首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, we describe the direct detection of genomic DNA using fluidic force discrimination (FFD) assays. Starting with extracted bacterial DNA, samples are fragmented by restriction enzymes or sonication, then thermocycled in the presence of blocking and labeling sequences, and finally detected with microbead-based FFD assays. Both strain and species identification of extracted Bacillus DNA have been demonstrated in <30 min, without amplification (e.g., PCR). Femtomolar assays can be achieved with this rapid and simple procedure.  相似文献   

2.
Here we describe bacterial genotyping by direct linear analysis (DLA) single-molecule mapping. DLA involves preparation of restriction digest of genomic DNA labeled with a sequence-specific fluorescent probe and stained nonspecifically with intercalator. These restriction fragments are stretched one by one in a microfluidic device, and the distribution of probes on the fragments is determined by single-molecule measurement of probe fluorescence. Fluorescence of the DNA-bound intercalator provides information on the molecule length. Because the probes recognize short sequences, they encounter multiple cognate sites on 100- to 300-kb-long DNA fragments. The DLA maps are based on underlying DNA sequences of microorganisms; therefore, the maps are unique for each fragment. This allows fragments of similar lengths that cannot be resolved by standard DNA sizing techniques to be readily distinguished. DNA preparation, data collection, and analysis can be carried out in as little as 5 h when working with monocultures. We demonstrate the ability to discriminate between two pathogenic Escherichia coli strains, O157:H7 Sakai and uropathogenic 536, and we use DLA mapping to identify microorganisms in mixtures. We also introduce a second color probe to double the information used to distinguish molecules and increase the length range of mapped fragments.  相似文献   

3.
We previously reported that fragments of exogenous double-stranded DNA can be internalized by mouse bone marrow cells without any transfection. Our present analysis shows that only 2% of bone marrow cells take up the fragments of extracellular exogenous DNA. Of these, ~ 45% of the cells correspond to CD34 + hematopoietic stem cells. Taking into account that CD34 + stem cells constituted 2.5% of the total cell population in the bone marrow samples analyzed, these data indicate that as much as 40% of CD34 + cells readily internalize fragments of extracellular exogenous DNA. This suggests that internalization of fragmented dsDNA is a general feature of poorly differentiated cells, in particular CD34 + bone marrow cells.  相似文献   

4.
Several methods of molecular analysis of microbial diversity, including terminal restriction fragment length polymorphism (T-RFLP) analysis are based on measurement of the DNA fragment length. Significant variation between sequence-determined and measured length of restriction fragments (drift) has been observed, which can affect the efficiency of the identification of microorganisms in the analyzed communities. In the past, this variation has been attributed to varying fragment length and purine content. In this study, principal component analysis and multiple regression analysis were applied to find the contributions of those and several other fragment characteristics. We conclude that secondary structure melting point and G + C nucleotide content, besides the fragment length, contribute to the variation observed, whereas the contribution of purine content is less important. Incomplete denaturation of the sample at the start of electrophoretic separation of fragments has been excluded as a major cause of the variation observed. Our regression model explains the observed drift variation by approximately 56%, with standard deviation of the prediction equal to approximately 1.3 bp.  相似文献   

5.
The unicellular eukaryote, Blepharisma japonicum, is a light-sensitive ciliated protozoa. It possesses a photoreceptor pigment called blepharismin that plays critical roles in defensive behavior against predators and step-up photophobic response. In addition, the pigment generates reactive oxygen species such as singlet oxygen and hydroxyl radicals which contribute to photodynamic action. Previous studies reported that intense light (>300 W m−2) induced rapid photodynamic killing (necrosis) characterized by cell swelling and plasma efflux, while moderate light (3-30 W m−2) only induced pigment extrusion and photooxidation. We have found that moderate light (5 W m−2) induced apoptosis-like cell death. Microscopically it was found that >3 h of moderate light irradiation induced macronuclear condensation and plasma efflux without cell swelling. Single cell gel electrophoresis assay showed that DNA fragmentation occurred between 1 and 3 h of irradiation, and the condensed macronuclei contained quite fragmented DNA. Macronuclear DNA extracted from light-irradiated cells contained DNA fragments of 180-200 and 360-400 bp, which were seen as apoptosis ladders.  相似文献   

