首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Depletion of the high-abundance plasma proteins   总被引:6,自引:0,他引:6  
Summary. Body fluids, like plasma and urine, are comparatively easy to obtain and are useful for the detection of novel diagnostic markers by applying new technologies, like proteomics. However, in plasma, several high-abundance proteins are dominant and repress the signals of the lower-abundance proteins, which then become undetectable either by two-dimensional gels or chromatography. Therefore, depletion of the abundant proteins is a prerequisite for the detection of the low-abundance components. We applied affinity chromatography on blue matrix and Protein G and removed the most abundant human plasma proteins, albumin and the immunoglobulin chains. The plasma proteins, prior to albumin and immunoglobulin depletion, as well the eluates from the two chromatography steps were analyzed by two-dimensional electrophoresis and the proteins were identified by MALDI-TOF-MS. The analysis resulted in the identification of 83 different gene products in the untreated plasma. Removal of the high-abundance proteins resulted in the visualization of new protein signals. In the eluate of the two affinity steps, mostly albumin and immunoglobulin spots were detected but also spots representing several other abundant plasma proteins. The methodology is easy to perform and is useful as a first step in the detection of diagnostic markers in body fluids by applying proteomics technologies.Current address: Foundation for Biomedical Research of the Academy of Athens, Greece  相似文献   

2.
Enzymatic hydrolysis of pretreated lignocellulosic substrates has emerged as an interesting option to produce sugars that can be converted to liquid biofuels and other commodities using microbial biocatalysts. Lignocellulosic substrates are pretreated to make them more accessible to cellulolytic enzymes, but the pretreatment liquid partially inhibits subsequent enzymatic hydrolysis. The presence of pretreatment liquid from Norway spruce resulted in a 63% decrease in the enzymatic saccharification of Avicel compared to when the reaction was performed in a buffered aqueous solution. The addition of 15 mM of a reducing agent (hydrogen sulfite, dithionite, or dithiothreitol) to reaction mixtures with the pretreatment liquid resulted in up to 54% improvement of the saccharification efficiency. When the reducing agents were added to reaction mixtures without pretreatment liquid, there was a 13-39% decrease in saccharification efficiency. In the presence of pretreatment liquid, the addition of 15 mM dithionite to Avicel, α-cellulose or filter cake of pretreated spruce wood resulted in improvements between 25 and 33%. Positive effects (6-17%) of reducing agents were also observed in experiments with carboxymethyl cellulose and 2-hydroxyethyl cellulose. The approach to add reducing agents appears useful for facilitating the utilization of enzymes to convert cellulosic substrates in industrial processes.  相似文献   

3.
Echan LA  Tang HY  Ali-Khan N  Lee K  Speicher DW 《Proteomics》2005,5(13):3292-3303
Systematic detection of low-abundance proteins in human blood that may be putative disease biomarkers is complicated by an extremely wide range of protein abundances. Hence, depletion of major proteins is one potential strategy for enhancing detection sensitivity in serum or plasma. This study compared a recently commercialized HPLC column containing antibodies to six of the most abundant blood proteins ("Top-6 depletion") with either older Cibacron blue/Protein A or G depletion methods or no depletion. In addition, a prototype spin column version of the HPLC column and an alternative prototype two antibody spin column were evaluated. The HPLC polyclonal antibody column and its spin column version are very promising methods for substantially simplifying human serum or plasma samples. These columns show the lowest nonspecific binding of the depletion methods tested. In contrast other affinity methods, particularly dye-based resins, yielded many proteins in the bound fractions in addition to the targeted proteins. Depletion of six abundant proteins removed about 85% of the total protein from human serum or plasma, and this enabled 10- to 20-fold higher amounts of depleted serum or plasma samples to be applied to 2-D gels or alternative protein profiling methods such as protein array pixelation. However, the number of new spots detected on 2-D gels was modest, and most newly visualized spots were minor forms of relatively abundant proteins. The inability to detect low-abundance proteins near expected 2-D staining limits was probably due to both the highly heterogeneous nature of most plasma or serum proteins and masking of many low-abundance proteins by the next series of most abundant proteins. Hence, non2-D methods such as protein array pixelation are more promising strategies for detecting lower abundance proteins after depleting the six abundant proteins.  相似文献   

