, do not alter the mechanical unfolding pathway or shift the position of the transition state for mechanical unfolding. We also found that the folding rate constant of GB1 is slowed down by GdmCl in mechanical folding experiments. By combining the mechanical folding/unfolding kinetics of GB1 in GdmCl solution, we developed the “mechanical chevron plot” as a general tool to understand how chemical denaturants influence the mechanical folding/unfolding kinetics and free-energy diagram in a quantitative fashion. This study demonstrates great potential in combining chemical denaturation with single-molecule atomic force microscopy techniques to reveal invaluable information on the energy landscape underlying protein folding/unfolding reactions.  相似文献   

4.
Protein thermal stability was analyzed by a solution thermodynamic approach. The small energetic differences in hydrogen-bonds (HB) among amino acid resdues and water molecules were proved to be amplified by the large number of HB involved to bring about the equilibrium shift from folding to unfolding of proteins. In aqueous solutions, water activity (Aw) plays a key role in protein stability. Therefore, Aw was precisely determined for various solutions and its relationship with solution structure was discussed. Wyman-Tanford analysis based on Aw showed linear regressions, without exception, between protein unfolding-ratio and Aw for lysozyme, ribonuclease A, and α-chymotrypsinogen A in various solutions with sugars, osmolytes, alcohols, and protein denaturant. From this linear regression, the free energy difference, ΔΔG, for a protein in a solution and in pure water, was easily obtained. Protein stability in a solution was proved to be determined by a balance between hydration and solute-binding effects to the protein and also by solution structure, which indirectly affects the hydrophobic interaction in a protein molecule. Temperature dependence of HB on protein stability suggested its interrelationship with hydrophobic interaction.  相似文献   

5.
Light chain amyloidosis is a devastating disease where immunoglobulin light chains form amyloid fibrils, resulting in organ dysfunction and death. Previous studies have shown a direct correlation between the protein thermodynamic stability and the propensity for amyloid formation for some proteins involved in light chain amyloidosis. Here we investigate the effect of somatic mutations on protein stability and in vitro fibril formation of single and double restorative mutants of the protein AL-103 compared to the wild-type germline control protein. A scan rate dependence and hysteresis in the thermal unfolding and refolding was observed for all proteins. This indicates that the unfolding/refolding reaction is kinetically determined with different kinetic constants for unfolding and refolding even though the process remains experimentally reversible. Our structural analysis of AL-103 and AL-103 delP95aIns suggests a kinetic coupling of the unfolding/refolding process with cistrans prolyl isomerization. Our data reveal that the deletion of proline 95a (AL-103 delP95aIns), which removes the transcis di-proline motif present in the patient protein AL-103, results in a dramatic increment in the thermodynamic stability and a significant delay in fibril formation kinetics with respect to AL-103. Fibril formation is pH dependent; all proteins form fibrils at pH 2; reactions become slower and more stochastic as the pH increases up to pH 7. Based on these results, we propose that, in addition to thermodynamic stability, kinetic stability (possibly influenced by the presence of cis proline 95a) plays a major role in the AL-103 amyloid fibril formation process.  相似文献   

6.
We introduce proteolytic scanning calorimetry, a modification of the differential scanning calorimetry approach to the determination of protein stability in which a proteolytic enzyme (thermolysin) is used to mimic a harsh environment. This methodology allows the straightforward calculation of the rate of irreversible denaturation as a function of temperature and concentration of proteolytic enzyme and, as a result, has the potential to probe efficiently the fundamental biophysical features of protein kinetic stability. In the particular case of Escherichia coli thioredoxin (used as an illustrative example in this article), we find that the rate of irreversible denaturation is determined by 1), the global unfolding mechanism at low thermolysin concentrations, indicating that thermodynamic stability may contribute directly to the kinetic stability of thioredoxin under moderately harsh conditions and 2), the rate of unfolding at high thermolysin concentrations, indicating that the free-energy barrier for unfolding may act as a safety mechanism that ensures significant kinetic stability, even in very harsh environments. This thioredoxin picture, however, is by no means expected to be general and different proteins may show different patterns of kinetic stabilization. Proteolytic scanning calorimetry is particularly well-suited to probe this diversity at a fundamental biophysical level.  相似文献   