6.
Livestock production systems utilize composting as a method of disposal of livestock mortalities, but there is limited information on the rate and extent of carcass decomposition. Detection of specific DNA fragments by PCR offers a method for investigating the degradation of carcasses and other biological materials during composting. However, the purity of extracted DNA is critical for successful PCR analysis. We applied a method to purify DNA from compost samples and have tested the method by analyzing bovine and plant DNA targets after 0, 4, and 12 month of composting. The concentration of organic matter from composted material posed a particular challenge in obtaining pure DNA for molecular analysis. Initially extracted DNA from composted piles at day 147 was discoloured, and PCR inhibitors prevented amplification of target plant or bovine gene fragments. Bovine serum albumin improved detection by PCR (25–50 μl final volume) through the removal of inhibitors, but only when concentrations of humic acids in extracted DNA were 1.0 ng μl−1 or less. Optimal purification of DNA from compost was achieved by chromatography using Sepharose 4B columns. The described DNA purification protocol enabled molecular monitoring of otherwise cryptic bovine and plant target genes throughout the composting process. The assay could likely be used to obtain PCR-amplifiable DNA that could be used for the detection of microbial pathogens in compost.  相似文献   

7.
Many specific sequence DNA binding proteins locate their target sequence by first binding to DNA nonspecifically, then by linearly diffusing or hopping along DNA until either the protein dissociates from the DNA or it finds the recognition sequence. We have devised a method for measuring one-dimensional diffusion along DNA based on the ratio of the dissociation rate of protein from DNA fragments containing one specific binding site to the dissociation rate from DNA fragments containing two specific binding sites. Our extensive measurements of dissociation rates and specific-nonspecific relative binding constants of the restriction nuclease EcoRI enable us to determine the diffusion rate of nonspecifically bound protein along the DNA. By varying the distance between the two binding sites, we confirm a linear diffusion mechanism. The sliding rate is relatively insensitive to salt concentration and osmotic pressure, indicating that the protein moves smoothly along the DNA probably following the helical phosphate-sugar backbone of DNA. We calculate a diffusion coefficient for EcoRI of 3 × 104 bp2 s− 1 EcoRI is able to diffuse ∼ 150 bp, on average, along the DNA in 1 s. This diffusion rate is about 2000-fold slower than the diffusion of free protein in solution. A factor of 40-50 can be accounted for by rotational friction resulting from following the helical path of the DNA backbone. Two possibilities could account for the remaining activation energy: salt bridges between the DNA and the protein are transiently broken, or the water structure at the protein-DNA interface is disrupted as the two surfaces move past each other.  相似文献   

