首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work has undertaken liquid chromatographic separation of nucleosides and deoxynucleosides. Two different columns with three mobile phases (A, deionized water; B, 50 mM phosphate buffer (pH 4.0); C, methanol) and slightly different gradient programs were used. The elution order was as follows: cytidine (C), 2′-deoxycytidine (dC), uridine (U), 5-methyl-2′-cytidine (5mC), 5-methyl-2′-deoxycytidine (5mdC), guanosine (G), deoxyguanosine (dG), 2′-deoxythymidine (dT), adenosine (A), and 2′-deoxyadenine (dA). Using a Luna C18 Phenomenex column (150 × 4.6 mm, 5 μm), the separation was performed at 40 °C with a total flow rate of 1 ml/min and a run time of 10 min. The second column was an Agilent C18 (50 × 3 mm, 1.8 μm), for which the run time was 4.5 min with a flow rate of 0.6 ml/min (25 °C). In application to the DNA digests from human THP-1 cells, the quantification of C, dC, U, 5mC, 5mdC, G, dG, and A was performed. The percentages of global methylation were evaluated based on the 5mdC and dC concentrations (c5mdC / [c5mdC + cdC], where c is concentration in μg/ml) and compared with those calculated from the respective peak areas (A5mdC / [A5mdC + AdC], where A is peak area at 254 nm). For peak area measurements, excellent agreement was obtained with the results reported previously in the same cell line. In the quantitative approach, the results of DNA methylation were higher but consistent with the previous data obtained using mass spectrometric detection. Comparing the analytical features of the two procedures, the use of a smaller column could be recommended because it provides efficient separation (capacity factors in the range of 1.29-10.66), a short run time, and feasibility of nucleoside and deoxynucleoside quantification in real-world samples and because it also minimizes the use of reagents.  相似文献   

2.
Apoptosis in the bovine embryo cannot be induced by activators of the extrinsic apoptosis pathway until the 8-16-cell stage. Depolarization of mitochondria with the decoupling agent carbonyl cyanide 3-chlorophenylhydrazone (CCCP) can activate caspase-3 in 2-cell embryos but DNA fragmentation does not occur. Here we hypothesized that the repression of apoptosis is caused by methylation of DNA and deacetylation of histones. To test this hypothesis, we evaluated whether reducing DNA methylation by 5-aza-2′-deoxycytidine (AZA) or inhibition of histone deacetylation by trichostatin-A (TSA) would make 2-cell embryos susceptible to DNA fragmentation caused by CCCP. The percent of blastomeres positive for TUNEL was affected by a treatment × CCCP interaction (P < 0.0001). CCCP did not cause a large increase in the percent of cells positive for TUNEL in embryos treated with vehicle but did increase the percent of cells that were TUNEL positive if embryos were pretreated with AZA or TSA. Immunostaining using an antibody against 5-methyl-cytosine antibody revealed that AZA and TSA reduced DNA methylation. In conclusion, disruption of DNA methylation and histone deacetylation removes the block to apoptosis in bovine 2-cell embryos.  相似文献   

3.
4.
5.
MUC3A is a membrane-bound glycoprotein that is aberrantly expressed in carcinomas and is a risk factor for a poor prognosis. However, the exact mechanism of MUC3A expression has yet to be clarified. Here, we provide the first evidence that MUC3A gene expression is controlled by the CpG methylation status of the proximal promoter region. We show that the DNA methylation pattern is intimately correlated with MUC3A expression in breast, lung, pancreas and colon cancer cell lines. The DNA methylation status of 30 CpG sites from −660 to +273 was mapped using MassARRAY analysis. MUC3A-negative cancer cell lines and those with low MUC3A expression (e.g., MCF-7) were highly methylated in the proximal promoter region, corresponding to 9 CpG sites (−345 to −75 bp), whereas MUC3A-positive cell lines (e.g., LS174T) had low methylation levels. Moreover, 5-aza-2′-deoxycytidine and trichostatin A treatment of MUC3A-negative cells or those with low MUC3A expression caused elevation of MUC3A mRNA. Our results suggest that DNA hypomethylation in the 5′-flanking region of the MUC3A gene plays an important role in MUC3A expression in carcinomas of various organs. An understanding of epigenetic changes in MUC3A may contribute to the diagnosis of carcinogenic risk and to prediction of outcome in patients with cancer.  相似文献   