4.
Free-flow electrophoresis (FFE) and rapid (6 min) RP-HPLC was used to fractionate human citrate-treated plasma. Prior to analysis, the six most abundant proteins in plasma were removed by immunoaffinity chromatography; both depleted plasma and the fraction containing the six abundant proteins depleted were taken for MS-based analysis. Fractionated proteins were digested with trypsin and the generated peptides were subjected to MS-based peptide sequencing. To date, 78 plasma proteins have been unambiguously identified by manual validation from 16% (15/96 FFE total fractions) of the collected FFE pools; 55 identifications were based on > or = 2 tryptic peptides and 23 using single peptides. The molecular weight range of proteins and peptides isolated by this method ranged from approximately 190 K (e.g., Complement C3 and C4) to approximately 4-6 K (e.g., CRISPP and Apolipoprotein C1). This FFE/RP-HPLC approach reveals low-abundance proteins and peptides (e.g., L-Selectin approximately 17 ng/mL and the cancer-associated SCM-recognition, immunodefense suppression, and serine protease protection peptide (CRISPP) at approximately 0.5-1 ng/mL), where CRISPP was found in association with alpha-1-antitrypsin as a non-covalent complex, in the fraction containing the depleted high-abundance proteins. In contrast to shotgun proteomic approaches, the FFE/RP-HPLC method described here allows the identification of potentially interesting peptides to be traced back to their protein of origin, and for the first time, has confirmed the "protein sponge" hypothesis where the 35 residue CRISPP polypeptide is non-covalently complexed with the major circulating plasma protein alpha-1-antitrypsin.  相似文献   

5.
6.
The use of proteomics for efficient, accurate, and complete analysis of clinical samples poses a variety of technical challenges. The presence of higher abundance proteins in the plasma, such as albumin, may mask the detection of lower abundance proteins such as the cytokines. Methods have been proposed to deplete the sample of these higher abundance proteins to facilitate detection of those with lower abundance. In this study, a commercially available albumin depletion kit was used to determine if removal of albumin would measurably reduce detection of lower abundance cytokine proteins in human plasma. The Montage Albumin Deplete Kit (Millipore) was used to deplete albumin from LPS-stimulated whole blood from 15 normal human donors. Albumin depletion was measured using the BCG reagent and SDS-PAGE, and cytokine recovery was determined by a microassay immunoassay that measures both pro- and anti-inflammatory cytokines. Average albumin depletion from the samples was 72%. However, several cytokines were also significantly reduced when the albumin was removed from the plasma. Additionally, there was a variable reduction in cytokine recovery from a known mixture of cytokines in a minimal amount of plasma that were loaded onto the columns. These data demonstrate that there may be a non-specific loss of cytokines following albumin depletion, which may confound subsequent proteomic analysis.  相似文献   

7.
Blood plasma is the most complex human-derived proteome, containing other tissue proteomes as subsets. This proteome has only been partially characterized due to the extremely wide dynamic range of the plasma proteins of more than ten orders of magnitude. Thus, the reduction in sample complexity prior to mass spectrometric analysis is particularly important and alternative separation methodologies are required to more effectively mine the lower abundant plasma proteins. Here, we demonstrated a novel separation approach using 2-D free-flow electrophoresis (FFE) separating proteins and peptides in solution according to their pI prior to LC-MS/MS. We used the combination of sequential protein and peptide separation by first separating the plasma proteins into specific FFE fractions. Tryptic digests of the separated proteins were generated and subsequently separated using FFE. The protein separation medium was optimized to segregate albumin into specific fractions containing only few other proteins. An optimization of throughput for the protein separation reduced the separation time of 1 mL of plasma to approximately 3 h providing sufficient material for digestion and the subsequent peptide separation. Our approach revealed low-abundant proteins (e.g., L-selectin at 17 ng/mL and vascular endothelial-cadherin precursor at 30 ng/mL) and several tissue leakage products, thus providing a powerful orthogonal separation step in the proteomics workflow.  相似文献   

8.
Decrease in interstitial pH of the tumor stroma and over-expression of low density lipoprotein (LDL) receptors by several types of neoplastic cells have been suggested to be important determinants of selective retention of photosensitizers by proliferative tissues. The interactions of chlorin e6 (Ce6), a photosensitizer bearing three carboxylic groups, with plasma proteins and DOPC unilamellar vesicles are investigated by fluorescence spectroscopy. The binding constant to liposomes, with reference to the DOPC concentration, is 6 × 103 M− 1 at pH 7.4. Binding of Ce6 to LDL involves about ten high affinity sites close to the apoprotein and some solubilization in the lipid compartment. The overall association constant is 5.7 × 107 M− 1 at pH 7.4. Human serum albumin (HSA) is the major carrier (association constant 1.8 × 108 M− 1 at pH 7.4). Whereas the affinity of Ce6 for LDL and liposomes increases at lower pH, it decreases for albumin. Between pH 7.4 and 6.5, the relative affinities of Ce6 for LDL versus HSA, and for membranes versus HSA, are multiplied by 4.6 and 3.5, respectively. These effects are likely driven by the ionization equilibria of the photosensitizer carboxylic chains. Then, the cellular uptake of chlorin e6 may be facilitated by its pH-mediated redistribution within the tumor stroma.  相似文献   