7.
Equilibrium unfolding experiments provide access to protein thermodynamic stability revealing basic aspects of protein structure–function relationships. A limitation of these experiments stands on the availability of large amounts of protein samples. Here we present the use of the NanoDrop for monitoring guanidinium chloride-induced unfolding by Soret absorbance of monomeric heme proteins. Unfolding experiments using 2 μl of reactant are validated by fluorescence and circular dichroism spectroscopy and supported with five heme proteins including neuroglobin, cytochrome b5, and cyanoglobin. This work guarantees 2 orders of magnitude reduction in protein expense. Promising low-cost protein unfolding experiments following other chromophores and high-throughput screenings are discussed.  相似文献   

8.
Equilibrium unfolding of A. niger RNase with chemical denaturants, for example GuHCl and urea, and thermal unfolding have been studied as a function of pH using fluorescence, far-UV, near-UV, and absorbance spectroscopy. Because of their ability to affect electrostatic interactions, pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins. ANS binding studies have been conducted to enable understanding of the folding mechanism of the protein in the presence of the denaturants. Spectroscopic studies by absorbance, fluorescence, and circular dichroism and use of K2D software revealed that the enzyme has α + β type secondary structure with approximately 29% α-helix, 24% β-sheet, and 47% random coil. Under neutral conditions the enzyme is stable in urea whereas GuHCl-induced equilibrium unfolding was cooperative. A. niger RNase has little ANS binding even under neutral conditions. Multiple intermediates were populated during the pH-induced unfolding of A. niger RNase. Urea and temperature-induced unfolding of A. niger RNase into the molten globule-like state is non-cooperative, in contrast to the cooperativity seen with the native protein, suggesting the presence of two parts/domains, in the molecular structure of A. niger RNase, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of the A state (molten globule state) of A. niger RNase is unique, because a low concentration of denaturant not only induces structural change but also facilitates transition from one molten globule like state (AMG1) into another (IMG2).  相似文献   

9.
The problem of the stability of globular proteins   总被引:1,自引:0,他引:1  
Summary The article gives a survey on protein stability. Starting out from approaches for stability measurement which are based on the determination of Gibbs energy change in protein unfolding by denaturants, protonation, heat, scanning calorimetry, and hydrogen exchange, their implications such as reversibility, completeness of unfolding and the two-state assumption are dealt with.A data compilation of Gibbs energy change in unfolding of different proteins is given. The data, which for the most part range between 25 and 60 kJ mol–1, are discussed in terms of protein functioning, turnover, and structural properties. Phase diagrams are proposed in order to realize a more comprehensive thermodynamic treatment of proteins.Factors which contribute to protein stability are summarized. The paper includes the thermodynamic principles of protein stability as well as special studies on proteolytic fragments, amino acid replacements, cross links, prosthetic groups, and ions which contribute to protein stability.  相似文献   

10.
Late expression factor 4 (LEF4) is one of the four subunits of Autographa californica nuclear polyhedrosis virus (AcNPV) RNA polymerase. LEF4 was overexpressed in Escherichia coli and recombinant protein was subjected to structural characterization. Chemical induced unfolding of LEF4 was investigated using intrinsic fluorescence, hydrophobic dye binding, fluorescence quenching, and circular dichroism (CD) techniques. The unfolding of LEF4 was found to be a non‐two state, biphasic transition. Intermediate states of LEF4 at 2M GnHCl and 4M urea shared some common structural features and hence may lie on the same pathway of protein folding. Steady‐state fluorescence and far‐UV CD showed that while there was considerable shift in the wavelength of emission maximum (λmax), the secondary structure of LEF4 intermediates at 2M GnHCl and 4M urea remained intact. Further, temperature induced denaturation of LEF4 was monitored using far‐UV CD. This study points to the structural stability of LEF4 under the influence of denaturants like urea and temperature. Although LEF4 is an interesting model protein to study protein folding intermediates, in terms of functional significance the robust nature of this protein might reflect one of the several strategies adapted by the virus to survive under very adverse environmental and physiological conditions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 574–582, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