6.
We recently identified that DNA methylation of the G0S2 gene was significantly more frequent in squamous lung cancer than in non-squamous lung cancer. However, the significance of G0S2 methylation levels on cancer cells is not yet known. We investigated the effect of G0S2 methylation levels on cell growth, mRNA expression, and chromatin structure using squamous lung cancer cell lines and normal human bronchial epithelial cells. DNA methylation and mRNA expression of G0S2 were inversely correlated, and in one of the squamous lung cancer cell lines, LC-1 sq, G0S2 was completely methylated and suppressed. Overexpression of G0S2 in LC-1 sq did not show growth arrest or apoptosis. The G0S2 gene has been reported to be a target gene of all-trans retinoic acid and peroxisome proliferator-activated receptor agonists. We treated LC-1 sq with 5-Aza-2′-deoxycytidine, Trichostatin A, all-trans retinoic acid, Wy 14643, or Pioglitazone either alone or in combination. Only 5-Aza-2′-deoxycytidine restored mRNA expression of G0S2. Chromatin immunoprecipitation revealed that histone H3 lysine 9 was methylated regardless of DNA methylation or mRNA expression. In summary, mRNA expression of G0S2 was regulated mainly by DNA methylation in squamous lung cancer cell lines. When the G0S2 gene was methylated, nuclear receptor agonists could not restore mRNA expression of G0S2 and did not show any additive effect on mRNA expression of G0S2 even after the treatment with 5-Aza-2′-deoxycytidine.  相似文献   

7.
Promoter hypermethylation-associated tumor suppressor gene (TSG) silencing has been explored as a therapeutic target for hypomethylating agents. Promoter methylation change may serve as a pharmacodynamic endpoint for evaluation of the efficacy of these agents and predict the patient’s clinical response. Here a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay has been developed for quantitative regional DNA methylation analysis using the molar ratio of 5-methyl-2′-deoxycytidine (5mdC) to 2′-deoxycytidine (2dC) in the enzymatic hydrolysate of fully methylated bisulfite-converted polymerase chain reaction (PCR) amplicons as the methylation indicator. The assay can differentiate 5% of promoter methylation level with an intraday precision ranging from 3 to 16% using two TSGs: HIN-1 and RASSF1A. This method was applied to characterize decitabine-induced promoter DNA methylation changes of these two TSGs in a breast cancer MCF-7 cell line. Promoter methylation of these TSGs was found to decrease in a dose-dependent manner. Correspondingly, the expression of these TSGs was enhanced. The sensitivity and reproducibility of the method make it a valuable tool for specific gene methylation analysis that could aid characterization of hypomethylating activity on specific genes by hypomethylating agents in a clinical setting.  相似文献   

8.
We here report a simple assay system for DNA methyltransferase (DNMT) inhibitors based on the HBx-induced DNA methylation of E-cadherin. A stable cell line named G1 was generated by co-transfecting E-cadherin luciferase reporter and HBx-expression plasmid into HepG2 cells. Treatment of G1 cells with DNMT inhibitors, 5-azacytidine, 5-aza-2′-deoxycytidine, and procainamaid, dose-dependently inhibited DNA methylation of E-cadherin promoter in the reporter, resulting in up-regulation of luciferase levels and its enzyme activity. Treatment with all-trans retinoic acid that is known to inhibit DNMT expression, also induced similar effects. Our system can be useful for development of epi-drugs targeting DNA methylation in malignancies.  相似文献   