9.
10.
Kailasa SK  Wu HF 《Journal of Proteomics》2012,75(10):2924-2933
Functionalized quantum dots with dopamine dithiocarbamate (QDs-DDTC) were utilized for the first time as an efficient material for the quantification of efavirenz in human plasma of HIV infected patients and rapid identification of microwave tryptic digest proteins (cytochrome c, lysozyme and BSA) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The synthesized QDs-DDTC was characterized by using spectroscopic (UV-visible, FT-IR and (1)H NMR) and microscopic (SEM and TEM) techniques. Functionalized QDs-DDTC exhibited a high desorption/ionization efficiency for the rapid quantification of small molecules (efavirenz, tobramycin and aspartame) at low-mass region. QDs-DDTC has well ability to trap target species, and capable to transfer laser energy for efficient desorption/ionization of analytes with background-free detection. The use of QDs-DDTC as a matrix provided good linearity for the quantification of small molecules (R(2)=~0.9983), with good reproducibility (RSD<10%), in the analysis of efavirenz in the plasma of HIV infected patients by the standard addition method. We also demonstrated that the use of functionalized QDs-DDTC as affinity probes for the rapid identification of microwave tryptic digested proteins (cytochrome c, lysozyme and BSA) by MALDI-TOF-MS. QDs-DDTC-based MALDI-TOF-MS approach provides simplicity, rapidity, accuracy, and precision for the determination of efavirenz in human plasma of HIV infected patients and rapid identification of microwave tryptic digested proteins. This new material presents a marked advance in the development of matrix-free mass spectrometric methods for the rapid and precise quantitative determination of a variety of molecules. This article is part of a Special Issue entitled: Proteomics: The clinical link.  相似文献   

11.
Inter-alpha inhibitor proteins (IaIp) are a family of structurally related serine protease inhibitors found in relatively high concentrations in human plasma. Recent studies have implicated a role for IaIp in sepsis, and have demonstrated their potential as biomarkers in sepsis and cancer. For characterization of isolated IaI proteins and contaminating proteins during the last steps of the purification process, SELDI-TOF MS and HPLC-ESI-MS/MS were used. After separation by SDS-PAGE or 2-DE, polypeptide bands of 80, 125 and 250 kDa were excised from gels and digested by trypsin. The tryptic peptides were analyzed by both MS methods. The main contamination during the purification process, a band of 80 kDa, contains mainly IaIp heavy chain (HC) H3. HC H1 and H2 were also found in this band. In addition, some vitamin K-dependent clotting factors and inhibitors and other plasma proteins were identified. The 125-kDa band, representing the pre-alpha inhibitor, was found to contain both bikunin and HC H3. The presence of other HC H1, H2 and the recently described HC H4 was also detected by SELDI-TOF MS. The presence of HC H1, H2, and H3 in the 125-kDa band was confirmed by ESI-MS/MS, but not the presence of the H4. Three polypeptides, H1 and H2 together with bikunin, were identified in the 250-kDa band, representing the ITI, by both MS techniques. Once again, the presence of H4 was detected in this band only by SELDI-TOF MS, but the number of corresponding peptides was still not sufficient for final identification of this polypeptide. The importance of the application of proteomic methods for the proper evaluation of therapeutic drugs based on human plasma is discussed.  相似文献   

12.
Reducing organic substances from anaerobic decomposition of hydrophytes   总被引:1,自引:0,他引:1  
Oxidation–reduction properties of surface sediments are tightly associated with the geochemistry of substances, and reducing organic substances (ROS) from hydrophytes residues may play an important role in these processes. In this study, composition, dynamics, and properties of ROS from anaerobic decomposition of Eichhornia crassipes (Mart.) Solms, Potamogenton crispus Linn, Vallisneria natans (Lour.) Hara, Lemna trisulca Linn and Microcystis flos-aquae (Wittr) Kirch were investigated using differential pulse voltammetry (DPV). The type of hydrophytes determined both the reducibility and composition of ROS. At the peak time of ROS production, the anaerobic decomposition of M. flos-aquae produced 6 types of ROS, among which 3 belonged to strongly reducing organic substance (SROS), whereas there were only 3–4 types of ROS from the other hydrophytes, 2 of them exhibiting strong reducibility. The order of potential of hydrophytes to produce ROS was estimated to be: M. flos-aquae > E. crassipes > L. trisulca > P. crispus ≈ V. natans, based on the summation of SROS and weakly reducing organic substances (WROS). The dynamic pattern of SROS production was greatly different from WROS. The total SROS appeared periodic fluctuation with reducibility gradually weakening with incubation time, whereas the total WROS increased with incubation time. Reducibility of ROS from hydrophytes was readily affected by acid, base and ligands, suggesting that their properties were related to these aspects. In addition to the reducibility, we believe that more attention should be paid to the other behaviors of ROS in surface sediments.  相似文献   

