首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method is deseribed for the extraction and determination of chlorophylls a and b. The method is suitable for use with both normal and regreening nitrogen-deficient Chlorella fusca. The assay involves extraction of chlorophylls by an alkaline pyridine reagent which converts the isocyclic ring of the pigment to a cyclic hydroxylactone. Millimolar extinetion coefficients for the hydroxylactone derivatives of both chlorophylls a and b have been determined at 419 and 454 nm. Using these coefficients, equations have been derived for the calculation of chlorophyll a and b concentrations. The new chlorophyll assay has been compared with other assays which involve the extraction of the pigments with 80% acetone or methanol. The new procedure extracts chlorophylls from rormally grown C. fusca more readily than methanol; the chlorophylls of normal Chlorella cannot be extracted with 80% acetone. The new assay is especially useful in the study of chlorophyll synthesis in regreening nitrogen-deficient C. fusca since the chlorophylls present in these deficient cells cannot be completely extracted with acetone, methanol, methanol-dimethylsulphoxide mixtures, or KOH-methanol.  相似文献   

2.
Naoki Sato  Norio Murata 《BBA》1978,501(1):103-111
Chlorophyll a, chlorophyll b and bacteriochlorophyll a were prepared by means of column chromatography with Sephadex LH-20 and diethylaminoethylcellulose. This method provides purified preparations of chlorophylls in about 3 h.To prepare chlorophyll a, blue-green or red algae were used as the starting material. Chlorophyll a was extracted with 90% aqueous acetone from cells of blue-green algae, Anabaena variabilis, Anacystis nidulans and Tolypothrix tenuis, and with 90% aqueous methanol from thalli of a red alga, Porphyra yezoensis. Chlorophyll a was collected as precipitates by adding dioxane and water to the extract according to the method of Iriyama et al. [6]. The crude chlorophyll a preparation was applied to a Sephadex LH-20 column with chloroform as the eluent and then to a DEAE-cellulose column with a chloroform/methanol mixture (49 : 1, v/v) as the eluent. Analysis with thin layer chromatography revealed that the chlorophyll a preparation contained no detectable contaminants.Bacteriochlorophyll a was prepared in a similar manner from purple photosynthetic bacteria, Rhodopseudomonas spheroides and Chromatium vinosum.In order to prepare chlorophyll b, chloroplasts of spinach leaves were used as the starting material. A mixture of chlorophylls a and b was obtained in the same way as described for the preparation of chlorophyll a from the blue-green algae. To separate chlorophyll b from chlorophyll a, the mixture was applied to a diethylaminoethylcellulose column which was developed with a hexane/2-propanol mixture (5 : 2, v/v).  相似文献   

3.
A water-soluble chlorophyll protein was prepared from Brassica oleracea var. Botrys (cauliflower) and purified by (NH4)2SO4 fractionation and by chromatography on a DEAE-cellulose column. The chlorophyll protein contained chlorophylls a and b in the ratio 6:1, and no carotenoids. The molecular weight, determined by means of gel filtration on Sephadex G-100, was 78000. The chlorophyll protein showed absorption peaks at 273, 340, 384, 420, 438, 465, 628, 674 and 700 nm. Since the three bands at 384, 420 and 438 nm all have approximately the same height, the spectrum is different from that of chlorophyll a in organic solvents. The fluorescence of the chlorophyll protein showed a peak at 683 nm, with shoulders at 706 and 745 nm at room temperature, and peaks at 685, 706 and 744 nm at the temperature of liquid N2. An apo-protein was prepared by removing the chlorophylls with 2-butanone and purified by precipitation with (NH4)2SO4. The apo-protein thus prepared had an absorption band at 273 nm but none at longer wavelengths. The apo-protein could be combined with chlorophylls, forming a chlorophyll protein which had spectral characteristics similar to those of the original.  相似文献   