9.
Cholesterol secoaldehyde (3β-hydroxy-5-oxo-5,6-secocholestan-6-al or ChSeco) is an oxysterol known to be formed in reactions of ozone with cholesterol and also when cholesterol-5α-hydroperoxide undergoes Hock cleavage. In view of its widespread occurrence and atherogenic potential, we examined the effects of ChSeco on mouse J774 macrophage viability and events associated with apoptosis. A dose-dependent decrease in cell viability, disruptions in mitochondrial transmembrane potential (64 ± 5.5%; mean ± SD, n = 3), increased levels of cytosolic cytochrome c (8.8 ± 0.84 ng/ml; mean ± SD, n = 3), activation of caspase-3 (ca. 3.6-fold) and caspase-9 (ca.1.8-fold), and increased DNA fragmentation (ca. 5-fold), all indicative of apoptosis, were observed in response to exposure to ChSeco. The apoptotic nature of cell death in macrophages was confirmed by dual staining with acridine orange and ethidium bromide. However, unlike the case with cardiomyoblasts and neuronal cells, the apoptotic process in these immune cells was not mediated by increased levels of reactive oxygen species as indicated by a minimal or no increase in 2′,7′-dichlorofluorescein fluorescence. It is suggested that the apoptotic process is mediated via the mitochondrial pathway and that ChSeco formed in biological environments contributes to the initiation, progression, and culmination of atherosclerotic plaque formation, as these processes are critically dependent on macrophage apoptosis.  相似文献   

10.
The accumulation mechanisms of amiodarone (AMD) involving transporters in lung alveolar epithelial type II cells were studied. The uptake of AMD was examined using human alveolar epithelial-derived cell line A549 as a model. AMD was transported by the carrier-mediated system, and the apparent Km and Vmax values were 66.8 ± 30.3 μM and 49.7 ± 9.7 nmol/mg protein/5 min, respectively. The uptake of AMD by A549 cells was Na+-independent and was inhibited by substrates of human organic anion transporting polypeptide (OATP). The inhibition profiles were similar to the inhibitory effects of several compounds on OATP2B1-mediated E-3-S transport, and RT-PCR analysis showed mRNA expression of OATP2B1 and 1B3 in A549 cells. SiRNAs targeted to the OATP2B1 gene decreased the OATP2B1 mRNA expression level in A549 cells up to about 50% and reduced the uptake of AMD up to about 40%. These results indicate that AMD uptake mediated by carriers, including OATP2B1, might lead to accumulation of AMD in the lung and AMD-induced pulmonary toxicity (AIPT).  相似文献   

11.
Methionine synthase (MTR) and methylenetetrahydrofolate reductase (MTHFR) enzymes are involved in the metabolism of methyl groups, and thus have an important role in the maintenance of proper DNA methylation level. In our study we aimed to evaluate the effect of the polymorphism A2756G (rs1805087) in the MTR gene on the level of human leukocyte genomic DNA methylation. Since the well-studied polymorphism C677T (rs1801133) in the MTHFR gene has already been shown to affect DNA methylation, we aimed to analyze the effect of MTR A2756G independently of the MTHFR C677T polymorphism. For this purpose, we collected the groups of 80 subjects with the MTR 2756AA genotype and 80 subjects with the MTR 2756GG genotype, having equal numbers of individuals with the MTHFR 677CC and the MTHFR 677TT genotypes, and determined the level of DNA methylation in each group. Individuals homozygous for the mutant MTR 2756G allele showed higher DNA methylation level than those harboring the MTR 2756AA genotype (5.061 ± 1.761% vs. 4.501 ± 1.621%, P = 0.0391). Individuals with wild-type MTHFR 677СC genotype displayed higher DNA methylation level than the subjects with mutant MTHFR 677TT genotype (5.103 ± 1.767% vs. 4.323 ± 1.525%, P = 0.0034). Our data provide evidence that the MTR A2756G polymorphism increases the level of DNA methylation and confirm the previous reports that the MTHFR C677T polymorphism is associated with DNA hypomethylation.  相似文献   