11.
Transient partial unfolding of proteins under native conditions may have significant consequences in the biochemical and biophysical properties of proteins. Native-state proteolysis offers a facile way to investigate the thermodynamic and kinetic accessibilities of partially unfolded forms (cleavable forms) under native conditions. However, determination of the structure of the cleavable form, which is populated only transiently, remains challenging. Although in some cases partially cleaved products from proteolysis provide information on the structure of this elusive form, proteolysis of many proteins does not accumulate detectable intermediates. Here, we describe a systematic approach to determining structures of cleavable forms by protein engineering and native-state proteolysis. By devising φc analysis, which is analogous to conventional φ analysis, we have determined the structure of the cleavable form of Escherichia coli maltose-binding protein (MBP), which does not accumulate any partially cleaved products. We mutated 10 buried residues in MBP to alanine and determined φc values from the effects of the mutations on global stability and proteolytic susceptibility. The result of this analysis suggests that two C-terminal helices in MBP are unfolded in their cleavable form. The effect of ligand binding on proteolytic susceptibility and C-terminal deletion mutations also confirms the proposed structure. Our approach and methodology are generally applicable not only in elucidating the mechanism of proteolysis but also in investigating other important processes involving partial unfolding under native conditions such as protein misfolding and aggregation.  相似文献   

12.
Conventional empirical methods for the quantification of the helical content of proteins in solution using circular dichroism (CD) primarily rely on spectral data acquired between wavelengths of 190 and 230 nm. The presence of chemical species in a protein solution with strong absorbance within this range can interfere with the ability to use these methods for the determination of the protein's helical structure. The objective of this research was to overcome this problem by developing a method for CD spectral analysis that relies on spectral features above this wavelength range. In this study, we determined that the slopes of CD spectra acquired over the 230 to 240 nm region strongly correlate with the helix contents including α-helix and 310-helix of protein as determined using conventional CD algorithms that rely on wavelengths between 190 and 230 nm. This approach (i.e., the 230–240 nm slope method) is proposed as an effective method to determine the helix content within proteins in the presence of additives such as detergents or denaturants with high absorbance of wavelengths up to 230 nm.  相似文献   

13.
Full-consensus designed ankyrin repeat proteins were designed with one to six identical repeats flanked by capping repeats. These proteins express well in Escherichia coli as soluble monomers. Compared to our previously described designed ankyrin repeat protein library, randomized positions have now been fixed according to sequence statistics and structural considerations. Their stability increases with length and is even higher than that of library members, and those with more than three internal repeats are resistant to denaturation by boiling or guanidine hydrochloride. Full denaturation requires their heating in 5 M guanidine hydrochloride. The folding and unfolding kinetics of the proteins with up to three internal repeats were analyzed, as the other proteins could not be denatured. Folding is monophasic, with a rate that is nearly identical for all proteins (∼ 400-800 s− 1), indicating that essentially the same transition state must be crossed, possibly the folding of a single repeat. In contrast, the unfolding rate decreases by a factor of about 104 with increasing repeat number, directly reflecting thermodynamic stability in these extraordinarily slow denaturation rates. The number of unfolding phases also increases with repeat number. We analyzed the folding thermodynamics and kinetics both by classical two-state and three-state cooperative models and by an Ising-like model, where repeats are considered as two-state folding units that can be stabilized by interacting with their folded nearest neighbors. This Ising model globally describes both equilibrium and kinetic data very well and allows for a detailed explanation of the ankyrin repeat protein folding mechanism.  相似文献   