4.
The separation and determination of chlorophylls by high-performance liquid chromatography (HPLC) is described. Chlorophylls and their derivatives were separated by reversed-phase HPLC based on hydrophobic interaction between solute and support, using an octadecyl silica column and elution with 100% methanol. Separated pigments were detected fluorometrically with a sensitivity in the picomole range: the fluorescence response was linear over a wide pigment concentration range. Resolution of five chlorophylls a and four protochlorophyll species esterified with different alcohols was achieved within 22 min in a single experiment. This method can be used for the determination of chlorophyll b, bacteriochlorophyll a esters and products synthesized from chlorophyll, but not for nonesterified pigments, i.e., chlorophyllide, protochlorophyllide and chlorophyll c. The chromatographic mobility of chlorophyll a esterified with different alcohols increases with increasing number of carbon atoms in the esterifying alcohols. The plots obtained from the logarithm of the capacity factor (k′) of these pigments versus the numbers of carbon atoms of the alcohol molecule gave a straight line, thus permitting the estimation of the chain length of unknown pigment esterifying alcohols. This HPLC separation technique did not cause the formation of artifacts. The deviation of the individual retention time for each pigment is less than ±0.5%, thus making this method suitable for the rapid identification and quantification of unknown pigments.  相似文献   

5.
Methyl linoleate containing chlorophylls and/or pheophytins was exposed to light in the presence of oxygen. The photooxidative reaction of both chlorophylls a and b was first-order, and the reaction rate for chlorophyll a was higher than that for chlorophyll b. On the other hand, pheophytins a and b hardly decomposed even after irradiation for 24 hr, and retained a green or a brownish-green color. In qualitative analysis of the photooxidation products of chlorophylls a and b, no pheophytins or pheophorbides were detected, while green and polar red pigments were observed on a thin layer chromatogram near the spot of chlorophyll and the origin, respectively. These photooxidation compounds also had prooxidant effects as well as did chlorophyll.  相似文献   

6.
Min Chen  Zheng-Li Cai 《BBA》2007,1767(6):603-609
The chlorophyll d containing cyanobacterium, Acaryochloris marina has provided a model system for the study of chlorophyll replacement in the function of oxygenic photosynthesis. Chlorophyll d replaces most functions of chlorophyll a in Acaryochloris marina. It not only functions as the major light-harvesting pigment, but also acts as an electron transfer cofactor in the primary charge separation reaction in the two photosystems. The Mg-chlorophyll d-peptide coordinating interaction between the amino acid residues and chlorophylls using the latest semi-empirical PM5 method were examined. It is suggested that chlorophyll d possesses similar coordination ligand properties to chlorophyll a, but chlorophyll b possesses different ligand properties. Compared with other studies involving theoretical correlation and our prior experiments, this study suggests that the chlorophyll a-bound proteins will bind chlorophyll d without difficulty when chlorophyll d is available.  相似文献   

7.
8.
An improved procedure for the electrophoretic fractionation of higher plant chlorophyllprotein complexes is described. Compared with currently used systems, it greatly reduces the amount of chlorophyll that is found unassociated with protein after electrophoresis and resolves four chlorophyll-protein complexes. The slowest migrating band has a red adsorption maximum at 674 nm or greater, contains chlorophyll a but not chlorophyll b, and has a molecular weight equivalency of 110,000. These properties are similar to the previously described CPI or P700-chlorophyll a-protein complex. The amount of the total chlorophyll in this material is increased by two to three fold over that present in the equivalent complex fractionated by previous procedures. The other three chlorophyll-protein complexes contain both chlorophylls a and b, and have molecular weight equivalencies of 80,000, 60,000, and 46,000. None of these complexes seems to correspond directly to the previously characterized light-harvesting chlorophyll ab-protein complex.  相似文献   