12.
Escherichiacoli RecBCD is a bipolar DNA helicase possessing two motor subunits (RecB, a 3′-to-5′ translocase, and RecD, a 5′-to-3′ translocase) that is involved in the major pathway of recombinational repair. Previous studies indicated that the minimal kinetic mechanism needed to describe the ATP-dependent unwinding of blunt-ended DNA by RecBCD in vitro is a sequential n-step mechanism with two to three additional kinetic steps prior to initiating DNA unwinding. Since RecBCD can “melt out” ∼ 6 bp upon binding to the end of a blunt-ended DNA duplex in a Mg2+-dependent but ATP-independent reaction, we investigated the effects of noncomplementary single-stranded (ss) DNA tails [3′-(dT)6 and 5′-(dT)6 or 5′-(dT)10] on the mechanism of RecBCD and RecBC unwinding of duplex DNA using rapid kinetic methods. As with blunt-ended DNA, RecBCD unwinding of DNA possessing 3′-(dT)6 and 5′-(dT)6 noncomplementary ssDNA tails is well described by a sequential n-step mechanism with the same unwinding rate (mkU = 774 ± 16 bp s− 1) and kinetic step size (m = 3.3 ± 1.3 bp), yet two to three additional kinetic steps are still required prior to initiation of DNA unwinding (kC = 45 ± 2 s− 1). However, when the noncomplementary 5′ ssDNA tail is extended to 10 nt [5′-(dT)10 and 3′-(dT)6], the DNA end structure for which RecBCD displays optimal binding affinity, the additional kinetic steps are no longer needed, although a slightly slower unwinding rate (mkU = 538 ± 24 bp s− 1) is observed with a similar kinetic step size (m = 3.9 ± 0.5 bp). The RecBC DNA helicase (without the RecD subunit) does not initiate unwinding efficiently from a blunt DNA end. However, RecBC does initiate well from a DNA end possessing noncomplementary twin 5′-(dT)6 and 3′-(dT)6 tails, and unwinding can be described by a simple uniform n-step sequential scheme, without the need for the additional kC initiation steps, with a similar kinetic step size (m = 4.4 ± 1.7 bp) and unwinding rate (mkobs = 396 ± 15 bp s− 1). These results suggest that the additional kinetic steps with rate constant kC required for RecBCD to initiate unwinding of blunt-ended and twin (dT)6-tailed DNA reflect processes needed to engage the RecD motor with the 5′ ssDNA.  相似文献   

13.
The Rh(III) polypyridyl complexes of the type [RhCl(pp)([9]aneS3)]2+ [(pp) = 2,2′-bipyridine (bpy), 2,2′-bipyrimidine (bpm),1,10-phenanthroline (phen), pyrazino[2,3-f]quinoxaline (tap), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), dipyrido[2,3-a:2′,3′-c]phenazine (dppz)] 2-7 have been prepared in a stepwise manner by treatment of RhCl3 · 3H2O with the appropriate polypyridyl ligand (pp) followed by 1,4,7-trithiacyclononane. Interactions of the polypyridyl complexes with DNA were investigated by CD and UV/visible spectroscopy and by gel electrophoresis. The dpq complex 6 cleaves DNA exiguously in the dark, but UV irradiation is required to induce nuclease activity for the bpy complex 2. Whereas 2 [IC50 values: 12.8 (±0.2) and 4.4 (±0.1) μM] exhibits significantly higher cytotoxicities towards MCF-7 and HT-29 cells than 4 [IC50 values: 36.3 (±6.0) and 72.2 (±8.0)], the activity of complexes in the series 4/6/7 correlates directly with the size of the polypyridyl ligand, as documented by their respective IC50 values of 72.2 (±8.0), 20.9 (±2.8) and 7.4 (±2.2) towards HT-29 cells. Complexes of the nitrogen-rich ligands bpm (3) [IC50 values: 1.7 (±0.5) and 1.9 (±0.1) μM] and tap (5) [IC50 values: 11.5 (±0.6) and 7.6 (±4.8) μM] are considerably more potent than their bpy and phen counterparts 2 and 4. Measurement of the lactate dehydrogenase release for lymphoma (BJAB) cells after 1 h incubation demonstrates that unspecific necrosis is negligible for the most active compounds 3 and 7. Specific cell death apoptosis via DNA fragmentation was detected for BJAB cells after 72 h incubation and significant loss of the mitochondrial membrane potential in lymphoma cells indicates that the intrinsic pathway is involved.  相似文献   