14.
Harpins – a group of proteins that elicit hypersensitive response (HR) in non-host plants – are secreted by certain Gram-negative plant pathogenic bacteria upon interaction with the plant. In the present study, the microenvironment and solvent accessibility of the sole tryptophan residue (Trp-167) in harpin HrpZPss, secreted by Pseudomonas syringae pv. syringae, have been characterized by fluorescence spectroscopic studies. Emission λmax of the native protein at 328 nm indicates that Trp-167 is buried in a hydrophobic region in the interior of the protein matrix. Significant quenching (53%) was seen with the neutral quencher, acrylamide at 0.5 M concentration, whereas quenching by ionic quenchers, I (∼10%) and Cs+ (negligible) was considerably lower. In the presence of 6.0 M guanidine hydrochloride (GdnHCl) the emission λmax shifted to 350.5 nm, and quenching by both neutral and ionic quenchers increased significantly, suggesting complete exposure of the indole side chain to the aqueous medium. Fluorescence studies on the thermal unfolding of HrpZPss are fully consistent with a complex thermal unfolding process and high thermal stability of this protein, inferred from previous differential scanning calorimetric and dynamic light scattering studies. However, the protein exhibits low resistance to chemical denaturants, with 50% unfolding seen in the presence of 1.77 M GdnHCl or 3.59 M urea. The ratio of m value, determined from linear extrapolation model, for GdnHCl and urea-induced unfolding was 1.8 and suggests the presence of hydrophobic interactions, which could possibly involve leucine zipper-like helical regions on the surface of the protein.  相似文献   

15.
Disulfide bonds are known to be crucial for protein stability. To probe the contribution of each of the five disulfide bonds (C9-C31, C30-C70, C37-C63, C61-C95, and C105-C113) in bee venom phospholipase A2 to stability, variants with deleted disulfide bonds were produced by substituting two serine residues for each pair of cysteine residues. The mutations started from the pseudo-wild-type variant (pWT) with the mutation I1A (Markert et al., Biotechnol. Bioeng. 98 (2007) 48-59). All variants were expressed in Escherichia coli, refolded from inclusion bodies and purified as pWT. The activity of the variants ranged from 12 to 82% of pWT. From the transition curves of guanidine hydrochloride-induced unfolding, the contributions of the individual disulfide bonds to conformational stability were estimated. They increased in the sequence C9-C31 < C105-C113 < C30-C70 ≈ C37-C63 < C61-C95. For two disulfide bonds (C9-C31, C105-C113) the effects were confirmed on additionally produced variants with the substitution of cysteine by alanine. Despite distinct differences in stability, all variants showed similar cooperativity in unfolding. Selected variants were also probed for proteolytic stability toward thermolysin. The removal of disulfide bonds increased the proteolytic susceptibility of the native proteins in the same way as the stability decreased. From the comparison of the results with literature data on phospholipase A2 from bovine pancreas possessing seven disulfide bonds, it was concluded that conserved disulfide bonds in homologous proteins fulfill related functions in conformational stability.  相似文献   

16.
Despite recent progress in understanding membrane protein folding, little is known about the mechanisms stabilizing these proteins. Here we characterize the kinetic thermal stability of CopA, a thermophilic PIB-type Cu+-ATPase from Archaeoglobus fulgidus. When heterologously expressed in Escherichia coli, purified and reconstituted in mixed micelles, CopA retained thermophilic characteristics with maximum activity at 75 °C. Incubation of CopA in the absence of substrates at temperatures in the 66-85 °C range led to an irreversible exponential decrease in enzyme activity suggesting a two-state process involving fully-active and inactive molecules. Although CopA inactivated much slower than mesophilic proteins, the activation energy was similar to that observed for mesophilic P-type ATPases. The inactivation process was found to be associated with the irreversible partial unfolding of the polypeptide chain, as assessed by Trp fluorescence, Phe UV spectroscopy, far UV circular dichroism, and 1-aniline-8-naphtalenesulfonate binding. However, the inactive thermally denatured protein still conserves large hydrophobic regions and considerable secondary structure.  相似文献   

