首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four MII quinolinato complexes, [Zn2(quin)2(H2O)3]n (1), [Zn(quin)(H2O)2]n (2), [Zn(quin)(H2O)]n (3) and [Cd(quin)]n (4) (H2quin = 2,3-pyridinedicarboxylic acid or quinolinic acid), have been hydrothermally synthesized and structurally characterized. X-ray diffraction analyses reveal that all of these four complexes are constructed from similar rod-like SBUs, [M(quin)]n (M = Zn or Cd). Complexes 1 and 2 have similar 1-D box-like chains but different packing structures; complex 3 has a 2-D grid-like network and complex 4 has an unusual 2-D bilayer structure. Due to the different structural features, these complexes exhibit different photoluminescent emissions: complex 1 at 439 nm (λex = 345 nm), complex 2 at 428 nm (λex = 360 nm), complex 3 at 508 nm (λex = 304 nm) and complex 4 at 500 nm (λex = 324 nm).  相似文献   

2.
The synthesis of triethylphosphine gold(I) 4-nitrobenzenethiolate, Et3PAu(SC6H4NO2-4), is reported. Et3PAu(SC6H4NO2-4) displays a low energy visible electronic absorption band which is solvent dependent: EtOH (λmax = 385 nm), acetonitrile (λmax = 391 nm), THF (λmax = 395 nm), and DMSO (λmax = 402 nm). The corresponding low energy visible electronic absorption band of 4-nitrobenzenethiolate, 4-NO2C6H4S also shows solvent dependency: acetonitrile, (λmax = 484 nm), DMSO (λmax = 502 nm), dimethylformamide (λmax = 505 nm). The positive solvatochromic shifts for Et3PAu(SC6H4NO2-4) and 4-NO2C6H4S are consistent with an intraligand (IL) charge transfer transition, i.e. π(S) → ∗π (C6H4NO2-4) or n(S) → ∗π (C6H4NO2-4). Assignment of 4-NO2C6H4S was aided by a DFT calculation.  相似文献   

3.
Bioluminescence resonance energy transfer (BRET) is a powerful tool for the study of protein-protein interactions and conformational changes within proteins. Two common implementations of BRET are BRET1 with Renilla luciferase (RLuc) and coelenterazine h (CLZ, λem ∼ 475 nm) and BRET2 with the substrate coelenterazine 400a (CLZ400A substrate, λem = 395 nm) as the respective donors. For BRET1 the acceptor is yellow fluorescent protein (YFP) (λem ∼ 535 nm), a mutant of green fluorescent protein (GFP), and for BRET2 it is GFP2em ∼ 515 nm). It is not clear from previous studies which of these systems has superior signal-to-background characteristics. Here we directly compared BRET1 and BRET2 by placing two different protease-specific cleavage sequences between the donor and acceptor domains. The intact proteins simulate protein-protein association. Proteolytic cleavage of the peptide linker simulates protein dissociation and can be detected as a change in the BRET ratios. Complete cleavage of its target sequence by thrombin changed the BRET2 ratio by a factor of 28.9 ± 0.2 (relative standard deviation [RSD], n = 3) and changed the BRET1 ratio by a factor of 3.05 ± 0.07. Complete cleavage of a caspase-3 target sequence resulted in the BRET ratio changes by factors of 15.45 ± 0.08 for BRET2 and 2.00 ± 0.04 for BRET1. The BRET2 assay for thrombin was 2.9 times more sensitive compared with the BRET1 version. Calculated detection limits (blank signal + 3σb, where σb = standard deviation [SD] of blank signal) were 53 pM (0.002 U) thrombin with BRET1 and 15 pM (0.0005 U) thrombin with BRET2. The results presented here suggest that BRET2 is a more suitable system than BRET1 for studying protein-protein interactions and as a potential sensor for monitoring protease activity.  相似文献   

4.
Two nontypical nucleosides, 7-β-d-ribosyl-2,6-diamino-8-azapurine and 8-β-d-ribosyl-2,6-diamino-8-azapurine, have been found to exhibit moderately good, and selective, substrate properties toward calf and bacterial (Escherichia coli) forms of purine nucleoside phosphorylase (PNP). The former compound is effectively phosphorolysed by calf PNP and the latter by PNP from E. coli. Both compounds are fluorescent with λmax ∼ 425 to 430 nm, but the reaction product, 2,6-diamino-8-azapurine, emits in a different spectral region (λmax ∼ 363 nm) with nearly 40% yield, providing a strong fluorogenic effect at 350 to 360 nm.  相似文献   