13.
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant plant leaf protein, hampering deep analysis of the leaf proteome. Here, we describe a novel protamine sulfate precipitation (PSP) method for the depletion of RuBisCO. For this purpose, soybean leaf total proteins were extracted using Tris‐Mg/NP‐40 extraction buffer. Obtained clear supernatant was subjected to the PSP method, followed by 13% SDS‐PAGE analysis of total, PS‐supernatant and ‐precipitation derived protein samples. In a dose‐dependent experiment, 0.1% w/v PS was found to be sufficient for precipitating RuBisCO large and small subunits (LSU and SSU). Western blot analysis confirmed no detection of RuBisCO LSU in the PS‐supernatant proteins. Application of this method to Arabidopsis, rice, and maize leaf proteins revealed results similar to soybean. Furthermore, 2DE analyses of PS‐treated soybean leaf displayed enriched protein profile for the protein sample derived from the PS‐supernatant than total proteins. Some enriched 2D spots were subjected to MALDI‐TOF‐TOF analysis and were successfully assigned for their protein identity. Hence, the PSP method is: (i) simple, fast, economical, and reproducible for RuBisCO precipitation from the plant leaf sample; (ii) applicable to both dicot and monocot plants; and (iii) suitable for downstream proteomics analysis.  相似文献   

14.
Lung surfactant (LS) is a mixture of lipids and proteins that line the alveolar air-liquid interface, lowering the interfacial tension to levels that make breathing possible. In acute respiratory distress syndrome (ARDS), inactivation of LS is believed to play an important role in the development and severity of the disease. This review examines the competitive adsorption of LS and surface-active contaminants, such as serum proteins, present in the alveolar fluids of ARDS patients, and how this competitive adsorption can cause normal amounts of otherwise normal LS to be ineffective in lowering the interfacial tension. LS and serum proteins compete for the air-water interface when both are present in solution either in the alveolar fluids or in a Langmuir trough. Equilibrium favors LS as it has the lower equilibrium surface pressure, but the smaller proteins are kinetically favored over multi-micron LS bilayer aggregates by faster diffusion. If albumin reaches the interface, it creates an energy barrier to subsequent LS adsorption that slows or prevents the adsorption of the necessary amounts of LS required to lower surface tension. This process can be understood in terms of classic colloid stability theory in which an energy barrier to diffusion stabilizes colloidal suspensions against aggregation. This analogy provides qualitative and quantitative predictions regarding the origin of surfactant inactivation. An important corollary is that any additive that promotes colloid coagulation, such as increased electrolyte concentration, multivalent ions, hydrophilic non-adsorbing polymers such as PEG, dextran, etc. added to LS, or polyelectrolytes such as chitosan, also promotes LS adsorption in the presence of serum proteins and helps reverse surfactant inactivation. The theory provides quantitative tools to determine the optimal concentration of these additives and suggests that multiple additives may have a synergistic effect. A variety of physical and chemical techniques including isotherms, fluorescence microscopy, electron microscopy and X-ray diffraction show that LS adsorption is enhanced by this mechanism without substantially altering the structure or properties of the LS monolayer.  相似文献   

15.
The conventional cold-ethanol batch fractionation method of human plasma is converted to an automatically controlled continuous fractionation process. The selected protein fractions are precipitated by mixing in the recycled product stream of the suspension. Compared to the batch process, the continuous fractionation process generates less coprecipitation and less spontaneous nucleation, allowing efficient centrifugation of precipitates, and the yield and purity of albumin in the final fraction is significantly increased.  相似文献   

16.
Macroporous cryogels were prepared and used to deplete abundant proteins. It was accomplished based on the sample heterogeneity rather than any exogenous assistance. Human serum was added in monomer solutions to synthesize molecularly imprinted polymers; therein some abundant proteins were imprinted in the polyacrylamide cryogels. Meanwhile the rare components remained aqueous. Chromatography and electrophoresis showed that albumin, serotransferrin, and most globulins were depleted by columns packed with the molecularly imprinted polymers. After the depletion, lower abundance proteins were revealed by SDS‐PAGE, peptide fingerprint analysis, and identified by MALDI‐TOF‐MS. This is an example that a “per se imprint” protocol enables to gradually dimidiate proteomes, simplify sample complexities, and facilitate further proteome profiling or biomarker discovery.  相似文献   