14.
The current study was conducted to elucidate the effect of genetic variations in one-carbon metabolism on the epigenetic regulation of major histocompatibility complex II transactivator (MHC2TA), reduced folate carrier 1 (RFC1/SLC19A1) and human leukocyte antigen (HLA)-DR in systemic lupus erythematosus (SLE). PCR-RFLP/AFLP, bisulfite-sequencing and real-time PCR approaches were used for genetic, epigenetic and expression analysis respectively. SLE cases exhibited elevated plasma homocysteine levels compared to healthy controls (24.93 ± 1.3 vs. 11.67 ± 0.48 μmol/l), while plasma folate levels showed no association (7.10 ± 2.49 vs. 7.64 ± 2.09 ng/ml). The RFC1 80G>A polymorphism showed 1.32-fold risk (95% CI: 1.02–1.72) for SLE, while glutamate carboxypeptidase II (GCPII) 1561C>T showed reduced risk (OR: 0.47, 95% CI: 0.24–0.90). The expression of RFC1 (0.37 ± 0.09 vs. 0.60 ± 0.17) and HLA-DR (0.68 ± 0.17 vs. 0.98 ± 0.02) was down regulated in the SLE cases. The hypermethylation of RFC1 as observed in the current study may contribute for its down regulation. Plasma folate and thymidylate synthase (TYMS) 5′-UTR 28 bp tandem repeat showed an inverse association with methylation of RFC1 and MHC2TA. SLE cases with hypocomplementemia showed hypermethylation of RFC1, hypomethylation/up regulation of MHC2TA and down regulation of HLA-DR. The hypermethylation of MHC2TA and down regulation of RFC1, MHC2TA and HLA-DR were observed in anti-cardiolipin antibody positive SLE cases. The up regulation of RFC1 and HLA-DR was observed in anti-dsDNA antibody positive SLE cases. The hypomethylation/upregulation of RFC1 and MHC2TA was observed in anti-RNP antibody positive cases. To conclude, one-carbon genetic variants influence epigenetic of MHC2TA and RFC1, thus contributing to phenotypic heterogeneity of SLE.  相似文献   

15.
As one of major epigenetic changes responsible for tumor suppressor gene inactivation in the development of cancer, promoter hypermethylation was proposed as a marker to define novel tumor suppressor genes. In the current study we identified ZIC1 (Zic family member 1, odd-paired Drosophila homolog) as a novel tumor suppressor gene silenced through promoter hypermethylation in gastric cancer, the second leading cause of cancer death worldwide. In all of gastric cancer cells lines examined, ZIC1 expression was downregulated and such downregulation was accompanied with the hypermethylation of ZIC1 promoter. Demethylation treatment with 5-aza-2′-deoxycytidine (Aza) reversed ZIC1 downregulation, highlighting the importance of promoter methylation to ZIC1 downregulation in gastric cancer cells. Notably, ZIC1 expression was significantly downregulated in primary gastric carcinoma tissues in comparison with non-tumor adjacent gastric tissues (p < 0.01). Accordingly, promoter methylation of ZIC1 was frequently detected in primary gastric carcinoma tissues (94.6%, 35/37) but not normal gastric tissues, indicating that promoter hypermethylation mediated ZIC1 downregulation may play an important role in gastric carcinogenesis. Indeed, ectopic expression of ZIC1 led to the growth inhibition of gastric cancer cells through the induction of S-phase cell cycle arrest (p < 0.01). Our results revealed ZIC1 as a novel candidate tumor suppressor gene downregulated through promoter hypermethylation in gastric cancer.  相似文献   