5.
Melikishvili M  Rodgers DW  Fried MG 《DNA Repair》2011,10(12):1193-1202
Human O6-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. These activities protect normal cells and tumor cells against drugs that alkylate DNA; drugs that inactivate AGT are under test as chemotherapeutic enhancers. In studies using 6-carboxyfluorescein (FAM)-labeled DNAs, AGT reduced the fluorescence intensity by ∼40% at binding saturation, whether the FAM was located at the 5′ or the 3′ end of the DNA. AGT protected residual fluorescence from quenching, indicating a solute-inaccessible binding site for FAM. Sedimentation equilibrium analyses showed that saturating AGT-stoichiometries were higher with FAM-labeled DNAs than with unlabeled DNAs, suggesting that the FAM provides a protein binding site that is not present in unlabeled DNAs. Additional fluorescence and sedimentation measurements showed that AGT forms a 1:1 complex with free FAM. Active site benzylation experiments and docking calculations support models in which the primary binding site is located in or near the active site of the enzyme. Electrophoretic analyses show that FAM inhibits DNA binding (IC50 ∼ 76 μM) and repair of DNA containing an O6-methylguanine residue (IC50 ∼ 63 μM). Similar results were obtained with other polycyclic aromatic compounds. These observations demonstrate the existence of a new class of non-covalent AGT-inhibitors. After optimization for binding-affinity, members of this class might be useful in cancer chemotherapy.  相似文献   

6.
As part of an effort to inhibit S100B, structures of pentamidine (Pnt) bound to Ca2+-loaded and Zn2+,Ca2+-loaded S100B were determined by X-ray crystallography at 2.15 Å (Rfree = 0.266) and 1.85 Å (Rfree = 0.243) resolution, respectively. These data were compared to X-ray structures solved in the absence of Pnt, including Ca2+-loaded S100B and Zn2+,Ca2+-loaded S100B determined here (1.88 Å; Rfree = 0.267). In the presence and absence of Zn2+, electron density corresponding to two Pnt molecules per S100B subunit was mapped for both drug-bound structures. One Pnt binding site (site 1) was adjacent to a p53 peptide binding site on S100B (± Zn2+), and the second Pnt molecule was mapped to the dimer interface (site 2; ± Zn2+) and in a pocket near residues that define the Zn2+ binding site on S100B. In addition, a conformational change in S100B was observed upon the addition of Zn2+ to Ca2+-S100B, which changed the conformation and orientation of Pnt bound to sites 1 and 2 of Pnt-Zn2+,Ca2+-S100B when compared to Pnt-Ca2+-S100B. That Pnt can adapt to this Zn2+-dependent conformational change was unexpected and provides a new mode for S100B inhibition by this drug. These data will be useful for developing novel inhibitors of both Ca2+- and Ca2+,Zn2+-bound S100B.  相似文献   

7.
A reversible and easy assembled fluorescent sensor based on calix[4]arene and phenolphthalein (C4P) was developed for selective zinc ion (Zn2+) sensing in aqueous samples. The probe C4P demonstrated high selective and sensitive detection towards Zn2+ over other competitive metal ions. Interaction of Zn2+ with a solution of C4P resulted in a considerable increment in emission intensity at 440 nm (λex = 365 nm) due to the suppression of photoinduced electron transfer (PET) process and the restriction of C=N isomerization . The binding constant (Ka) of C4P with Zn2+ was calculated to be 4.50 × 1011 M?2 and also the limit of detection of C4P for Zn2+ was as low as 0.108 μM (at 10?7 M level). Moreover, the fluorescence imaging in the human colon cancer cells suggested that C4P had great potential to be used to examine Zn2+ in vivo.  相似文献   

8.
Zinc(II) ions (Zn2+) play an essential role in living systems, with their delicate concentration balance differing among the various intracellular organelles. The spatiotemporal distribution and homeostasis of Zn2+ can be monitored through photoluminescence imaging using zinc sensors. Among such biosensors, genetically encoded fluorescent sensor proteins are attractive tools owing to their subcellular localization advantage and high biocompatibility. However, the limited fluorescent properties of these proteins, such as their insufficient quantum yield and dynamic range, restrict their practical use. In this study, we developed an expression–screening–directed evolution system and used it to improve ZapCY1, a genetically encoded fluorescence resonance energy transfer (FRET) sensor. After four rounds of directed evolution, the FRET dynamic range of the modified sensor (designated ZapTV-EH) was increased by 1.5–1.7-fold. With its enhanced signal-to-noise ratio and ability to detect a wide Zn2+ concentration range, ZapTV-EH proves to be a better visualization tool for monitoring Zn2+ at the subcellular level. Combined with the simplified subcloning and expression steps and sufficient mutant libraries, this directed evolution system may provide a more simple and efficient way to develop and optimize genetically encoded FRET sensors through high-throughput screening.  相似文献   