9.
Reversed-phase high-performance liquid chromatography with octadecyl- or octylsilylated silica gel as the stationary phase provides a powerful tool in the analysis of chloroplast pigments from higher plants and green algae. Chromatographic columns packed with 10 μm chemically bonded silica gel particles allow the simultaneous separation of chlorophylls a and b, chlorophyll isomers, pheophytins a and b, α-carotene, β-carotene, lutein, violaxanthin, lutein-5,6-epoxide, antheraxanthin, neoxanthin and several minor carotenoids from a single sample within a short analysis time. The quantitative analysis requires a minimum of 1–5 pmol for carotenoids and 5–10 pmol for chlorophylls. Pigment degradation products, formed on polar stationary phases, are not found in reversed-phase high-performance liquid chromatography due to the weak hydrophobic forces on which the separation mechanism is based. The production of altered pigments however, either induced by various treatments or generated during the isolation, can be monitored as the reversed-phase system is selective enough to separate cis-isomers and oxidation products from their parent compounds. The reproducibility of the individual retention time for each pigment is better than ±1.5% which facilitates the identification of unknown pigments. The method is applied to the analysis of the pigment composition of Chlorella fusca, spinach (Spinacia oleracea) chloroplasts, and to the rapid determination of the ratio of chlorophyll a to chlorophyll b.  相似文献   

10.
The molecular organization of chlorophyll in Chlamydomonas reinhardii has been shown to be essentially similar to that in higher plants. Some 50% of the chlorophyll in Chlamydomonas reinhardii chloroplast membranes has been shown to be located in a chlorophyll a/b-protein complex. The complex was isolated in a homogeneous form by hydroxylapatite chromatography of sodium dodecyl sulfate extracts of the chloroplast membranes. Its absorption spectrum exhibits two maxima in the red region at 670 and 652 nm due to the presence of equimolar quantities of chlorophylls a and b in the complex. Preparations of the chlorophyll-protein also contain some of each of the carotenoids observed in the intact chloroplast membrane, but not in the same proportions. The native complex (S value = 2.3S) exhibits a molecular weight of 28,000 ± 2,000 on calibrated sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, on the basis of its amino acid composition and other data a more probable molecular weight of about 35,000 was calculated. Each 35,000 dalton unit contains three chlorophyll a and three chlorophyll b molecules, and on the average one carotenoid molecule conjugated with probably a single polypeptide of 29,000 daltons. Comparison of spectral and biochemical characteristics demonstrates that this algal chlorophyll-protein is homologous to the previously described major light-harvesting chlorophyll a/b-protein of higher plants. It is anticipated that the Chlamydomonas complex functions solely in a light-harvesting capacity in analogy to the function determined for the higher plant component.  相似文献   

11.
[3H]- and δ-[14C]Aminolevulinic acids were incorporated into the chlorophylls of Skeletonema costatum, a marine plankton diatom. In the stationary phase of growth, the tetrapyrrole-based pigments reached steady-state labeling after 10 hours. Under conditions of exponential cell division and chlorophyll accumulation, 3H was rapidly lost from the labeled chlorophylls and was replaced with 14C derived from δ-[4−14C]aminolevulinic acid. The kinetics of isotope dilution suggests recycling of tetrapyrrole precursors and/or two pigment pools, containing both chlorophyll a and chlorophyllide c, one which turns over rapidly (10 hours) and another which turns over more slowly (100 hours). Calculation of turnover times varied from 3 to 10 hours for chlorophyll a and from 7 to 26 hours for chlorophyllide c. The data suggest the dynamics of chlorophyll metabolism in S. costatum and explain the diatom's ability to undergo light-shade adaptation within a generation time.  相似文献   