8.
Due to the key role of DNA in cell life and pathological processes, the design of specific chemical nucleases, DNA probes and alkylating agents is an important research area for the development of new therapeutic agents and tools in Biochemistry. Hence, the interaction of small molecules with DNA has attracted in particular a great deal of attention.The aim of this study was to investigate the ability of [Cr(phen)2(dppz)]3+ to associate with DNA and to characterize it as photocleavage reagent for Photodynamic Therapy (PDT).Chromium(III) complex [Cr(phen)2(dppz)]3+, (dppz = dipyridophenazine, phen = 1,10-phenanthroline), where dppz is a planar bidentate ligand with an extended π system, has been found to bind strongly to double strand oligonucleotides (ds-oligo) and plasmid DNA with intrinsic DNA binding constants, Kb, of (3.9 ± 0.3) × 105 M1 and (1.1 ± 0.1) × 105 M1, respectively. The binding properties to DNA were investigated by UV-visible (UV-Vis) absorption spectroscopy and electrophoretic studies. UV-Vis absorption data provide clearly that the chromium(III) complex interacts with DNA intercalatively. Competitive binding experiments show that the enhancement in the emission intensity of ethidium bromide (EthBr) in the presence of DNA was quenched by [Cr(phen)2(dppz)]3+, indicating that the Cr(III) complex displaces EthBr from its binding site in plasmid DNA. Moreover, [Cr(phen)2(dppz)]3+, non-covalently bound to DNA, promotes the photocleavage of plasmid DNA under 457 nm irradiation. We also found that the irradiated Cr(III)-plasmid DNA association is able to impair the transforming capacity of bacteria. These results provide evidence confirming the responsible and essential role of the excited state of [Cr(phen)2(dppz)]3+ for damaging the DNA structure. The combination of DNA, [Cr(phen)2(dppz)]3+ and light, is necessary to induce damage. In addition, assays of the photosensitization of transformed bacterial suspensions suggest that Escherichia coli may be photoinactivated by irradiation in the presence of [Cr(phen)2(dppz)]3+. In sum, our results allow us to postulate the [Cr(phen)2(dppz)]3+ complex as a very attractive candidate for DNA photocleavage with potential applications in Photodynamic Therapy (PDT).  相似文献   

9.
The performance of a small-scale automated cryopreservation and storage system (Mini-BioArchive system) used in the banking of umbilical cord blood (UCB) units was evaluated. After thawing the units, the viability and recovery of cells, as well as the recovery rate of hematopoietic progenitor cells (HPCs) such as CD34+ cells, colony-forming unit-granulocyte-macrophage (CFU-GM), and total CFU were analyzed. Twenty UCB units cryopreserved using the automated system and stored for a median of 34 days were analyzed. Mean CD34+ cell viabilities before freezing were 99.8 ± 0.5% and after thawing were 99.8 ± 0.4% in the large bag compartments and 99.7 ± 0.5% in the small compartments. The mean recovery values for total nucleated cells, CD34+ cells, CFU-GM, and total CFU were 94.8 ± 16.0%, 99.3 ± 18.6%, 103.9 ± 20.6%, and 94.3 ± 12.5%, respectively in the large compartments, and 95.8 ± 25.9%, 106.8 ± 23.9%, 101.3 ± 23.3%, and 93.8 ± 19.2%, respectively in the small compartments. A small-scale automated cryopreservation and storage system did not impair the clonogenic capacity of UCB HPCs. This cryopreservation system could provide cellular products adequate for UCB banking and HPC transplantation.  相似文献   

10.
We have developed a simple and efficient protocol for the isolation of good-quality recombinant phage DNA useful for all downstream processing, including automated sequencing. The overnight-grown phage particles were effectively precipitated (without any contaminating Escherichia coli DNA and other culture media components) by adjusting the pH of the culture medium to 5.2 with sodium acetate, followed by addition of ethanol to 25%. The phage DNA was selectively precipitated with ethanol in the presence of guanidinium thiocyanate under alkaline pH, resulting in uniform quality and quantity of phage DNA. The quality of the phage DNA preparation was demonstrated by DNA sequencing that provided an average read length of >700 bases (PHRED20 quality). This protocol for plating, picking, growing, and subsequent DNA purification of individual phage clones can be completely automated using any standard robotic platform. This protocol does not require any commercial kits and can be completed within 2 h.  相似文献   

11.
DNA methylation plays a vital role in the regulation of gene expression. Abnormal promoter hypermethylation is an important mechanism of inactivating tumor suppressor genes in human cancers. Combined bisulfite restriction analysis (COBRA) is a widely used method for identifying the DNA methylation of specific CpG sites. Here, we report that exonuclease I and heat-labile alkaline phosphatase can be used for PCR purification for COBRA, improving the visibility of gel electrophoresis after restriction digestion. This improvement is observed when restriction digestion is performed at a high temperature, such as 60 °C or 65 °C, with BstUI and TaqI, respectively. This simple method can be applied instead of DNA purification using spin columns or phenol/chloroform extraction. It can also be applied to other situations when PCR products are digested by thermophile-derived restriction enzymes, such as PCR restriction fragment length polymorphism (RFLP) analysis.  相似文献   