9.
At 77 K in the solid state and in ethanol glasses, o-carborane (1,2-C2B10H12) shows a relatively intense (? ∼ 10−3 at λexc = 260 nm) structured photoluminescence (λmax = 441 nm).In agreement with the rather slow decay of this emission (τ ∼ 4 s) it is suggested to be a phosphorescence. While it appears to be a genuine property of o-carborane an unknown impurity as origin of this luminescence is not completely excluded.  相似文献   

10.
A series of conjugated multi-structured fluorescent probe molecules based on a salen ligand were designed and investigated in dimethyl sulfoxide solvent using a quantum-chemical method. The results indicate that the one-photon absorption and fluorescence emission spectra (λ O and λ EM) of these molecules generally show redshifts (of 23.1–74.5 and 22.7–116.6 nm, respectively) upon the coordination of the molecules to Zn2+. Large Stokes shifts (1511.2–11744.1 cm?1) were found for the molecules, meaning that interference between λ O and λ EM can be avoided for these molecules. The two-photon absorption spectra of the molecules usually present blueshifts, but the two-photon absorption cross-section (δ) greatly increases (by 221.5–868.0 GM) upon the coordination of the molecules with Zn2+. Most of the molecules show strong two-photon absorption peaks in the range 678.2–824.4 nm, i.e., in the near-infrared region. In a word, the expanded π-conjugated frameworks of these molecules lead to redshifted λ O and λ EM and enhanced δ values. Moreover, (L-phenyl)?2 and (L-phenyl-ethynyl)2 are the most suitable of the multi-structured molecules examined in this work for use as two-photon fluorescent probes for zinc ion detection in vivo.
Graphical Abstract Scheme of the calculated transition energies (E0k and E0n) and the transition dipole moments (M0k and Mkn). NTO 109, NTO 197 and NTO 228 of Zn(L-phenyl-ethynyl), Zn2(L-phenyl-ethynyl)2 and Zn3(L-phenyl)3 for one-photon  absorption, respectively.
  相似文献   

11.
The complexes AgI(tripod)X with tripod = 1,1,1-tris(diphenylphosphinomethyl)ethane and X = Cl and I are luminescent in solution at r.t. It is suggested that the emission is a phosphorescence which originates from a tripod intraligand state for X = Cl (λmax = 464 nm) and a X → tripod ligand-to-ligand charge transfer state for X = I (λmax = 482 nm).  相似文献   

12.
The ion pair [PtIV(NH3)5Cl]3+S2O82− shows a S2O82− → [Pt(NH3)5Cl]3+ outer-sphere charge transfer (OSCT) absorption at λmax=267 nm. OSCT excitation leads to the reduction of Pt(IV) by S2O82− to Pt(II) with φ=3×10−3 at λirr=280 nm.  相似文献   

13.
Two new coordination polymers {[Mn(H2btc)(phen)(H2O)2]H2btc · H2O}n (1) [H3btc = 1,3,5-benzene tricarboxylic acid, phen = phenanthroline] and {[Zn3(btc)2(H2O)8](H2O)4}n (2) have been synthesised and structurally characterised. Both the complexes crystallise as 1D chain, which further propagates through ligand-based hydrogen bonding interactions into a 3D supramolecular architecture. Supramolecular framework of 1 is constructed by [Mn(H2btc)(phen)(H2O)2]+ as well as the constituent materials-uncoordinated H2btc and water molecules. Complex 2 exists as a corrugated chain with both the bridging and terminal Zn2+ ions and each zinc centre is coordinated to four water molecules. Both 1 and 2 are stacked by mutual π-stacking of the ligands and exhibit strong fluorescence emission band at 414 and 400 nm, respectively.  相似文献   

14.
The synthesis of the mixed ligand mono metallic [Ru(dpop′)(tppz)]2+ and bimetallic [(dpop′)Ru(tppz)Ru(dpop′)]4+ (dpop′ = dipyrido(2,3-a:3′,2′-j)phenazine; tppz = 2,3,5,6 tetra-(2-pyridyl)pyrazine) complexes is described. The [Ru(dpop′)(tppz)]2+ complex display an intense absorption at 518 nm which is assigned to a Ru(dπ) → dpop′ (π∗) MLCT transition, and at 447 nm which is assigned to a Ru(dπ) → tppz(π∗) MLCT transition. It undergoes emission at RT in CH3CN with λem = 722 nm. The bimetallic [(dpop′)Ru(tppz)Ru(dpop′)]4+ complex shows a low energy absorption shoulder near 635 nm assigned to a Ru(dπ) → tppz(π∗) MLCT transition and an intense peak at 542 nm due to Ru(dπ) → dpop′ (π∗) MLCT transition. The bimetallic complex also emits at RT in CH3CN with λem = 785 nm. Cyclic voltammetry shows reversible Ru+2/+3 oxidations at 1.68 V for the monometallic complex and Ru+2/+3 oxidation couples at +1.94 and +1.70 V for the bimetallic complex.  相似文献   