12.
《Plant Science Letters》1980,17(2):149-157
Three main chlorophyll-protein complexes have been resolved by gel electrophoresis from a marine green alga, Caulerpa cactoides, which has a low chlorophyll a/chorophyll b ratio of 1.62. Of the 6 chlorophyll-protein complexes resolved, two are chlorophyll a-proteins related to the reaction centre complex of photosystem 1, one is the chlorophyll a-protein of the presumed reaction centre complex of photosystem 2, and three are chlorophyll a/b-proteins of the light-harvesting complex. Some 61% of the total chlorophyll was associated with the light-harvesting complex and 23% and 6% with the reaction centre complexes of photosystems 1 and 2, respectively. In contrast to the light-harvesting complexes of higher plants which have equimolar amounts of chlorophylls a and b, the light-harvesting complex of Caulerpa has 1.45 times as much chlorophyll b as chlorophyll a. Variations in the pigment contents of the photosynthetic units of chlorophyll b-containing plants are reflected not only in varying amounts of total chlorophyll associated with each of the three main chlorophyll-protein complexes, but also in the stoichiometric amounts of chlorophyll a and chlorophyll b present in the light-harvesting complexes.  相似文献   

13.
Representative plants containing either the reductive pentose phosphate cycle or the C4 dicarboxylic acid cycle of photosynthetic carbon dioxide fixation have distinctly different contents of P700 and chlorophylls a and b. With leaf extracts and isolated chloroplasts from C4 cycle plants, the mean value of the relative ratio of P700 to total chlorophyll was 1.83 and the mean value of the ratio of chlorophyll a to b was 3.89. The respective values in similar extracts and chloroplasts from pentose cycle plants are 1.2 and 2.78.  相似文献   

14.
In the light-harvesting chlorophyll pigment-proteins of photosynthesis, a carotenoid is typically positioned within a distance of ~4 Å of individual chlorophylls or antenna arrays, allowing rapid triplet energy transfer from chlorophyll to the carotenoid. This triplet energy transfer prevents the formation of toxic singlet oxygen. In the cytochrome b6f complex of oxygenic photosynthesis that contains a single chlorophyll a molecule, this chlorophyll is distant (14 Å) from the single β-carotene, as defined by x-ray structures from both a cyanobacterium and a green alga. Despite this separation, rapid (<8 ns) long-range triplet energy transfer from the chlorophyll a to β-carotene is documented in this study, in seeming violation of the existing theory for the distance dependence of such transfer. We infer that a third molecule, possibly oxygen trapped in an intraprotein channel connecting the chlorophyll a and β-carotene, can serve as a mediator in chlorophyll-carotenoid triplet energy transfer in the b6f complex.  相似文献   

15.
1. Aqueous extracts of spinach and Aspidistra leaves yield highly opalescent preparations which are not in true solution. Such extracts differ markedly from colloidal chlorophyll in their spectrum and fluorescence. The differences between the green leaf pigment and chlorophyll in organic solvents are shown to be due to combination of chlorophyll with protein in the leaf. 2. The effect of some agents on extracts of the chlorophyll-protein compound has been investigated. Both strong acid and alkali modify the absorption spectrum, acid converting the compound to the phaeophytin derivative and alkali saponifying the esterified groups of chlorophyll. Even weakly acid solutions (pH 4.5) denature the protein. Heating denatures the protein and modifies the absorption spectrum and fluorescence as earlier described for the intact leaf. The protein is denatured by drying. Low concentrations of alcohol or acetone precipitate and denature the protein; higher concentrations cause dissociation liberating the pigments. 3. Detergents such as digitonin, bile salts, and sodium desoxycholate clarify the leaf extracts but denature the protein changing the spectrum and other properties. 4. Inhibiting agents of photosynthesis are without effect on the absorption spectrum of the chlorophyll-protein compound. 5. The red absorption band of chlorophyll possesses the same extinction value in organic solvents such as ether or petroleum ether, and in aqueous leaf extracts clarified by digitonin although the band positions are different. Using previously determined values of the extinction coefficients of purified chlorophylls a and b, the chlorophyll content of the leaf extracts may be estimated spectrophotometrically. 6. It was found that the average chlorophyll content of the purified chloroplasts was 7.86 per cent. The protein content was 46.5 per cent yielding an average value of 16.1 parts per 100 parts of protein. This corresponds to a chlorophyll content of three molecules of chlorophyll a and one of chlorophyll bfor the Svedberg unit of 17,500. It is suggested that this may represent a definite combining ratio of a and b in the protein molecule.  相似文献   