17.
A novel technique for affinity precipitation has been developed in which multimeric target proteins are precipitated as a result of network formation by polymer-conjugated ligands (polyligands). A polyligand precipitant for avidin was synthesized by conjugation of biotin to a polyacrylamide-based backbone. The effects of mixing conditions, ligand substitution frequency, and molecular weight on affinity precipitation were examined using the biotin-PAAm precipitant. Biotin was replaced by iminobiotin to study the effect of the ligand-protein dissociation constant o affinity precipitation. The iminobiotin-PAAm precipitant was also used to examine the reversibility of the precipitation and recovery of the target protein after precipitation. (c) 1993 Wiley & Sons, Inc.  相似文献   

18.
Abstract: Ascorbate-induced lipid peroxidation, as measured by malonyldialdehyde (MDA) production, caused irreversible decreases in Bmax of both [3H]5-HT and [3H]spiperone binding. Cacl2 (4mM) inhibited ascorbateinduced MDA formation at ascorbate concentrations >0.57 mM, but not at ≤ 0.57 mM. Under the standard assay conditions (5.7 mM ascorbate and 4mM CaCl2), Cacl2 inhibited the MDA production casued by ascorbate by 88%, and the loss in [3H]5-HT binding by 57%. Ascorbate still decreased [3H]5-HT binding by 57%. Ascorbate still decreased [3H]5-HT binding when lipid peroxidation was completely inhibited by EDTA. This additional effect of ascorbate was reversible after washing the membranes. Other reducing agents (dithiothreitol, glutathione, and metabisulfite) also decreased the binding of [3H]serotonin. In contrast, [3H]spiperone binding was not affected by ascorbate in the absence of lipid peroxidation or by other reducing agents. These experiments demonstrate that ascorbate has a dual and differential effect on serotonin binding sites. First, ascorbate-induced lipid peroxiation irreversibly inactivates both [3H]5-HT and [3H]spiperone binding. Second, independent of lipid peroxidation, there is a direct, reversible effect of ascorbate on [3H]serotonin but not on [3H]spiperone binding, which is probably due to the difference in the biochemical nature of the two serotonin binding sites.  相似文献   

19.
A thin layer of airway surface fluid (ASF) lining the pulmonary airways plays an important role in the primary defense mechanisms of the lung against bacterial infection. However, little is known about the composition of ASF due to the thinness (typically 5–30 μm in healthy animals) of the fluid layer and its relative inaccessibility, which causes considerable difficulties in sample collection and subsequent analysis. We have used a novel technique of capillary sampling coupled with capillary electrophoresis (CE) to analyze the protein composition of rat ASF. CE analyses were performed under two different conditions: a borate buffer, pH 9.1, or a phosphate buffer, pH 2.5, with 0.5 mM spermine. The different selectivities afforded by the two methods aid in peak identification, and quantitation of most of the major species was possible using both separation conditions. Albumin, transferrin and globulins are observed to be the major protein components in rat ASF, at concentrations of 28 mg ml−1, 4.0 mg ml−1 and 34 mg ml−1 respectively, in comparison to 31 mg ml−1, 3.1 mg ml−1 and 40 mg ml−1, respectively, in rat plasma.  相似文献   

20.
Gao M  Deng C  Yu W  Zhang Y  Yang P  Zhang X 《Proteomics》2008,8(5):939-947
An unbiased method for large-scale depletion of high-abundance proteins and identification of middle- or low-abundance proteins by multidimensional LC (MDLC) was demonstrated in this paper. At the protein level, the MDLC system, coupling the first dimensional strong cation exchange (SCX) chromatography with the second dimensional RP-HPLC, instead of immunoaffinity technology, was used to deplete high-abundance proteins. Sixty-two fractions from SCX were separated further by RPLC. UV absorption spectra were observed to differentiate high-abundance proteins from middle- or low-abundance proteins. After the depletion of high-abundance proteins, middle- or low-abundance proteins were enriched, digested, and separated by online 2D-micro-SCX/cRPLC. The eluted peptides were deposited on the MALDI target and detected by MALDI-TOF/TOF MS. This depletion strategy was applied to the proteome of the normal human liver (NHL) provided by the China Human Liver Proteome Project (CHLPP). In total, 58 high-abundance proteins were depleted in one experiment. The strategy increases greatly the number of identified proteins and around 1213 proteins were identified, which was about 2.7 times as that of the nondepletion method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号