15.
Based on templates of [Ph3PCH2Ph]Cl and [Ph4P]Cl ([Ph3PCH2Ph] = benzyltriphenylphosphonium, [Ph4] = tetraphenylphosphonium), the hydrothermal reactions of zinc acetate dihydrate, H2tp (tp = terephthalate) and water give rise to two new zinc-terephthalate coordination polymers, [Ph3PCH2Ph][Zn(tp)Cl] (1) and [Ph4P][Zn(tp)(H2O)2·0.5tp] (2). X-ray single-crystal structural analysis reveals that both 1 (C33H26ClO4PZn) and 2 (C36H30O8PZn) crystallize in the 2D non-interpenetrating layered supramolecular networks with guest organophosphonium cations. Due to template effect of different guest cations, 1 presents an interesting 2D smectite-like lamellar framework that formed by the 4-linked (4,4) anionic zinc-terephthalate polymeric network and the interlayer [Ph3PCH2Ph]+ exchangeable cations, while 2 shows a 2D 3-linked (6,3) H-bonded anionic zinc-terephthalate polymeric brickwall network with encapsulated guest [Ph4P]+ cations. Both compounds are stable up to about 300 °C, and exhibit intense fluorescent emission band at 446 nm (λexc = 328 nm) for 1 and 420 nm (λexc = 340 nm) for 2 in the solid state at room temperature.  相似文献   

16.
Mammalian metallothioneins (MTs) are a family of small cysteine rich proteins believed to have a number of physiological functions, including both metal ion homeostasis and toxic metal detoxification. Mammalian MTs bind 7 Zn2+ or Cd2+ ions into two distinct domains: an N-terminal β-domain that binds 3 Zn2+ or Cd2+, and a C-terminal α-domain that binds 4 Zn2+ or Cd2+. Although stepwise metalation to the saturated M7-MT (where M = Zn2+ or Cd2+) species would be expected to take place via a noncooperative mechanism involving the 20 cysteine thiolate ligands, literature reports suggest a cooperative mechanism involving cluster formation prior to saturation of the protein. Electrospray ionization mass spectrometry (ESI-MS) provides this sensitivity through delineation of all species (Mn-MT, n = 0-7) coexisting at each step in the metalation process. We report modeled ESI-mass spectral data for the stepwise metalation of human recombinant MT 1a (rhMT) and its two isolated fractions for three mechanistic conditions: cooperative (where the binding affinities are: K1 < K2 < K3 < ··· < K7), weakly cooperative (where K1 = K2 = K3 = ··· = K7), and noncooperative, (where K1 > K2 > K3 > ··· > K7). Detailed ESI-MS metalation data of human recombinant MT 1a by Zn2+ and Cd2+ are also reported. Comparison of the experimental data with the predicted mass spectral data provides conclusive evidence that metalation occurs in a noncooperative fashion for Zn2+ and Cd2+ binding to rhMT 1a.  相似文献   

17.
Hydrothermal reaction produced a three-dimensional zinc 1,4-cyclohexanedicarboxylate formulated as Zn53-OH)2(trans-chdc)4 (chdc = 1,4-cyclohexanedicarboxylic dianion) in high purity and good yield, which is constructed from infinite rod-shaped Zn-O-C secondary building units interconnected by -C6H12-cyclohexane rings of the ligands. The topology of the framework can be regarded as hex type. Though it is synthesized from 1,4-cyclohexanedicarboxylic acid with mixed conformations (trans and cis), interestingly, the ligands in the compound Zn53-OH)2(trans-chdc)4 are uniformly in e,e-trans conformation. This may be related to its synthetic conditions. Photoluminescence measurement reveals that the compound exhibits intense violet-blue fluorescent emission at room temperature. Origin of the emission can be assigned to intraligand transitions by comparison of the fluorescent emission bands for the free ligand chdcH2 and the compound Zn53-OH)2(trans-chdc)4.  相似文献   