12.
The structure of aggregates formed due to DNA interaction with dioleoylphosphatidylcholine (DOPC) vesicles in presence of Ca2+ and Mg2+ cations was investigated using synchrotron small-angle X-ray diffraction. For DOPC/DNA = 1:1 mol/base and in the range of concentration of the cation2+ 0-76.5 mM, the diffractograms show the coexistence of two lamellar phases: Lx phase with repeat distance dLx ∼ 8.26-7.39 nm identified as a phase where the DNA strands are intercalated in water layers between adjacent lipid bilayers, and LDOPC phase with repeat distance dDOPC ∼ 6.45-5.65 nm identified as a phase of partially dehydrated DOPC bilayers without any divalent cations and DNA strands. The coexistence of these phases was investigated as a function of DOPC/DNA molar ratio, length of DNA fragments and temperature. If the amount of lipid increases, the fraction of partially dehydrated LDOPC phase is limited, depends on the portion of DNA in the sample and also on the length of DNA fragments. Thermal behaviour of DOPC + DNA + Ca2+ aggregates was investigated in the range 20-80 °C. The transversal thermal expansivities of both phases were evaluated.  相似文献   

13.
14.
Sitaraman R  Leppla SH 《Gene》2012,494(1):44-50
Bacillus anthracis, the causative agent of anthrax, is poorly transformed with DNA that is methylated on adenine or cytosine. Here we characterize three genetic loci encoding type IV methylation-dependent restriction enzymes that target DNA containing C5-methylcytosine (m5C). Strains in which these genes were inactivated, either singly or collectively, showed increased transformation by methylated DNA. Additionally, a triple mutant with an ~ 30-kb genomic deletion could be transformed by DNA obtained from Dam+Dcm+E. coli, although at a low frequency of ~ 10− 3 transformants/106 cfu. This strain of B. anthracis can potentially serve as a preferred host for shuttle vectors that express recombinant proteins, including proteins to be used in vaccines. The gene(s) responsible for the restriction of m6A-containing DNA in B. anthracis remain unidentified, and we suggest that poor transformation by such DNA could in part be a consequence of the inefficient replication of hemimethylated DNA in B. anthracis.  相似文献   

15.
Conventional DNA ladder assay has certain shortcomings such as loss of DNA fragments during sample processing, involvement of multiple steps and requirement of expensive reagents. The present study demonstrates a rapid, easy-to-perform cost-effective method for detection of apoptotic DNA fragments with considerable improvement in the sensitivity by avoiding loss of DNA fragments. It involves a few minutes of procedure involving direct lysis of cells with dimethyl sulphoxide (DMSO), brief vortexing, addition of 2% SDS–TE buffer, and a single step of centrifugation. This cost- and time-efficient method reduces the assay time considerably and can be used for a large number of samples with excellent sensitivity.  相似文献   

16.
The restriction enzyme cutting site distribution regularity and looping conditions were studied systematically. We obtained the restriction enzyme cutting site distributions of 13 commonly used restriction enzymes in 5 model organism genomes through two novel self-compiled software programs. All of the average distances between two adjacent restriction sites fell sharply with increasing statistic intervals, and most fragments were 0–499 bp. A shorter DNA fragment resulted in a lower looping rate, which was also directly proportional to the DNA concentration. When the length was more than 500 bp, the concentration did not affect the looping rate. Therefore, the best known fragment length was longer than 500 bp, and did not contain the restriction enzyme cutting sites which would be used for digestion. In order to make the looping efficiencies reach nearly 100%, 4–5 single cohesive end systems were recommended to digest the genome separately.  相似文献   