16.
A macromolecular nucleoprotein complex in retrovirus-infected cells, termed the preintegration complex, is responsible for the concerted integration of linear viral DNA genome into host chromosomes. Isolation of sufficient quantities of the cytoplasmic preintegration complexes for biochemical and biophysical analysis is difficult. We investigated the architecture of HIV-1 nucleoprotein complexes involved in the concerted integration pathway in vitro. HIV-1 integrase (IN) non-covalently juxtaposes two viral DNA termini forming the synaptic complex, a transient intermediate in the integration pathway, and shares properties associated with the preintegration complex. IN slowly processes two nucleotides from the 3′ OH ends and performs the concerted insertion of two viral DNA ends into target DNA. IN remains associated with the concerted integration product, termed the strand transfer complex. The synaptic complex and strand transfer complex can be isolated by native agarose gel electrophoresis. In-gel fluorescence resonance energy transfer measurements demonstrated that the energy transfer efficiencies between the juxtaposed Cy3 and Cy5 5′-end labeled viral DNA ends in the synaptic complex (0.68 ± 0.09) was significantly different from that observed in the strand transfer complex (0.07 ± 0.02). The calculated distances were 46 ± 3 Å and 83 ± 5 Å, respectively. DNaseI footprint analysis of the complexes revealed that IN protects U5 and U3 DNA sequences up to ∼ 32 bp from the end, suggesting two IN dimers were bound per terminus. Enhanced DNaseI cleavages were observed at nucleotide positions 6 and 9 from the terminus on U3 but not on U5, suggesting independent assembly events. Protein-protein cross-linking of IN within these complexes revealed the presence of dimers, tetramers, and a larger multimer (> 120 kDa). Our results suggest a new model where two IN dimers individually assemble on U3 and U5 ends before the non-covalent juxtaposition of two viral DNA ends, producing the synaptic complex.  相似文献   

17.
Abnormal patterns of DNA methylation are observed in several types of human cancer. While localized DNA methylation of CpG islands has been associated with gene silencing, the effect that genome-wide loss of methylation has on tumorigenesis is not completely known. To examine its effect on tumorigenesis, we induced DNA demethylation in a rat model of human chondrosarcoma using 5-aza-2-deoxycytidine. Rat specific pyrosequencing assays were utilized to assess the methylation levels in both LINEs and satellite DNA sequences following 5-aza-2-deoxycytidine treatment. Loss of DNA methylation was accompanied by an increase in invasiveness of the rat chondrosarcoma cells, in vitro, as well as by an increase in tumor growth in vivo. Subsequent microarray analysis provided insight into the gene expression changes that result from 5-aza-2-deoxycytidine induced DNA demethylation. In particular, two genes that may function in tumorigenesis, sox-2 and midkine, were expressed at low levels in control cells but upon 5-aza-2-deoxycytidine treatment these genes became overexpressed. Promoter region DNA analysis revealed that these genes were methylated in control cells but became demethylated following 5-aza-2-deoxycytidine treatment. Following withdrawal of 5-aza-2-deoxycytidine, the rat chondrosarcoma cells reestablished global DNA methylation levels that were comparable to that of control cells. Concurrently, invasiveness of the rat chondrosarcoma cells, in vitro, decreased to a level indistinguishable to that of control cells. Taken together these experiments demonstrate that global DNA hypomethylation induced by 5-aza-2-deoxycytidine may promote specific aspects of tumorigenesis in rat chondrosarcoma cells.  相似文献   