18.
The impact of Zn2+ ion on interactions of flavonols galangin (Gal), kaempferol (Kae), quercetin (Que) and myricetin (Myr) with bovine serum albumin (BSA) in aqueous solution were studied by fluorescence quenching technique. The results exhibited that Zn2+ ion affected significantly the interactions and the effect was distinct for the flavonol bearing different number of B-ring hydroxyl. Each flavonol can quench the fluorescence of BSA, displaying a quenching extent of Myr > Que > Kae > Gal, which is in good agreement with the number variation of the B-ring hydroxyl. The presence of Zn2+ ion promoted the quenching for the flavonols, exhibiting an extent of Que > Myr > Kae > Gal. The values of Ka for Kae, Que and Myr decreased whereas KSV and kq for Gal, Kae and Que increased with the number of B-ring hydroxyl. The type of BSA fluorescence quenching for Gal, Kae and Que hardly changed but the preference of static quenching increased. The values of KSV and kq for Myr remarkably decreased and the fluorescence quenching of BSA alternatively occurred via both static and dynamic type instead of only one (static or dynamic). The results suggest the key role of the B-ring hydroxyl and the distinct effect of its number in the interactions. Each flavonol may capture the BSA-bound ZnII in the solution, forming ZnII-flavonol complex that is possibly responsible for BSA fluorescence quenching. The B-ring hydroxyl could establish hydrogen bonds with BSA in the absence of Zn2+ and act as donors for chelating in the presence of Zn2+. The formation of dinuclear ZnII-Myr complex together with the hydrogen bonds between the free B-ring hydroxyl and BSA may contribute to the exceptional behavior of Myr.  相似文献   

19.
The electronic and vibrational Raman spectra of octa-substituted (R = -SC10H21) Co- and Cu-porphyrazines are reported in their solid-state, mesophase, and isotropic liquid forms, as well as in THF solution. Their electronic spectra are composed of traditional Soret (CuS10 = 355 nm, CoS10 = 347 nm) and lower energy Q-bands (CuS10 = 669 nm, CoS10 = 639 nm), as well as a weaker, functionality-specific sulfur n → porphyrin π feature (CuS10 = 500 nm; CoS10 = 447 nm). In contrast to the broad Q-band for CoS10 in all three neat phases, the lower energy analogue for CuS10 is markedly sharper in the microcrystalline state, but similarly broadens in the mesophase, indicative of long range macrocycle π-π interactions that persist even into the liquid state. The resonance (λ = 647 nm) and off-resonance (λ = 785 nm) Raman spectra of these materials in each phase exhibit four diagnostic vibrations; the Cα-Nm stretch (∼1540-1553) cm−1, Cβ-Cβ stretch (∼1450 cm−1), Cα-Cβ-Np stretch (∼1300-1315 cm−1), and Cα-Cβ stretch (∼1070 cm−1). For CoS10, these vibrations systematically shift to lower energy upon melting, while those for CuS10 collapse to degenerate sets. The differences in the electronic and vibrational profiles as a function of temperature suggest that the mesophase structure is governed by strong axial Co-S interactions for CoS10 which template macrocycle π-π stacking, while for CuS10 the same contacts exist, but they are phase dependent and markedly weaker. These inter-porphyrazine interactions are, therefore, responsible for the distinct differences in the melting and clearing temperatures of their respective mesophases. Finally, based on these diagnostic spectroscopic signatures, a photo-thermal, phase-switching mechanism is demonstrated with λ = 785 nm excitation at reduced temperatures, leading to the ability to spectrally monitor and phase change with a single photon source.  相似文献   

20.
Two new zinc-triazole-carboxylate frameworks constructed from secondary building units (SBUs), [Zn5(trz)4(btc)2(DMF)2(H2O)2]·2H2O·DMF (1) and [Zn4(trz)3(btc)2(CH3CN)(H2O)]·5H2O·(Bu4N) (2), [Htrz = 1,2,4-triazole, H3btc = 1,2,4-benzenetricarboxylate, Bu4N = tetrabutylammonium], have been synthesized by solvothermal reactions and characterized by single-crystal X-ray diffraction analyses, X-ray power diffraction, elemental analyses, infrared spectra and thermogravimetric analyses. Both compounds 1 and 2 exhibit 3D (3,8)-connected tfz-d nets with {43}2{46.618.84} topology symbol built from rod-shaped {[Zn5(trz)4]6+}n SBUs (1) and {[Zn4(trz)3]5+}n SBUs (2). In two compounds, rodlike units are connected by btc ligands via different modes. Additionally, solid state fluorescent emission spectra of two compounds show fluorescent properties at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号