16.
Pigment analysis of chloroplast pigment-protein complexes in wheat   总被引:4,自引:4,他引:0       下载免费PDF全文
Pigment-protein complexes separated from wheat (Triticum aestivum L. selection ND96-25 by two gel electrophoresis techniques were analyzed by high-performance liquid chromatography for chlorophylls and carotenoids. The two techniques are compared, and pigment analyses are given for the major reaction centers and light-harvesting complexes. Reaction centers contain mostly chlorophyll a, carotene, and lutein, whereas light-harvesting complexes contain chlorophyll a, chlorophyll b, lutein, and neoxanthin. The amounts of violaxanthin are variable.  相似文献   

17.
We report production of chlorophyll f and chlorophyll d in the cyanobacterium Chlorogloeopsis fritschii cultured under near-infrared and natural light conditions. C. fritschii produced chlorophyll f and chlorophyll d when cultured under natural light to a high culture density in a 20 L bubble column photobioreactor. In the laboratory, the ratio of chlorophyll f to chlorophyll a changed from 1:15 under near-infrared, to an undetectable level of chlorophyll f under artificial white light. The results provide support that chlorophylls f and d are both red-light inducible chlorophylls in C. fritschii.  相似文献   

18.
The quantitative composition of the chloroplast pigments of phytoplankton sampled weekly at one station in the Trondheimsfjord was studied by circular paper chromatography throughout 18 months. The concentrations of total chlorophyll a (T-chl a obtained by the trichromatic method) as well as of chromatographically purified chlorophyll a (chl a) followed the variations in phytoplankton concentration. Two spring blooms and a weak autumn flowering of phytoplankton were clearly reflected in the pigment contents found, namely 14–16 mg T-chl a/m3 for the spring maxima, corresponding to nearly 300 mg T-chl a/m2 for the euphotic zone; and 3–4 mg/m3 or 32 mg/m2 for the autumn peak. The concentrations between blooms amounted to ≈ 1 mg T-chl a/m3, while concentrations down to 0.03 mg/m3 were found for winter samples.The content of T-chl a was high in diatom cells prior to a bloom (20–40 × 10?9 mg/cell). During rapid growth (a more or less exponential phase) the cell content of chloroplast pigments decreased (to 5–10 × 10?9 mg). No degradation product of chlorophylls could be detected during this phase and the percentage of chl a (of T-chl a) was high (70–80 %). At the peak of the bloom, and especially when the nitrate content in the surrounding water had been exhausted, low values for T-chl a were found (0.3–0.5 × 109?mg/cell). As soon as the cell counts started to fall, or even before the decline could be clearly detected, the percentage of chl a dropped (to 40-20 %) and derived chlorophylls (not phaeophytin a) were present in the samples. Model studies with cultured algae showed a similar behaviour.It is concluded that the proportion of chl a to T-chl a and the occurrence of chlorophyll derivatives in phytoplankton samples can give valuable information on the stage of development of the algal populations involved.  相似文献   

19.
A study of the kinetics of the reaction of chlorophyll a with propylamine and isobutylamine indicates a low activation energy (~5 kcal) and high negative entropy (~60 eu). Propylamine and isobutylamine react with Ring V cleavage more readily with chlorophyll b and pheophytin b compounds than with the a compounds, and more readily with the pheophytins than with chlorophylls.  相似文献   

20.
Chlorophylls a-1 and b′, which are breakdown products of chlorophylls a and b respectively, were found in senescing leaves of Phaseolus vulgaris and Hordeum vulgare following excision from the plant. Chlorophyll a-1 was not detected in healthy plants, in senescing attached leaves or in chlorophyll-proteins isolated from senescent tissue. Chlorophyll a-1 formation in excised leaves increased with time for up to 10 days as chlorophyll a levels fell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号