17.
Discrimination of phosphomonoesters and phosphodiesters of DNA was attempted with naphthalene diimide carrying two zinc-dipicolylamine (Dpa) units (1). The binding constant of 1 for a self-complementary octanucleotide was 1.3 × 106 M−1, while the value for the phosphorylated counterpart was 4.8 × 106 M−1. This fourfold increase in the binding constant seems to stem from higher affinity of the terminal monophosphate over the phosphodiesters of DNA as the fourth ligand for the metal in 1. Likewise, the binding constant of 1 for DNase I-treated calf thymus DNA (average size 200 bp) was twice as large as that for untreated DNA (1 kb), possibly because the terminal phosphate groups are five times abundant in the former. These findings provide a clue to developing a system where phosphomonoesters generated upon DNA nicking are discriminated specifically from intact phosphodiesters.  相似文献   

18.
Next-generation sequencing of environmental samples can be challenging because of the variable DNA quantity and quality in these samples. High quality DNA libraries are needed for optimal results from next-generation sequencing. Environmental samples such as water may have low quality and quantities of DNA as well as contaminants that co-precipitate with DNA. The mechanical and enzymatic processes involved in extraction and library preparation may further damage the DNA. Gel size selection enables purification and recovery of DNA fragments of a defined size for sequencing applications. Nevertheless, this task is one of the most time-consuming steps in the DNA library preparation workflow. The protocol described here enables complete automation of agarose gel loading, electrophoretic analysis, and recovery of targeted DNA fragments. In this study, we describe a high-throughput approach to prepare high quality DNA libraries from freshwater samples that can be applied also to other environmental samples. We used an indirect approach to concentrate bacterial cells from environmental freshwater samples; DNA was extracted using a commercially available DNA extraction kit, and DNA libraries were prepared using a commercial transposon-based protocol. DNA fragments of 500 to 800 bp were gel size selected using Ranger Technology, an automated electrophoresis workstation. Sequencing of the size-selected DNA libraries demonstrated significant improvements to read length and quality of the sequencing reads.  相似文献   

19.
An integrated system with a nano-reactor for cycle-sequencing reaction coupled to on-line purification and capillary gel electrophoresis has been demonstrated. Fifty nanoliters of reagent solution, which includes dye-labeled terminators, polymerase, BSA and template, was aspirated and mixed with the template inside the nano-reactor followed by cycle-sequencing reaction. The reaction products were then purified by a size-exclusion chromatographic column operated at 50°C followed by room temperature on-line injection of the DNA fragments into a capillary for gel electrophoresis. Over 450 bases of DNA can be separated and identified. As little as 25 nl reagent solution can be used for the cycle-sequencing reaction with a slightly shorter read length. Significant savings on reagent cost is achieved because the remaining stock solution can be reused without contamination. The steps of cycle sequencing, on-line purification, injection, DNA separation, capillary regeneration, gel-filling and fluidic manipulation were performed with complete automation. This system can be readily multiplexed for high-throughput DNA sequencing or PCR analysis directly from templates or even biological materials.  相似文献   

20.
We have designed a simple and novel electrochemical biosensor based on glassy carbon electrode (GCE) for DNA detection. GCE was modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) by the electrochemical method, which is helpful for immobilization of thiolated bioreceptors. The electrode modification processes were characterized by scanning electron microscopy (SEM) and electrochemical methods. Then a single-stranded DNA (ssDNA) probe for BRCA1 5382 insC mutation detection was immobilized on the modified electrode for a specific time. The experimental conditions, such as probe immobilization time and target DNA (complementary DNA) hybridization time and temperature with probe DNA, were optimized using electrochemical methods. The electrochemical response for DNA hybridization and synthesis was measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. The calibration graph contains two linear ranges; the first part is in the range of 3.0 × 10−20 to 1.0 × 10−12 M, and the second segment part is in the range of 1.0 × 10−12 to 1.0 × 10−7 M. The biosensor showed excellent selectivity for the detection of the complementary sequences from noncomplementary sequences, so it can be used for detection of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号