17.
The unfolding of proteins has been widely used for investigating the thermodynamic properties of monomeric proteins but has been used infrequently for dimeric (or oligomeric) proteins, because of the inherent cooperation of denaturation and dissociation of the dimers (oligomers). Here, we introduce a thermodynamic parameter Kobs to discriminate the diverse folding patterns of dimeric proteins. Kobs remains constant as the protein concentration increases for the true one-step curve of unfolding pattern (A), increases and reaches a plateau for one-step curves with monomeric intermediate pattern (B), and increases steadily with no plateau for one-step curves with dimeric intermediate pattern (C).  相似文献   

18.
Cytochrome c6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c6A and c6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role.  相似文献   

19.
T Shen  Y Cao  S Zhuang  H Li 《Biophysical journal》2012,103(4):807-816
Determining the structure of the transition state is critical for elucidating the mechanism behind how proteins fold and unfold. Due to its high free energy, however, the transition state generally cannot be trapped and studied directly using traditional structural biology methods. Thus, characterizing the structure of the transition state that occurs as proteins fold and unfold remains a major challenge. Here, we report a novel (to our knowledge) method that uses engineered bi-histidine (bi-His) metal-binding sites to directly map the structure of the mechanical unfolding transition state of proteins. This method is adapted from the traditional ψ-value analysis, which uses engineered bi-His metal chelation sites to probe chemical (un)folding transition-state structure. The ϕM2+U-value is defined as ΔΔG‡-N/ΔΔGU-N, which is the energetic effects of metal chelation by the bi-His site on the unfolding energy barrier (ΔG‡-N) relative to its thermodynamic stability (ΔGU-N) and can be used to obtain information about the transition state in the mutational site. As a proof of principle, we used the small protein GB1 as a model system and set out to map its mechanical unfolding transition-state structure. Using single-molecule atomic force microscopy and spectrofluorimetry, we directly quantified the effect of divalent metal ion binding on the mechanical unfolding free energy and thermodynamic stability of GB1, which allowed us to quantify ϕM2+U-values for different sites in GB1. Our results enabled us to map the structure of the mechanical unfolding transition state of GB1. Within GB1’s mechanical unfolding transition state, the interface between force-bearing β-strands 1 and 4 is largely disrupted, and the first β-hairpin is partially disordered while the second β-hairpin and the α-helix remain structured. Our results demonstrate the unique application of ψ-value analysis in elucidating the structure of the transition state that occurs during the mechanical unfolding process, offering a potentially powerful new method for investigating the design of novel elastomeric proteins.  相似文献   

20.
pH and chemical denaturant dependent conformational changes of a serine protease cryptolepain from Cryptolepis buchanani are presented in this paper. Activity measurements, near UV, far UV CD, fluorescence emission spectroscopy, and ANS binding studies have been carried out to understand the folding mechanism of the protein in the presence of denaturants. pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins due to their ability to influence the electrostatic interactions. The preliminary biophysical study on cryptolepain shows that major elements of secondary structure are beta-sheets. Under neutral conditions the enzyme was stable in urea while GuHCl-induced equilibrium unfolding was cooperative. Cryptolepain shows little ANS binding even under neutral conditions due to more hydrophobicity of beta-sheets. Multiple intermediates were populated during the pH-induced unfolding of cryptolepain. Temperature-induced denaturation of cryptolepain in the molten globule like state is non-cooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two parts, possibly domains, in the molecular structure of cryptolepain, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of A state (molten globule state) of cryptolepain is unique, as lower concentration of denaturant, not only induces structure but also facilitate transition from one molten globule like state (MG(1)) into another (MG(2)). The increase of pH drives the protein into alkaline denatured state characterized by the absence of any ANS binding. GuHCl- and urea-induced unfolding transition curves at pH 12.0 were non-coincidental indicating the presence of an intermediate in the unfolding pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号