18.
Two new diterpenes, lobocompactols A (1) and B (2), and five known compounds (3-7) were isolated from the methanol extract of the soft coral Lobophytum compactum using combined chromatographic methods and identified based on NMR and MS data. Each compound was evaluated for cytotoxic activity against A549 (lung) and HL-60 (acute promyelocytic leukemia) human cancer cell lines. Among them, compound 5 exhibited strong cytotoxic activity against the A549 cell line with an IC50 of 4.97 ± 0.06 μM. Compounds 3, 4, and 7 showed moderate activity with IC50 values of 23.03 ± 0.76, 31.13 ± 0.08, and 36.45 ± 0.01 μM, respectively. The cytotoxicity of 5 on the A549 cells was comparable to that of the positive control, mitoxantrone (MX). All compounds exhibited moderate cytotoxicity against the HL-60 cell line, with IC50 values ranging from 17.80 ± 1.43 to 59.06 ± 2.31 μM. Their antioxidant activity was also measured using oxygen radical absorbance capacity method, compounds 1 and 2 exhibiting moderate peroxyl radical scavenging activity of 1.4 and 1.3 μM Trolox equivalents, respectively, at a concentration of 5 μM.  相似文献   

19.
8-Hydroxy-2′-deoxyguanosine (8-OHdG) and 5-methyl-2′-deoxycytidine (5-mdC) are utilized as useful biomarkers not only for early diagnosis but also for the detection and assessment of high-risk individuals. In the present study, a sensitive and specific method was developed for simultaneous determination of 8-OHdG and 5-mdC in DNA by high performance liquid chromatography/positive electrospray ionization tandem mass spectrometry. The limits of quantification for 8-OHdG and 5-mdC were 80 and 40 pg/ml, respectively. The calibration curves of 8-OHdG and 5-mdC were linear over the concentration range of 0.02–100 ng/ml and the correlation coefficients were higher than 0.9990. The intra-day and inter-day relative standard derivative values were in the range of 0.70–7.47% for 8-OHdG and 1.07–7.06% for 5-mdC, respectively. The recoveries were 93.4–108.5% for 8-OHdG and 87.4–104.9% for 5-mdC, respectively. This method was validated by determination of the background levels of 8-OHdG and 5-mdC in calf thymus DNA, and satisfactory results were obtained.  相似文献   

20.
The DNA binding and in vitro cytotoxicity of the dinuclear Ir(III) polypyridyl complexes [{(η5-C5Me5)Ir(dppz)}2(μ-pyz)](CF3SO3)41 and [{(η5-C5Me5)Ir(pp)}2(μ-4,4′-bpy)](CF3SO3)42-4 (pp = dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), dipyrido[2,3-a:2′,3′-c]phenazine (dppz), benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine (dppn)) with the rigid bridging ligands pyrazine (pyz) or 4,4′-bipyridine (4,4′-bpy) have been studied. Stable intercalative binding into CT DNA (calf thymus DNA) is indicated for the dppz complexes 1 and 3 by induced negative CD bands at about 300 nm and large viscosity increases, with the individual measurements being in accordance with intrastrand bis-intercalation for 3 and mono-intercalation for 1. The observed interruption of specific interresidue NOE cross peaks from the relevant nucleobase H6/H8 protons to the sugar H2′/H2″ protons of the preceding nucleotide is in accordance with bis-intercalation of complex 3 between the C3G18 and G4C17 base pairs and the T5A16 and A6T15 base pairs of the decanucleotide d(5′-CGCGTAGGCC-3′). Complexes 1 and 3 exhibit a greatly improved uptake by HT-29 (colon carcinoma) cells and significantly improved in vitro IC50 values of 1.8 ± 0.1 and 3.8 ± 0.1 μM towards this cell line in comparison to the mononuclear complex [(η5-C5Me5)IrCl(dppz)](CF3SO3) (IC50 = 7.4 ± 0.9 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号